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Abst rac t .  In this paper we propose compact routing schemes having 
space and time complexities comparable to a 2-Interval Routing Scheme 
for the class of networks decomposable as Layered Cross Product (LCP) 
of rooted trees. As a consequence, we are able to design a 2-IntervM 
Routing Scheme for butterflies, meshes of trees and fat trees using a fast 
local routing algorithm. Finally, we show that a compact routing scheme 
for networks which are LCP of general graphs cannot be found by any 
only using shortest paths information on the factors. 

1 I n t r o d u c t i o n  

The information needed to route messages in parallel and distributed systems 
must be somehow stored in each node of the network. The simplest solution 
consists of a complete routing table - stored in each node u - that  specifies for 
each destination v at least one link incident to u and lying on a path from u 
to v. The required space of such a solution is O(nlog~),  where ~ is the node 
degree and n the number of nodes in the network. Efficiency considerations lead 
to store shortest paths information. For better and fair use of network resources, 
storing, for each entry of the routing table, as many outgoing links as necessary 
to describe all shortest paths in the network should be aimed. Due to limited 
storage space at each processor, a linear increase of the routing table size in n 
is not acceptable. Research has then focused on identifying classes of network 
topologies whose shortest paths information can be succinctly stored, assuming 
that  some "short" labels can be assigned to nodes and links at preprocessing 
time. 

In the Interval Routing Scheme (in short, IRS) [7, 12], node-labels belong to 
the set {1 , . . . ,  n}, while link-labels are pairs of node-labels representing cyclic 
intervals of [1 , . . . ,  n]. A message with destination v arriving at a node u is sent 
by u onto an incident link whose label [vl, v2] is such that v 6 [vl, v2]. Such an 
approach allows one to achieve an efficient memory occupation. An IRS is said 
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optimum if the route traversed by each message is a shortest path fl'om its source 
to its destination. It is said overall optimum if a message can be routed along 
any shortest path. In [6, 12] opt imum IRSs have been designed for particular 
network topologies. In [3, 11, 13] it has been proved the existence of networks 
that  do not admit any optimum IRS. Multi-label Interval Routing Schemes were 
introduced [7] to extend the model in order to allow more than one interval to 
be associated to each link: a k-IRS is a scheme associating at most k intervals 
to each link. A message whose destination is node v is sent onto a link labeled 
( I1 , . . . ,  Ik) if v C Ii for some 1 < i < k. In [2] a technique for proving lower 
bounds on the minimum k allowed was developed and in [4] it has been used to 
construct n-node networks for which any optimal k-IRS requires k = O(n). It 
was proved that for some well known interconnection networks, such as shuffle 
exchange, cube connected cycle, butterfly and star graph, each optimal k-IRS 
requires k = / 2 ( n  1 / 2 - e )  - for proper values of c - to store one shortest path for 
each pair [5]. Of course, this lower bound still holds to store any shortest path. 

In this paper, after providing the necessary preliminary definitions (Section 
2), we propose overall optimum compact routing schemes (Section 3 ) based on 
the same leading idea as the Multi-label Interval Routing for all networks which 
are Layered Cross Product (LCP) [1] of rooted trees (in short, T-networks). 
For many commonly used interconnection networks falling in this definition no 
overall opt imum compact routing scheme was known. Among them we recall 
three widely studied topologies: butterflies, mesh of trees and fat trees. Our 
compact routing scheme requires as much space and time as those required by a 
2-IRS. The achievement is particularly meaningful for butterflies because of the 
result in [5]. Finally, in Section 4, we give a negative result by proving that  the 
knowledge of shortest paths on the factors of a network could be not enough to 
compute shortest paths on it. 

2 Definit ions  and Pre l iminary  Resul t s  

Point to point communication networks are usually represented by graphs, whose 
nodes stand for processors and edges for communication links. We always rep- 
resent each edge {u, v} by the pair of (oriented) arcs, (u, v) and (v, u). 

