Skip to main content

Nuclear DNA fractions with grossly different base ratios in the genome of the marine sponge Geodia cydonium

  • Biological Systems
  • Conference paper
  • First Online:
Analytical Ultracentrifugation IV

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 107))

Abstract

The DNA of the marine sponge Geodia cydonium (G.c.), a member of the phylogenetically old phylum Porifera, was characterized by density gradient centrifugation and by determining its genetic complexity by reassociation kinetics. At least five subcomponents were identified by curve-fit analyses of analytical density gradient centrifugation profiles of total G.c.-DNA. Four of these subcomponents were isolated from total G.c.-DNA by preparative density gradient centrifugation. The GC-contents of the subcomponents were determined to be 36.4%, 44.0%, 58.7%, and 66.1%, respectively. To our knowledge, such an extreme heterogeneity of DNA composition has never before been observed for any organism. The genetic complexities within the subcomponents were determined by reassociation kinetics to 2.1×108, 2.8×108, 9.2×108, and 1.4×109 bp, respectively. The orders of magnitude of the genetic complexities clearly indicate that the DNA subcomponents mainly contain eukaryotic single copy DNA, since DNA of symbiotic prokaryotes should show significantly lower complexities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardi G (1993) Mol Biol Evol 10:186

    PubMed  CAS  Google Scholar 

  2. Filipski J, Thiery JP, Bernardi G (1973) J Mol Biol 80:177

    Article  PubMed  CAS  Google Scholar 

  3. Bernardi G, Bernardi G (1990) J Mol Evol 31:265

    Article  PubMed  CAS  Google Scholar 

  4. Bernardi G, Bernardi G (1990) J Mol Evol 31:282

    Article  PubMed  CAS  Google Scholar 

  5. Thiery JP, Macaya G, Bernardi G (1976) J Mol Biol 108:219

    Article  PubMed  CAS  Google Scholar 

  6. Macaya G, Thiery JP, Bernardi G (1976) J Mol Biol 108:237

    Article  PubMed  CAS  Google Scholar 

  7. Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Seidman JG, Struhl K (1992) Current Protocols in Molecular Biology. Wiley, New York

    Google Scholar 

  8. Müller WEG, Zahn RK, Beyer R (1970) Nature 227:1211

    Article  PubMed  Google Scholar 

  9. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  10. Cryer DR, Eccleshall R, Marmur J (1975) In: Prescott DM (ed) Methods in Cell Biology, Vol. 12. Academic Press, New York, p 39

    Google Scholar 

  11. Szybalski W, Szybalski EH (1971) In: Cantoni GL, Davis DR (eds) Procedures in Nucleic Acid Research, Vol. 2. Harper and Row, New York, p 311

    Google Scholar 

  12. Meselson M, Stahl FW, Vinograd J (1957) Proc Natl Acad Sci (Wash) 43:582

    Google Scholar 

  13. Weinblum D, Geisert M, Oswald E (1990) Colloid Polym Sci 268:55

    Article  CAS  Google Scholar 

  14. Britten RJ, Davidson EH (1976) Proc Natl Acad Sci (Wash) 73:415

    Article  CAS  Google Scholar 

  15. Medgyessy P (1961) Decomposition of Superpositions of Distribution Functions. Publishing House of the Hung Acad Sci, Budapest

    Google Scholar 

  16. Mortimer RK, Schild D (1985) Microbiol Rev 49:181

    PubMed  CAS  Google Scholar 

  17. Britten RJ, Graham DE, Neufeld BR (1974) In: Grossman L, Moldave K (eds) Methods in Enzymology, Vol. 29. Wiley, New York, p. 363

    Google Scholar 

  18. Gillis M, De Ley J, De Cleene M (1970) Eur J Biochem 12:133

    Article  Google Scholar 

  19. Wetmur JG, Davidson N (1968) J Mol Biol 31:349

    Article  PubMed  CAS  Google Scholar 

  20. Matassi GL, Montero L, Salinas J, Bernardi G (1989) Nucleic Acids Res 17:5273

    Article  PubMed  CAS  Google Scholar 

  21. Storck R, Alexopoulos CJ (1970) Bacteriol Rev 34:126

    PubMed  CAS  Google Scholar 

  22. Müller WEG, Zahn RK, Kurelec B, Lucu C, Müller I, Uhlenbruck G (1981) J Bacteriol 145:548

    PubMed  Google Scholar 

  23. Simpson TL (1984) The Cell Biology of Sponges. Springer, New York

    Google Scholar 

  24. Müller WEG, Maidhof A, Zahn RK, Conrad J, Rose T, Stefanovich P, Müller I, Friese U, Uhlenbruck G (1984) Biol Cell 51:381

    Google Scholar 

  25. Cavalier-Smith T (1985) The Evolution of Genome Size. Wiley, New York

    Google Scholar 

  26. Imsiecke G, Custodio M, Borojevic B, Steffen R, Moustafa MA, Müller WEG (1995) Cell Biol Int 19:995

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Jaenicke H. Durchschlag

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Bartmann-Lindholm, C., Geisert, M., Güngerich, U., Müller, W.E.G., Weinblum, D. (1997). Nuclear DNA fractions with grossly different base ratios in the genome of the marine sponge Geodia cydonium . In: Jaenicke, R., Durchschlag, H. (eds) Analytical Ultracentrifugation IV. Progress in Colloid & Polymer Science, vol 107. Steinkopff. https://doi.org/10.1007/BFb0118023

Download citation

  • DOI: https://doi.org/10.1007/BFb0118023

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1106-4

  • Online ISBN: 978-3-7985-1656-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics