Skip to main content
Log in

Large debris flows: A macro-viscous phenomenon

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Field observations from a variety of sources suggest that destructive debris flows occur when the density of the fluid-solid mixture exceeds about 1.5 T/m3, and that their destructive ability is due to their pulsing nature and to their ability to carry large boulders.

If debris flows are treated as a macroviscous flow of large stones in a slurry of fine solids in water, several of their obvious characteristics (boulder transport, deep bed erosion, intermittent jamming) can be explained. Further, the amplification and translation in a main channel of random surges due to jamming in tributaries explains the regular, large pulses in Chinese debris flows as a roll-wave phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagnold, R. A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings Royal Society of London225, 49–63 (1954).

    Google Scholar 

  2. Bagnold, R. A.: Some flume experiments on large grains but little denser than the transporting fluid, and their implications. Proc. Inst. Civ. Eng. pp. 174–211 (1955).

  3. Bagnold, R. A.: The flow of cohesionless grains in fluids. Phil. Trans., Royal Soc. LondonA 249, 235–297 (1956).

    Google Scholar 

  4. Bagnold, R. A.: Deposition in the process of hydraulic transport. Sedimentology10, 45–56 (1968).

    Google Scholar 

  5. Bailard, J. A., Inman, D. L.: A reexamination of Bagnold's granular-fluid model and bed load transport equation. J. Geoph. Res.84, C12, 7827–7833 (1979).

    Google Scholar 

  6. Berlamont, J. E., Vanderstappen, N.: Unstable turbulent flow in open channels. ASCE J. Hydraul. Div.107, 427–449 (1981).

    Google Scholar 

  7. Binnie, A. M.: Instability in a slightly inclined water channel. J. Fluid. Mech.5, 4, 561–570 (1959).

    Google Scholar 

  8. Brock, R. R.: Development of roll waves in open channels. Report No. KH-R-16, p. 226. W. N. Keck Lab., Calif. Inst. Techn., Pasadena, 1967.

    Google Scholar 

  9. Broscoe, A. J., Thompson, S.: Observations on an alpine mudflow, Steele Creek, Yukon. Can. J. Earth Sc.6, 219–229 (1969).

    Google Scholar 

  10. Carter, R. M.: A discussion and classification of subaqueous mass transport with particular application to grain-flow, slurry and fluxoturbidities. Earth-Sc. Rev.11, 145–177 (1975).

    Google Scholar 

  11. Chu Junda: The viscosity of sediment-water mixture. Proc. Int. Symp. River Sed., Beijing, China,1, 205–211 (1980).

    Google Scholar 

  12. Costa, J. E.: Physical geomorphology of debris flows, in: Developments and applications of geomorphology (Eds.: Costa, J. E., Fleischer, P. J.) Springer 1984.

  13. Curry, R. R.: Observation of alpine mudflows in the Tenmile Range, Central Colorado. Bull., Geol. Soc. Amer.,77, 771–776 (1966).

    Google Scholar 

  14. Dai Jilan, Wan Zhaohui, Wang Wenzhi, Chen Wukui, Li Xijun: An experimental study of slurry transport in pipes. Proc. Int. Symp-River Sed., Beijing, China,1, 195 to 204 (1980).

    Google Scholar 

  15. Davies, T. R. H.: The investigation of avalanche processes by laboratory experiments; exploratory tests. Intern. Rep., p. 31. Laboratory of Hydraulics, Hydrology and Glaciology, ETH-Zurich, 1979.

  16. Davies, T. R. H.: Spreading of rock avalanches by mechanical fluidization. Rock Mech.15, 9–24 (1982).

    Google Scholar 

  17. Engelund, F., Wan Zhaohui: Instability of hyperconcentrated flow. ASCE, J. Hydraul. Div.110 HY3, 219–233 (1984).

    Google Scholar 

  18. Eisbacher, G. H.: Mountain torrents and debris flows. Episodes4, 12–17 (1982).

    Google Scholar 

  19. Enos, P.: Flow regimes in debris flows. Sedimentology24, 133–142 (1977).

    Google Scholar 

  20. Hampton, M. A.: The competence of fine-grained debris flows. J. Sed. Petrol.45, 4, 834–844 (1975).

    Google Scholar 

  21. Hampton, M. A.: Buoyancy in debris flows. J. Sed. Petrol.49, 3, 753–758 (1979).

    Google Scholar 

  22. Henderson, F. M.: Open channel flow. Macmillan 1966.

  23. Holmes, W. H.: Travelling waves in steep channels. Civil Eng.6, 367–368 (1936).

    Google Scholar 

  24. Ikeya, H.: Introduction to Sabo works, p. 168. Japan Sabo Association 1976.

  25. Ikeya, H.: A method of designation for area in danger of debris flow, in: Erosion and sediment transport in Pacific rim steepland (Davies, T. R. H., Pearce, A. J., eds.) IAHS Publ. No. 132, 576–588 (1981).

  26. Ishihara, T., Iwagaki, Y., Iwasa, Y.: Discussion of “Roll waves and slug flows in inclined open channels”. ASCE, J. Hydraul. Div.86, 45–60 (1960).