An l-layered graph, G = (V 1, V2 , . . . ,  V t, E) consists of l layers of nodes; V i 
is the (non-empty) set of nodes in layer i, 1 < i < l; every edge in E connects 
vertices of two adjacent layers. In particular a rooted tree T of height h is a 
h-layered graph, layer i defined either as the set of nodes having distance i - 1 
from the root or as the set of nodes having distance h - i from the root. From 
now on, we call T a root-tree or a leaf-tree according to whether the first or the 
second way of defining layers is chosen. In Fig. 1, T1 is a root-tree, while T2 is a 
leaf-tree. 

Let G1 = (1/11,V~,. . . ,V/,E1) and G2 = (V~,Vff , . . . ,V~,E2)  be two l- 
layered graphs. Their  Layered Cross Product (LCP for short) [1] G 1 x G 2 is 
an/ - layered graph G = (V 1, V2 , . . . ,  V l, E) where V i is the cartesian product  
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of V~ and V~, 1 < i < l, and a link ((a, a), (b,/3)) belongs to E if and only if 
(a, b) �9 E1 and (a,/3) �9 E2. 

Many common networks are LCP of trees [1]. Among themh the butterfly 
with N inputs and N outputs is the LCP of two N-leaves complete binary trees 
(Fig. 1.a), the mesh of trees of size 2N is the LCP of two N-leaves complete 
binary trees with paths of length log N attached to their leaves (Fig. 1.b), the 
fat tree of height h [10] is the LCP of a complete binary tree and a complete 
quaternary tree, both of height h (Fig. 1.c). 

1 2 3  

r~ 

2 3 4 5  

,9 

N 

3 
2 

- 1 

t) 

2 3  

3 
2 

. . . .  1 72 
c 

Fig. 1. Butterfly, Mesh of Trees and Fat-tree as LCP of rooted trees. 

Fac t  21 Let (a, ~), (b, fl) E V(G1 • G2). Any shortest path from (a, ~) to (b, fl) 
is never shorter than a shortest path from a to b in G t and a shortest path from 

to fl in G 2. 

Fact  22 If  G is the LCP of either two root-trees or two leaf-trees then G is a 
tree. 

Observe that  the LCP of two trees could be also not connected. This is not 
a restriction to our discussion, since we deal with connected networks that  are 
the LCP of trees and not with any LCP of trees. 

3 Designing Compact Routing Schemes for T-networks 

Let G = T1 • T2, where both T1 and T~ are trees. In [12] an IRS for trees has been 
shown. Thus, consider the two IRSs for T 1 and T 2 and let s and I1, E2 and Z2 
be the node- and link-labelings of an IRS for T 1 and T 2, respectively. A node 
(ul, u2) E V(G) is labeled with a triple (a, a, l) if El(U1) = a, Z2(u2) = a and l 
is the layer of both ut in Tt and u2 in T2 (and of (ut, u2) in G). Similarly, a link 
((ul, u2), (Vl, v2)) E E is labeled with a triple (/1, I~, 1), where/1 = Zl((ut ,  vt)),  
I2 = Z~((u~, v2)) and I is the layer of (vl, v2). It is possible to rename all nodes 
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according to their node-labeling s  therefore, in the following we speak about  
labeling to  mean  link-labeling and we refer to nodes themselves to mean  their 
node-labels.  

To complete  the definition of the compac t  rout ing  scheme for G, we must  
describe a lgor i thm ,4 stored in each node (a, a ,  la) used to route a packet  onto 
a shortest  pa th  connect ing the current  node (a, c~, la) itself to  the dest inat ion 
(t, r, lt). Informally,  at each step ,4 tries to take the greedy choice: if bo th  shortest  
pa th  factors  Pl(a,  t) and P2(a, r) move towards  the same level then A moves in 
tha t  direction, tha t  is, it chooses link ((a, a, l~), (b,/3, lb)). Otherwise, if a = t (or 
a = r ) ,  then P1 (or Pu) is null, so the other  pa th  mus t  be followed 1. Finally, if 
Pl(a,  t) and P2(o:, r )  go towards opposite levels, ,4 follows the pa th  going away 
f rom level lt. We will prove tha t  in this way a shortest  pa th  on G is always used. 
Now, we are ready to describe a lgor i thm ,4 formally. 
Algorithm M 

( i npu t :  t, r, lt; o u t p u t :  one outgoing link labeled (I1,/2,1)) 
{ The labeling of the outgoing links, a, o~ and la are known constants in each node.} 

if  a = t and  a = r t h e n  extract the packet 
else if  there exists a link labeled (I1,/2, l) s.t. t 6 I1 a n d  r 6 / 2  t h e n  choose it 

else if  there exists a link having label (I1, Is, l) s.t. 
t �9 11 a nd  (a = r or  [la - lt[ < I1 - lt[) t h e n  choose it 

else if  there exists a link having label (11,/2, l) s.t. 
r 6 [2 and  (a = t or  [l~ - lr] < I1 - l~[) t h e n  choose it; 

Notice that  algori thm`4,  stored in each node, does not increase the asymptho t ic  
space complexi ty  with respect to 2-1RS and runs in O(3) time, 6 being the max-  
i m u m  node degree. As a consequence, if .4 is able to route packets to their 
dest inat ions we have designed a compac t  rout ing scheme. In the following, we 
first show the opt imal i ty  (Thin. 1) and then its overall op t imal i ty  (Thm.  2). 

T h e o r e m  1. I f  (a, a, la) transmits a packet, whose destination is (t, r, It), to an 
adjacent node (b,/3, lb), then (b,/3, lb) belongs to a shortest  path f rom (a, a, la) to 
(t, ~, l~). 

Proof. If  G is the LCP  of either two root- trees or two leaf-trees the s t a t emen t  is 
tr ivial ly true because, f rom Fact 22, there exists a unique pa th  between any pair  
of  nodes. It  mus t  necessarily be the Layered Cross P roduc t  of the corresponding 
paths  in the factors. Thus,  links labeled ( I t ,  h , 1 )  such tha t  t E I1 and v 6 /2 
can always be used. Therefore, f rom now on we shall always suppose tha t  T1 is 
a root- t ree  and T2 is a leaf-tree. 

The  proof  considers the t ru th  of  the if-condit ions in A. 

1. There  exists a link (I1, h ,  l) such that  r 6 12 and a = t. Let (~, fl, i l l , .  �9 ilk, r)  
be the shortest  pa th  in T2. Then,  by definition of  LCP, there exist b, b l , . . . ,  bk 
in T1 such tha t  (a, b, b l , . . . ,  bk, a) is a pa th  (crossing the same links more  than  

1 When we say that M follows a path Pi (either i = 1 or i = 2), we mean that r 
follows an edge on G whose i-th factor belongs to Pi. 
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once)  such  t h a t  <(a,o~,la), (b,f l ,  lb), ( b l , f l l , l b , ) , . . . ,  (bk , f lk , lb~) ,  (a,  7-,/a)) is a 
p a t h  in G s ta r t ing  at  (a, a, la) and ending at  (a, 7-, la). Fact  21 ensures t h a t  
this is a shor tes t  p a t h  in G. The  case wi th  t E / 1  and a = 7- is s y m m e t r i c .  

2. There  exists a link labeled ( I i , I2 , lb)  such tha t  t E I1 and 7- C I~. W.l .o.g. ,  
suppose  la < lt: b is a child of a and fl is the fa ther  of  a (Fig. 2). Moreover ,  
since b belongs to a shortest  p a t h  f rom a to t, t is a descendant  of  b. T w o  
cases are possible: 

- 7" is an ancestor  of  c~ (Fig. 2.a). Then ,  the shor tes t  pa ths  f rom a to t in 
T1 and f rom a to ~- in T2 have the s ame  length It - la. I t  is easy to see 
t ha t  in G there exists a unique shor tes t  p a t h  f rom (a, c~, l~) to (t, 7-, 4) .  
Fur thermore ,  all links in such pa th  are labeled ( /1 , /2 ,  l) such t ha t  t E I1 
and 7- C /2. Thus,  (b, fl, lb) belongs to a p a t h  of  length It - la and for 
Fact  21 it is the shortest  pa th .  

