Normalization by optimization

  • Ralph Schiller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1064)


An approach to normalization is presented for both the affine and the projective case. The approach is based on group factorization as well as on optimizing parameter invariant integrals, in order to overcome the difficult problem of parameterization. Related work has been carried out by [6] and by [4] for affine transformations and by [5] for projective transformations. To avoid some drawbacks inherent to projective transformations it is suitable to integrate point information or explore ’thick’ curves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbter, K., Snyder, W., Burkhardt, H. and Hirzinger, G.: Application of Affine-Invariant Fourier Descriptors to 3-D Objects. IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-12(7):640–647, Juli 1990Google Scholar
  2. 2.
    Åström, K.: Fundamental difficulties with projective normalization of planar curves. Second Joint European — US Workshop Ponta Delgada, Azores, Portugal, October 1993 ProceedingsGoogle Scholar
  3. 3.
    Blaschke, W.: Vorlesungen über Differentialgeometrie und goemetrische Grundlagen von Einsteins Relativitätstheorie. Berlin Verlag von Julius Springer 1923Google Scholar
  4. 4.
    Blake, A., Marinos, C.: Shape form texture: Estimation, isotropy and moments. Artificial Intell., vol. 45, pp. 323–380, 1990Google Scholar
  5. 5.
    Sinclair, D., Blake, A.: Isoperimetric Normalization of Planar Curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 8, August 1994Google Scholar
  6. 6.
    Brady, M., Yuille, A.: An extremum principle for shape from contour. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol PAMI-6, 1984Google Scholar
  7. 7.
    Fischer, G.: Analytische Geometrie. Wiesbaden: Vieweg, 1985Google Scholar
  8. 8.
    Heuser, H.: Lehrbuch der Analysis, Teil 2, TeubnerGoogle Scholar
  9. 9.
    Schiller, R.: Distance geometric approach to recognize a set of finitely many points. Interner Bericht 10/94, Technische Informatik I, TU-HH, Juli 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Ralph Schiller
    • 1
  1. 1.Technische Universität Hamburg-HarburgHamburgGermany

Personalised recommendations