Interval routing & Layered Cross Product: Compact routing schemes for butterflies, mesh of trees and fat trees

  • Tiziana Calamoneri
  • Miriam Di Ianni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1470)


In this paper we propose compact routing schemes having space and time complexities comparable to a 2-Interval Routing Scheme for the class of networks decomposable as Layered Cross Product (LCP) of rooted trees. As a consequence, we are able to design a 2-Interval Routing Scheme for butterflies, meshes of trees and fat trees using a fast local routing algorithm. Finally, we show that a compact routing scheme for networks which are LCP of general graphs cannot be found by any only using shortest paths information on the factors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Even, A. Litman, “Layered Cross Product — A technique to construct interconnection networks”, 4th ACM SPAA, 60–69, 1992.Google Scholar
  2. 2.
    M. Flammini, J. van Leeuwen, A. Marchetti-Spaccamela, “The complexity of interval routing in random graphs”, MFCS 1995, LNCS 969, 37–49, 1995.Google Scholar
  3. 3.
    P. Fraigniaud, C. Gavoille, “Optimal interval routing”, CONPAR, LNCS 854, 785–796, 1994.Google Scholar
  4. 4.
    C. Gavoille, S. Perennes, “Lower bounds for shortest path interval routing”, SIROCCO’96, 1996.Google Scholar
  5. 5.
    R. KráĽovič, P. RuŽička, D. štefankovič, “The complexity of shortest path and dilation bounded interval routing”, Euro-Par’97, LNCS 1300, 258–265, 1997.Google Scholar
  6. 6.
    J. van Leeuwen, R.B. Tan, “Computer networks with compact routing tables”, in: G. Rozemberg and A. Salomaa (Eds.) The Book of L, Springer-Verlag, Berlin, 298–307, 1986.Google Scholar
  7. 7.
    J. van Leeuwen, R.B. Tan, “Interval routing”, Computer Journal, 30, 298–307, 1987.MATHCrossRefGoogle Scholar
  8. 8.
    J. van Leeuwen, R.B. Tan, “Compact routing methods: a survey”, Colloquium on Structural Information and Communication Complexity (SICC’94), 1994.Google Scholar
  9. 9.
    F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, Inc., 1992.Google Scholar
  10. 10.
    C.E. Leiserson, “Fat-Trees: universal networks for hardware-efficient supercomputing”, IEEE Trans. on Comp., 34, 892–901, 1985.Google Scholar
  11. 11.
    P. RuŽička, “On efficiency of Interval Routing algorithms”, in: M.P. Chytil, L. Janiga, V. Koubeck (Eds.), MFCS 1988, LNCS 324, 492–500, 1988.Google Scholar
  12. 12.
    N. Santoro, R. Khatib, “Routing without routing tables”, Tech. Rep. SCS-TR-6, School of Computer Science, Carleton University, 1982. Also as: “Labelling and implicit routing in networks”, Computer Journal, 28, 5–8, 1985.Google Scholar
  13. 13.
    S.S.H. Tse, F.CM. Lau, “A lower bound for interval routing in general networks”, Tech. Rep. 94-04, Dept. of Computer Science, The University of Hong Kong, 1994 (to appear in Networks).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Tiziana Calamoneri
    • 1
  • Miriam Di Ianni
    • 2
  1. 1.Dip. di Scienze dell’InformazioneUniversità di Roma “la Sapienza”RomaItaly
  2. 2.Istituto di ElettronicaUniversità di PerugiaPerugiaItaly

Personalised recommendations