- a and 7- have a c o m m o n  ancestor  (Fig. 2.b). Let  7 be the  neares t  c o m m o n  
ancestor  and let l~ be its layer. By the definit ion of layers, and  since Tz 
is a root- t ree  and T2 is a leaf-tree, it mus t  be It < 4.  

Ic I t  Ib la 

~(b (t" "r 
, ~) 

(a, a )  

, , ,  C( ' l a 

%," 

I~ It Ib I,, 

}" ]"l (a;a) " 

-,/ 
b 

F i g .  2. la < lt; a. T is an acestor of c~; b. a and T have a common  ancestor.  

Let c be one of the descendants  of  t at  layer Ic in T1 and 6 be the node  a t  
l ayer  l t belonging to the shortest  pa th  f rom c~ to 7 in T2. There  exists a p a t h  
f rom (a, ~, la) to (t, ~i, 4)  in G whose links are always labeled ( I1 , /2 ,  l) such 
t h a t  t E I1 and 7- E / 2  and having length equal  to the length of the shor tes t  
p a t h  f rom c~ to 6 in T2 (this is easily proved by induct ion on the  length) .  
T h e  p a t h  in G f rom (t, 6, 4)  to (t, v, 4) chosen by .4 is a shor tes t  one because  
of ease 1. Since the p a t h  f rom (a, c~, 4 )  to (t, r, 4)  passing th rough  (b, fl, 4 )  
has  the s ame  length as the pa th  f rom c~ to r in T~, it is a shor tes t  one. 

3. No outgoing  link f rom (a, c~,4) is labeled (I1 , /2 ,1)  such t h a t  t E I1 and  
r E / 2 ;  fu r the rmore ,  nei ther  a = t nor  c~ = r .  Then ,  one shor tes t  p a t h  fac tor  
moves  towards  increasing layers while the o ther  shor tes t  p a t h  fac tor  moves  
towards  decreasing layers. 
Suppose  first It > la, t ha t  is, t is closer t han  a to the leaves in T1 while 7- is 
closer t h a n  a to the  root  in T2. 
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Notice tha t  it is not possible to have bo th  shor tes t  pa ths  fac tors  mov ing  
towards  the leaves. Thus,  bo th  shor tes t  pa ths  factors  move  towards  the  roots .  
Then,  t and a have a nearest  c o m m o n  ancestor  c at  layer lc. On 3?2, ei ther  7- 
is an ancestor  of a (see Fig. 3) or r and a have a nearest  c o m m o n  ances tor  
(~ at  layer ld (Fig. 4). 
Consider  the  case of  Fig. 3 first. Let  b the  fa ther  of a in T1 and let I1 be  the  
label of  (a, b) in T1. Since It - lb > It -- l~ and t E /1, A chooses one link 
labeled (I1, I2, lb) and ending in (b,/~, lb). Let d be the node belonging to the  
shor tes t  p a t h  f rom a to t at  layer l~ in T1. Node (b,/?, lb) lies on the p a t h  

, ~ 

(a, a) 

./-a 
\:. ~/'~" ~ 

, ,  It 

Fig.  3. The two shortest paths factors move towards the roots and r is an ancestor of 
a while t and a have a common ancestor c. 

