Skip to main content

Some considerations on debris flow rheology

  • General Investigations on Sediment Transport Dynamics
  • Chapter
  • First Online:
Dynamics and Geomorphology of Mountain Rivers

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 52))

Abstract

Our knowledge of the rheology of debris flows is unsatisfactory: a number of different models have been proposed but they lack experimental justification, or are theoretically unsatisfactory, or both. A correct approach to rheology must be based on a description of the evolution of the microstructure. In this paper we present a brief review of the fundamental rheological characteristics of various natural suspensions of clay and coarse particles in water. We define the physical boundary conditions which may be useful for dividing the suspensions in terms of clearly different qualitative behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagnold, R. A., (1954), “Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear”, Proceedings of the Royal Society, A225, pp.49–63.

    Google Scholar 

  • Barnes, H.A., Jomba, A.I., Lips, A., Merrington, A., and Woodcock, L.V., (1991), “Recent developments in dense suspension rheology”, Powder Technology, 65, pp.343–370.

    Article  Google Scholar 

  • Batchelor, G.K., (1970), “The stress system in a suspension of force free particles”, Journal of Fluid Mechanics, 41, pp.545–570.

    Article  Google Scholar 

  • Chen, C.-L., (1988), “General solutions for viscoplastic debris flow”, Journal of Hydraulic Engineering, 114(3), pp.259–282.

    Google Scholar 

  • Chen, C.-L., (1991), “Rheological model for ring-shear type debris flows”, Fifth Federal Interagency Sedimentation Conference, Las Vegas, Nevada, Subcommittee on Sedimentation, Interagency advisory committee on water data.

    Google Scholar 

  • Coussot, P., (1992)(a), “Rhéologie des laves torrentielles-Etude de dispersions et suspensions concentrées”, Thèse de l'Institut National Polytechnique de Grenoble, France, 420p.

    Google Scholar 

  • Coussot, P., Leonov, A.I., and Piau, J.-M., (1992)(b), “Rheology of concentrated dispersed systems in low molecular weight matrix”, Journal of Non-Newtonian Fluid Mechanics, 46, pp.179–217.

    Article  Google Scholar 

  • Coussot, P., Leonov, A.I., and Piau, J.-M., (1992)(c), “Rheological modelling and peculiar properties of some debris flows”, Proceedings of the International Symposium on Erosion, Debris Flow and Environment in Mountain Regions, Chengdu, China, I.A.H.S. Publication, (209), pp.207–216.

    Google Scholar 

  • Davies, T.R.H., (1986), “Large debris flows: A macro-viscous phenomenon”, Acta Mechanica, 63, pp.161–178.

    Article  Google Scholar 

  • Einstein, A., (1956), in Investigation of the brownian movement, Dover, New York, p.49, [English translation of Ann. Physik, 19, p.286 (1906), and 34, p.591, (1911)].

    Google Scholar 

  • Fei Xiangjun, (1982), “Viscosity of the fluid with hyperconcentration coefficient rigidity”, Journal of Hydraulic Engineering, 3, pp57–63 (in Chinese).

    Google Scholar 

  • Iverson, R.M., and Denlinger, R.P., (1987), “The physics of debris flows—a conceptual assessment”, Proceedings of the Corvallis Symposium on Erosion and Sedimentation in the Pacific Rim, I.A.H.S. Publication, (165), pp.155–165.

    Google Scholar 

  • Johnson, A.M., (1970), Physical Processes in Geology, Freeman Cooper and Co, 577p.

    Google Scholar 

  • Kamal, M.R., and Mutel, A., (1985), “Rheological properties of suspensions in newtonian and non-newtonian fluids”, Journal of Polymer Engineering, 5, No 4, pp.293–382.

    Google Scholar 

  • Kytomaa, H.K., and Prasad, D., (1993), “Transition from quasi-static to rate dependent shearing of concentrated suspensions”, Powders & Grains, Thornton (ed.), Balkema, Rotterdam, pp.281–287.

    Google Scholar 

  • M'Ewen, M.B., and Mould, D.L., (1957), “The gelation of montmorillonite. Part II: The nature of interparticle forces in sols of Wyoming bentonite”, Transactions of the Faraday Society, 53, pp.548–564.

    Article  Google Scholar 

  • Major, J.J., and Pierson, T.C., (1992), “Debris flow rheology: experimental analysis of fine-grained slurries”, Water Resources Research, 28, No 3, pp.841–857.

    Article  Google Scholar 

  • Melton, I.E., and Rand, B., (1977), “Particle interactions in aqueous kaolinite suspensions, Part I-Effect of pH and electrolyte upon the mode of particle interaction in homoionic sodium kaolinite suspensions”, Journal of Colloid and Interface Science, 60, No 2, pp.308–336.

    Article  Google Scholar 

  • Migniot, C., (1989), “Tassement et rhéologie des vases”, La Houille Blanche, No2, pp.95–112.

    Article  Google Scholar 

  • Naik, B., (1983), “Mechanics of mudflow treated as the flow of a Bingham fluid”, Ph. D. thesis, Washington State University, USA, 166p.

    Google Scholar 

  • O'Brien J.S., Julien P.Y., (1988), “Laboratory analysis of mudflow properties”, Journal of Hydraulic Engineering, 114 (8), pp.877–887.

    Google Scholar 

  • Phillips, C.J., and Davies, T.R.H., (1989), “Debris flow material rheology-Direct measurement”, Proceedings of International Symposium on Erosion and Volcanic Debris Flow Technology, Jogykarta, Indonesia.

    Google Scholar 

  • Phillips, C.J., and Davies, T.R.H., (1991), “Determining rheological parameters of debris flow material”, Geomorphology, 4, pp101–110.

    Article  Google Scholar 

  • Takahashi, T., (1978), “Mechanical characteristics of debris flow”, Journal of Hydraulics Division, 104 (HY8), pp.1153–1169.

    Google Scholar 

  • Takahashi, T., (1980), Debris flow on prismatic open channel. Journal of the Hydraulics Division, 106 (HY3), pp.381–396.

    Google Scholar 

  • Takahashi, T., (1981), “Debris flow”, Annual Review of Fluid Mechanics, 13, pp.57–77.

    Article  Google Scholar 

  • Takahashi, T., (1991), Debris flow. International Association for Hydraulic Research, Monograph Series, A.A. Balkema, Rotterdam, Netherlands, 168p.

    Google Scholar 

  • Utracki, L.A., (1988), “The rheology of two-phase flows”, in Rheometrical Measurement, Edited by A.A. Collyer and D.W. Clegg, Elsevier Applied Science, Chapter 15, pp.479–594.

    Google Scholar 

  • Wang, Y., (1989), “An approach to rheological models for debris flow research”, Proceedings of the Fourth International Symposium on River Sedimentation, Beijing, China, pp.714–721.

    Google Scholar 

  • Wang, Z., Larsen, P., and Xiang, W., (1992), “Rheological properties of sediment suspensions and their implications”, submitted to Journal of Hydraulic Research, I.A.H.R.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Ergenzinger Karl-Heinz Schmidt

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Coussot, P., Piau, JM. (1994). Some considerations on debris flow rheology. In: Ergenzinger, P., Schmidt, KH. (eds) Dynamics and Geomorphology of Mountain Rivers. Lecture Notes in Earth Sciences, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0117848

Download citation

  • DOI: https://doi.org/10.1007/BFb0117848

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57569-6

  • Online ISBN: 978-3-540-48235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics