Advertisement

Nuclear DNA fractions with grossly different base ratios in the genome of the marine sponge Geodia cydonium

  • C. Bartmann-Lindholm
  • M. Geisert
  • U. Güngerich
  • W. E. G. Müller
  • D. Weinblum
Biological Systems
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 107)

Abstract

The DNA of the marine sponge Geodia cydonium (G.c.), a member of the phylogenetically old phylum Porifera, was characterized by density gradient centrifugation and by determining its genetic complexity by reassociation kinetics. At least five subcomponents were identified by curve-fit analyses of analytical density gradient centrifugation profiles of total G.c.-DNA. Four of these subcomponents were isolated from total G.c.-DNA by preparative density gradient centrifugation. The GC-contents of the subcomponents were determined to be 36.4%, 44.0%, 58.7%, and 66.1%, respectively. To our knowledge, such an extreme heterogeneity of DNA composition has never before been observed for any organism. The genetic complexities within the subcomponents were determined by reassociation kinetics to 2.1×108, 2.8×108, 9.2×108, and 1.4×109 bp, respectively. The orders of magnitude of the genetic complexities clearly indicate that the DNA subcomponents mainly contain eukaryotic single copy DNA, since DNA of symbiotic prokaryotes should show significantly lower complexities.

Key words

Marine sponges Geodia cydonium DNA-isochores genetic complexity analytical CsCl-density gradient centrifugation reassociation kinetics analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernardi G (1993) Mol Biol Evol 10:186PubMedGoogle Scholar
  2. 2.
    Filipski J, Thiery JP, Bernardi G (1973) J Mol Biol 80:177PubMedCrossRefGoogle Scholar
  3. 3.
    Bernardi G, Bernardi G (1990) J Mol Evol 31:265PubMedCrossRefGoogle Scholar
  4. 4.
    Bernardi G, Bernardi G (1990) J Mol Evol 31:282PubMedCrossRefGoogle Scholar
  5. 5.
    Thiery JP, Macaya G, Bernardi G (1976) J Mol Biol 108:219PubMedCrossRefGoogle Scholar
  6. 6.
    Macaya G, Thiery JP, Bernardi G (1976) J Mol Biol 108:237PubMedCrossRefGoogle Scholar
  7. 7.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Seidman JG, Struhl K (1992) Current Protocols in Molecular Biology. Wiley, New YorkGoogle Scholar
  8. 8.
    Müller WEG, Zahn RK, Beyer R (1970) Nature 227:1211PubMedCrossRefGoogle Scholar
  9. 9.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  10. 10.
    Cryer DR, Eccleshall R, Marmur J (1975) In: Prescott DM (ed) Methods in Cell Biology, Vol. 12. Academic Press, New York, p 39Google Scholar
  11. 11.
    Szybalski W, Szybalski EH (1971) In: Cantoni GL, Davis DR (eds) Procedures in Nucleic Acid Research, Vol. 2. Harper and Row, New York, p 311Google Scholar
  12. 12.
    Meselson M, Stahl FW, Vinograd J (1957) Proc Natl Acad Sci (Wash) 43:582Google Scholar
  13. 13.
    Weinblum D, Geisert M, Oswald E (1990) Colloid Polym Sci 268:55CrossRefGoogle Scholar
  14. 14.
    Britten RJ, Davidson EH (1976) Proc Natl Acad Sci (Wash) 73:415CrossRefGoogle Scholar
  15. 15.
    Medgyessy P (1961) Decomposition of Superpositions of Distribution Functions. Publishing House of the Hung Acad Sci, BudapestGoogle Scholar
  16. 16.
    Mortimer RK, Schild D (1985) Microbiol Rev 49:181PubMedGoogle Scholar
  17. 17.
    Britten RJ, Graham DE, Neufeld BR (1974) In: Grossman L, Moldave K (eds) Methods in Enzymology, Vol. 29. Wiley, New York, p. 363Google Scholar
  18. 18.
    Gillis M, De Ley J, De Cleene M (1970) Eur J Biochem 12:133CrossRefGoogle Scholar
  19. 19.
    Wetmur JG, Davidson N (1968) J Mol Biol 31:349PubMedCrossRefGoogle Scholar
  20. 20.
    Matassi GL, Montero L, Salinas J, Bernardi G (1989) Nucleic Acids Res 17:5273PubMedCrossRefGoogle Scholar
  21. 21.
    Storck R, Alexopoulos CJ (1970) Bacteriol Rev 34:126PubMedGoogle Scholar
  22. 22.
    Müller WEG, Zahn RK, Kurelec B, Lucu C, Müller I, Uhlenbruck G (1981) J Bacteriol 145:548PubMedGoogle Scholar
  23. 23.
    Simpson TL (1984) The Cell Biology of Sponges. Springer, New YorkGoogle Scholar
  24. 24.
    Müller WEG, Maidhof A, Zahn RK, Conrad J, Rose T, Stefanovich P, Müller I, Friese U, Uhlenbruck G (1984) Biol Cell 51:381Google Scholar
  25. 25.
    Cavalier-Smith T (1985) The Evolution of Genome Size. Wiley, New YorkGoogle Scholar
  26. 26.
    Imsiecke G, Custodio M, Borojevic B, Steffen R, Moustafa MA, Müller WEG (1995) Cell Biol Int 19:995PubMedCrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1997

Authors and Affiliations

  • C. Bartmann-Lindholm
    • 1
  • M. Geisert
    • 1
  • U. Güngerich
    • 1
  • W. E. G. Müller
    • 1
  • D. Weinblum
    • 1
  1. 1.Institute für Physiologische Chemie und PathobiochemieJohannes-Gutenberg-UniversitätMainzGermany

Personalised recommendations