f rom ( a , a ,  l~) to (d, a,  la) - t h rough  a node  (c, 7, lc) - of the s ame  length  as 
the shor tes t  pa th  f rom a to d in T1. From this last  node, there is a single 
shor tes t  pa th  to (t, v, lt) const i tu ted  by links always labeled ( I 1 , / 2 , l )  such 
t ha t  t E /1 and r E /2. The  length of  such pa th  f rom (a, a ,  la) to (t, r, lt) 
th rough  (b, fl, lb) is equal to the length of the shor tes t  p a t h  f rom a to t in 
T1. 
Consider  now the s i tuat ion in Fig. 4: bo th  shor tes t  pa ths  factors  move  to- 
wards  the  roots,  t and a have a neares t  c o m m o n  ancestor  c a t  layer  lc, 
and r and a have a nearest  c o m m o n  ancestor  5 at  layer ld. To go f rom 
(a, c~,la) to (t, v, lt) th rough a shor tes t  p a t h  it is necessary to use ei ther  
first a shor tes t  pa th  in T1 till c or first a shor tes t  pa th  in 372 till 5. Indeed,  
consider a p a t h  tha t  a l ternates  links whose first factor  is f rom a shor tes t  
p a t h  in T1 with links whose second factor  is f rom a shortest  p a t h  in ~):  let 
(a, a ,  l~), (a l ,  a l , / 1 ) ,  �9 �9 (ak, ak,  lk) be the first f r agmen t  of  such a p a t h  hav-  
ing the first factor  as the shortest  p a t h  in 371, wi th  ai ~ c, i = 1 , . . . ,  k. If  the  
next  s tep is a link whose second fac tor  belongs to a shor tes t  p a t h  towards  r 
in T2, such link ends necessarily in (u, ak - 1 ,  lk -1) ,  where u is a child of  ak in 
T1. For the sake of symmet ry ,  since u and ak-1  are at  the same  layer in the 
s ame  subtree  rooted at  ak (with lk > lc), the dis tance of (u, a k - 1 ,  lk -1)  f rom 
(t, r, lt) is equal  to the dis tance of (ak-1,  a k - 1 ,  lk-1)  f rom (t, r, lt). Thus ,  in 
order  to reach (t, r, lt) f rom (a, a , l a )  at least two steps have been wasted.  
Hence, necessarily one of the following is a shor tes t  p a t h  in G: 
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- (Fig. 4.a) a pa th  f rom (a, ~, la) to (b, fl, lb) to (c, 3',1~) to (h, c~,l~) to 
(t, ~1, lt) to ( f ,  ~, ld) to (t, 7, lt), where 7 is a descendant  of a at  layer l~ 
in T2, h and  f are descendants  of  e at  layer la and let, respectively,  in T1 
and 7/is an ancestor  of  c~ at  layer It in T2. T h e  length of such a p a t h  is 
2(la - it) + (it - la) q- 2(ld -- it) = 2(ld -- lc) -~ la -- It 

-- (Fig. 4.b) a pa th  f rom (a, a , l~)  to (d, cf, la) to (k, v, lt) to (a, O,l~) to 
(c, ~, l~) to (h, O, la) to (t, v, lt), where d and k are descendant  of  a at  
layers Id and It, respectively, in T1 and 0 and cr are descendants  of  7 
at  layers l~ and l~, respectively, in T2. T h e  length of such a p a t h  is 
( ld  - -  l o )  + ( ld  - -  l t )  + 2 ( l t  - -  l~ )  = 2 ( l d  - -  l~)  + It - -  lo  

Thus,  the shor tes t  p a t h  depends on the sign of It - l a .  Since in our  hypothes is  
It > la, the shor tes t  pa th  is the first one, t ha t  is the p a t h  whose first s tep 
goes away f rom lt. Since node (b, fl, Ib) is such t h a t  It - lb > It -- la, then  ,4 
chooses the first pa th .  
When  It < l~, the same  reasoning applies.  Finally, the s ame  discussion holds 
also if It = la. However,  notice t ha t  in this case any of the two choices is 
possible.  

Id It/a /b /c /d It la It, Ic 

d k ~ O i ~ ' ~ ( C ,  ~) 

IrXI, 'T I : N.,,(t,.c) ,,,._.,e) 
~J, ' l  I I (t, nT,r (t.~j 

~I _/- [ 
/a 

a 

Fig.  4. The two shortest paths factors move towards the roots, t and a have a common 
ancestor c and 7 and c~ have a common ancestor & 

T h e o r e m  2. I f  a packet  mus t  be t ransmit ted  f rom node (a, ~ , l~)  to node (t, r, lt) 
and ((a,c~,l~), (a l , c~ l , la l ) ,  ( a 2 , a ~ , l ~ ) , . . . ,  (t,'r, lt)> is any shortes t  path f rom 
(a, o~, l~) to (t, r, lt), then algorithm ,4 can possibly use it. 