    Google Scholar 

  27. Johnson, A. M.: Physical processes in geology, p. 577. Freeman Cooper and Co. 1970.

  28. Johnson, A. M., Rahn, P. H.: Mobilization of debris flows. Zeit. Geomorph., Suppl.9, 168–186 (1970).

    Google Scholar 

  29. Hirano, M., Iwamoto, M.: Mechanical characteristics of debris flow. Proc. XVII IUFRO Congr. Kyoto, Japan, 1981.

  30. Kang Zhicheng, Zhang Shucheng: A preliminary analysis of the characteristics of debris flow. Proc. Int. Symp. River Sed., Beijing, China,1, 213–226 (1980).

    Google Scholar 

  31. Kronfellner-Kraus, G.: Über den Geschiebe- und Feststofftransport in Wildbächen. Öst. Wasserw.34, 213–226 (1980).

    Google Scholar 

  32. Li Jan, Luo Defu: The formation and characteristics of mudflow and flood. Zeit. Geomorph.25, 4, 470–484 (1981).

    Google Scholar 

  33. Li Jan, Yuan Jianmo, Bi Cheng, Luo Defu: The main features of the mudflow in Jiang-Jia Ravine. Zeit. Geomorph.27, 3, 325–341 (1983).

    Google Scholar 

  34. Lowe, D. R.: Grain flow and grain flow deposits. J. Sed. Petrol.46, 1, 188–199 (1976).

    Google Scholar 

  35. Massey, B. S.: Mechanics of fluids, 5th ed., p. 625. Old Wokingham, Surrey: Van Nostrand-Reinhold U. K. Ltd. 1983.

    Google Scholar 

  36. Mayer, P. G.: Roll waves and slug flows in open channels. ASCE, J. Hydraul. Div.85, 99–141 (1959).

    Google Scholar 

  37. McSaveney, M. J.: Sherman glacier rock avalanche, in: Rockslides and avalanches, Vol. 1 (Voight, B., ed.) Dev. Geotech. Eng. 14 A, pp. 197–258. Elsevier 1978.

  38. Middleton, G. V., Hampton, M. A.: Subaqueous sediment transport and deposition by sediment gravity flows, in: Marine sediment transport and environmental management (Stanley, D. J., Swift, D. J. P., eds.), pp. 197–218, 1976.

  39. Niyazov, B. S., Degovets, A. S.: Estimation of the parameters of catastrophic mudflows in the basins of the lesser and greater Almatinka Rivers. Sov. Hydrol.2, 75–80 (1975).

    Google Scholar 

  40. Okuda, S., Suwa, H., Okunishi, K., Yokoyama, K., Nakano, M.: Observations on the motion of a debris flow and its geomorphological effects. Zeit. Geomorph., Suppl.35, 142–163 (1980).

    Google Scholar 

  41. Pierson, T. C.: Erosion and deposition by debris flows at Mt. Thomas, North Canterbury, New Zealand. Earth Surf. Proc.5, 227–247 (1980).

    Google Scholar 

  42. Pierson, T. C.: Dominant particle upport mechanisms in debris flows at Mt. Thomas, New Zealand, and implications for flow mobility. Sedimentology28, 49–60 (1981).

    Google Scholar 

  43. Rodine, J. D.: Analysis of the mobilization of debris flows. Ph. D. Thesis, Stanford University, 1974.

  44. Rodine, J. D., Johnson, A. M.: The ability of debris, heavily freighted with coarse clastic materials, to flow on gentle slopes. Sedimentology23, 213–234 (1976).

    Google Scholar 

  45. Sharp, R. P., Nobles, L. H.: Mudflow of 1941 at Wrightwood, Southern California. Bull. Geol. Soc. Amer.64, 547–560 (1953).

    Google Scholar 

  46. Suwa, H., Okuda, S.: Dissection of valleys by debris flows. Zeit. Geomorph., Suppl.35, 164–182 (1980).

    Google Scholar 

  47. Takahashi, T.: Mechanical characteristics of debris flow. ASCE, J. Hydraul. Div.104, 1135–1169 (1978).

    Google Scholar 

  48. Takahashi, T.: Debris flow on prismatic open channel. ASCE, J. Hydraul. Div.106, 381–396 (1980).

    Google Scholar 

  49. Takahashi, T.: Debris flow. Ann. Rev. Fluid Mech.13, 57–77 (1981a).

    Google Scholar 

  50. Takahashi, T.: Estimation of potential debris flows and their hazard zones; soft countermeasures for a disaster. Natural Disaster Sc.13, 57–89 (1981b).

    Google Scholar 

  51. Takahashi, T., Ashida, K., Sawai, K.: Delineation of debris flow hazard areas, in: Erosion and sediment transport in Pacific rim steeplands (Davies, T. R. H., Pearce, A. J., eds.) IAHS Publ. No. 132, 589–603 (1981).

  52. Woodruff, J. F.: Debris avalanches as an erosional agent in the Appalachian Mountains. J. Geol.70, 399–406 (1971).

    Google Scholar 

  53. Zhang, X., Liu, T., Wang, Y., Luo, J.: The main features of debris flows and control structures in Hunshui Gully, Yunnan Province, China. Proc. Int. Symp. on Erosion, Debris Flow and Disaster Prevention, Tsukuba, Japan, 1985.

  54. Zeller, J.: Die Schwierigkeit einer technisch korrekten Festlegung der Wildbachgefahrenzonen. Sonderdruck, 100 Jahre Fachveranstaltungen, Wien, pp. 169–187 1972.

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, T.R.H. Large debris flows: A macro-viscous phenomenon. Acta Mechanica 63, 161–178 (1986). https://doi.org/10.1007/BF01182546

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01182546

Keywords

Navigation