Proof. Again,  t hanks  to Fact  22, we shall always suppose  t ha t  T1 is a root-  
tree and  T2 is a leaf-tree. The  p roof  is divided according to the t r u th  of the  
i f -condi t ions in .4 and mos t  of  considerat ions clone in the p roof  of  T h e o r e m  1 
are used here. 

1. There  exists a link ( h , I 2 , 1 )  such t ha t  r E /2 and a = t: then  (cf. p roof  
of  T h i n . l )  G contains  a p a t h  f rom (a, a ,  I , )  to (t, w, lt) of  length  equal  to  
the pa th  f rom a to 7- in T2. Let k + 1 be such length.  Suppose  t h a t  a p a t h  
((a, a ,  la), (a l ,  a l ,  1 , 1 ) , . . . ,  (ak, ak,  l ,k),  (t, 7", lt)} exists in G tha t  is not  found 
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by .4. Thus,  a l  does not  belong to the shortest  p a t h  f rom a to r in T2, t h a t  
is, if link ((a, a , /~) ,  (a~, a l , l a l ) )  is labeled (/1, I2 , la l ) ,  ~- ~ I2. Hence, since 
by definit ion of LCP  p = (a,  a l , . . . , a k , 7 " )  mus t  be a p a t h  in T2, some a i  
mus t  be the same  as some aj ,  with i ~ j .  But  the dis tance between a and ~- 
in T2 is k + 1, then  p mus t  be  longer than  k + 1, an absurd.  T h e  case t G / 1  
and a = r is symmet r i c .  

2. There  exists a link labeled (/1, I s , l )  such t ha t  t E / 1  and T E /2. W.l .o.g. ,  
suppose  la < It and therefore b a child of  a and fl the fa ther  of  a .  Since b 
belongs to a shortest  pa th  f rom a to t, t is a descendant  of  b. Two  cases are 
possible: 

- ~- is an ancestor  of  a .  This  case is t r ivial ly proved,  since there  is in G a 
unique shortest  pa th  f rom (a, a ,  la) to (t, T, lt) and A finds t ha t  pa th .  

- a and r have a nearest  c o m m o n  ancestor  7 at layer lc. Recall  t ha t  It < lc 
and a shortest  pa th  in G mus t  be as long as the p a t h  f rom a to ~- in T2 
(cf. p roof  of  T h m . l ) .  The  p roof  of  this case is s imilar  to the  one of case 
1. of this theorem and thus omi t t ed .  

3. No outgoing  link f rom (a, a ,  la) is labeled ( /1,12, l)  such t ha t  t C /1 and 
7- E /2. Suppose  It > la. We have a l ready proved tha t  one of the following 
cases mus t  occur: 

- bo th  shor tes t  pa ths  factors  move  towards  the roots,  7- is an ancestor  of  
while t and a have a nearest  c o m m o n  ancestor  c at layer 1r a lgo r i thm 

A chooses a link labeled (/1,12, l) such tha t  t G/1  and such link belongs 
to a p a t h  f rom (a, a,  la) to (t, T, lt) having the s ame  length as the p a t h  
f rom a to t in T1. Again,  a reasoning very s imilar  to t ha t  one of  case 1. 
of  this theorem applies. 

- bo th  shor tes t  pa ths  factors  move  towards  the roots ,  t and a have a neares t  
c o m m o n  ancestor  c at  layer lc, r and a have a nearest  c o m m o n  ances tor  
5 at  layer ld. We have a l ready proved tha t  a shor tes t  p a t h  f rom (a, a ,  l~) 
to (t, r, lt) necessarily crosses ei ther  first a shor tes t  p a t h  in T1 to c or 
first a shortest  pa th  in T2 to J. This  implies (cf. p roof  of  T h i n . l )  t ha t  a 
shor tes t  pa th  in G mus t  necessarily be a pa th  f rom (a, a ,  l~) to (c, % lc) 
to (h, a ,  la) to (t, ~, lt) to (d, 5, ld) to (t, r, lt), where 7 is a descendant  
of  a a t  layer l~ in T2, h is a descendant  of c at  layer l~ in T1 and r/ 
is an ancestor  of a at  layer It in T2 (Fig. 4.a). Since .4 can choose any 
link ((a, a ,  l~), (b,/3, lb ) ) labeled ( / 1 , 5 ,  lb ) such tha t  It - lb > It -- la and 
t E / 1 ,  then  it is able to choose any p a t h  of  this sort ,  and this proves  the 
assert ion.  

T h e  same  reasoning applies when 1 t < la and when l t : la. 

4 L C P  o f  G e n e r a l  G r a p h s :  D r i v i n g  s o m e  C o n c l u s i o n s  

In the previous section we have proposed a m e t h o d  to compu te  a c o m p a c t  rout-  
ing scheme for all T-networks .  In the proofs of correctness,  we have s t rongly  
used the proper t ies  of  the factors  and having a unique (shortest)  p a t h  between 
any couple of  nodes. It  is immed ia t e  to wonder  whether  our technique can be 
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extended to networks which are the LCP of more general graphs. In this sec- 
tion we show a negative result in this direction. Namely, we prove a property of 
the LCP allowing one to deduce that  the knowledge of node- and link-labels on 
factors (and therefore the knowledge of their shortest paths) gives not enough 
information to find shortest paths in their LCP. 

T h e o r e m  3. There exist a layered graph G = (V, E)  L C P  of G1 = (V1, El )  and 
G2 = (V2, E2), a source node (s, (r, ls) e V,  a destination node (t, T, It) E V and 
an edge e E E having the following properties: i. e is the layered cross product 
of  two edges el E E1 and e2 E E2; ii. e belongs to a shortest path f rom (s, ~, l~) 
to (t, T, lt); iii. neither el belongs to a shortest path from s to t in G1, nor e2 
belongs to a shortest path from c~ to v in G2. 

Proof. The graph in the assertion is shown in Fig.5 in which the following con- 
vention is used: each edge in the drawing of G1 and G2 (and therefore of G) 
represents a simple chain whose length is determined by the difference of layers 
where its extremes lie. 

Suppose the shortest path from s to t in G1 passes through m and the shortest 
path from a to v passes through ~,. Then, the following relations must hold: 
I l s - l t [ + 2 1 l t - l m [  < 2[ ls - - ld[+[ls - l t [  and 2 [ l s - l n [ + [ l s - l t [  < [ l s - l t [ + 2 [ l t - l r [  
t h a t  i s  I t~  - l t l  < {l~ - ldl a n d  II~ - l ~ l  < II, - l~[ .  

Whenever one of the following inequalities hold 
II~ - lt[ + 2llt - l~l < 2[l~ - l~[ + [l~ - l~l + 211, - l~l  
215 - ldl + 15 - ltl < 2lls - l,~l + II~ - I l l  + 21lt - l ~ [  
either the path through (m,/~l,lm) and (r,p,l~) (first inequality) or the path 
through (n2, u, ln) and (d, 5, ld) (second inequality) are shorter than the path 
through (n2, u, l~) and (m, #2, l~).  Tha t  is, the shortest path passes through an 
edge - either ((m, #1, lm), (r, p, l~)) or ((n2, u, l~), (d, 5, ld)) - whose factors are 
not on a shortest path. 

As a consequence of the previous theorem, we can state the following fact: 

Fac t  41 Let G be a network that is the L C P  of any two graphs G1 and G2. The 
only knowledge of  the compact routing schemes (i.e. a node- and link-labeling 
scheme) on G1 and G2 may not be sufficient to deduce a compact routing scheme 
for  G. 

Anyway, the previous claim does not forbid one to find some special cases in 
which the particular structure either of the network itself or of its factors helps 
in defining a compact routing scheme. 
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Fig. 5. Edges on a shortest path in G whose factors do not lie on any shortest path in 
G1 and in G~. 
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