Skip to main content

Common Techniques Used for Automated Diagnosis in Medical Microbiology

  • Chapter
  • First Online:
Automated Diagnostic Techniques in Medical Microbiology

Abstract

Several manual activities have undergone significant changes by introduction of automated techniques, which have unquestionably improved performance. Various manual tasks have now been partially or entirely replaced by automated and labour-saving instrumentation in clinical laboratories as a result of the widespread and multifaceted advancements in automation technologies. The diagnostic techniques employed in infectious diseases should be rapid, precise, simple and cost-effective. A rapid diagnosis can be crucial in initiating appropriate antibiotic treatment. Increased rate of serious infections by multidrug resistant bacteria, lead to a high incidence of error in antibiotic treatment.

Current chapter elaborates several semi-automated and totally automated techniques, which have been developed for microbiology clinical laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dekker SWA, Woods DD. MABA-MABA or Abracadabra? Progress on human-automation co-ordination. Cognition Techn Work. 2002;4:240–4. https://doi.org/10.1007/s101110200022.

    Article  Google Scholar 

  2. Zaninotto M, Plebani M. The “hospital central laboratory”: automation, integration and clinical usefulness. Clin Chem Lab Med. 2010;48:911–7. https://doi.org/10.1515/CCLM.2010.192.

    Article  CAS  PubMed  Google Scholar 

  3. Dolci A, Giavarina D, Pasqualetti S, Szőke D, Panteghini M. Total laboratory automation: do stat tests still matter? Clin Biochem. 2017;50:605–11. https://doi.org/10.1016/j.clinbiochem.2017.04.002.

    Article  PubMed  Google Scholar 

  4. Lippi G, Da Rin G. Advantages and limitations of total laboratory automation: a personal overview. Clin Chem Lab Med. 2019;57:802–11. https://doi.org/10.1515/cclm-2018-1323.

    Article  CAS  PubMed  Google Scholar 

  5. Mackay IM. Real-time PCR in the microbiology laboratory. Clin Microbiol Infect. 2004;10:190–212. https://doi.org/10.1111/j.1198-743X.2004.00722.x.

    Article  CAS  PubMed  Google Scholar 

  6. Eldin C, Parola P, Raoult D. Limitations of diagnostic tests for bacterial infections. Med Mal Infect. 2019;49:98–101. https://doi.org/10.1016/j.medmal.2018.12.004.

    Article  CAS  PubMed  Google Scholar 

  7. Mandal SM, Paul D. Automation and basic techniques in medical microbiology. New York, NY: Springer; 2022. https://doi.org/10.1007/978-1-0716-2372-5.

    Book  Google Scholar 

  8. Graham DR, Dixon RE, Hughes JM, Thornsberry C. Disk diffusion antimicrobial susceptibility testing for clinical and epidemiologic purposes. Am J Infect Control. 1985;13:241–9. https://doi.org/10.1016/0196-6553(85)90024-0.

    Article  CAS  PubMed  Google Scholar 

  9. Sawatzky P, Liu G, Dillon J-AR, Allen V, Lefebvre B, Hoang L, Tyrrell G, Van Caeseele P, Levett P, Martin I. Quality assurance for antimicrobial susceptibility testing of Neisseria gonorrhoeae in Canada, 2003 to 2012. J Clin Microbiol. 2015;53:3646–9. https://doi.org/10.1128/JCM.02303-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chatterji T, Singh S, Sen M, Singh AK, Agarwal GR, Singh DK, Srivastava JK, Singh A, Srivastava RN, Roy R. Proton NMR metabolic profiling of CSF reveals distinct differentiation of meningitis from negative controls. Clin Chim Acta. 2017;469:42–52. https://doi.org/10.1016/j.cca.2017.03.015.

    Article  CAS  PubMed  Google Scholar 

  11. Dickert H, Machka K, Braveny I. The uses and limitations of disc diffusion in the antibiotic sensitivity testing of bacteria. Infection. 1981;9:18–24. https://doi.org/10.1007/BF01640803.

    Article  Google Scholar 

  12. Yin D, Guo Y, Li M, Wu W, Tang J, Liu Y, Chen F, Ni Y, Sun J, Zhang H, Zhao H, Hu F. Performance of VITEK 2, E-test, Kirby–Bauer disk diffusion, and modified Kirby–Bauer disk diffusion compared to reference broth microdilution for testing tigecycline susceptibility of carbapenem-resistant K. pneumoniae and A. baumannii in a multicenter study in China. Eur J Clin Microbiol Infect Dis. 2021;40:1149–54. https://doi.org/10.1007/s10096-020-04123-z.

    Article  CAS  PubMed  Google Scholar 

  13. Doern GV, Brueggemann AB, Perla R, Daly J, Halkias D, Jones RN, Saubolle MA. Multicenter laboratory evaluation of the bioMérieux Vitek antimicrobial susceptibility testing system with 11 antimicrobial agents versus members of the family Enterobacteriaceae and Pseudomonas aeruginosa. J Clin Microbiol. 1997;35:2115–9. https://doi.org/10.1128/jcm.35.8.2115-2119.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Joyanes P, del Carmen Conejo M, Martinez-Martinez L, Perea EJ. Evaluation of the VITEK 2 system for the identification and susceptibility testing of three species of nonfermenting gram-negative rods frequently isolated from clinical samples. J Clin Microbiol. 2001;39:3247–53. https://doi.org/10.1128/JCM.39.9.3247-3253.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wen H, Xie S, Liang Y, Liu Y, Wei H, Sun Q, Wang W, Wen B, Zhao J. Direct identification, Antimicrobial susceptibility testing, and extended-spectrum β-lactamase and carbapenemase detection in gram-negative bacteria isolated from blood cultures. IDR. 2022;15:1587–99. https://doi.org/10.2147/IDR.S350612.

    Article  CAS  Google Scholar 

  16. Pulido MR, Garcia-Quintanilla M, Martin-Pena R, Cisneros JM, McConnell MJ. Progress on the development of rapid methods for antimicrobial susceptibility testing. J Antimicrob Chemother. 2013;68:2710–7. https://doi.org/10.1093/jac/dkt253.

    Article  CAS  PubMed  Google Scholar 

  17. Kidd IM, Clark DA, Emery VC. A non-radioisotopic quantitative competitive polymerase chain reaction method: application in measurement of human herpesvirus 7 load. J Virol Methods. 2000;87:177–81. https://doi.org/10.1016/S0166-0934(00)00164-6.

    Article  CAS  PubMed  Google Scholar 

  18. Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5′—3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA. 1991;88:7276–80. https://doi.org/10.1073/pnas.88.16.7276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van der Vliet GM, Hermans CJ, Klatser PR. Simple colorimetric microtiter plate hybridization assay for detection of amplified mycobacterium leprae DNA. J Clin Microbiol. 1993;31:665–70. https://doi.org/10.1128/jcm.31.3.665-670.1993.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mackay IM, Metharom P, Sloots TP, Wei MQ. Quantitative PCR-ELAHA for the determination of retroviral vector transduction efficiency. Mol Ther. 2001;3:801–8. https://doi.org/10.1006/mthe.2001.0320.

    Article  CAS  PubMed  Google Scholar 

  21. Guatelli JC, Gingeras TR, Richman DD. Nucleic acid amplification in vitro: detection of sequences with low copy numbers and application to diagnosis of human immunodeficiency virus type 1 infection. Clin Microbiol Rev. 1989;2:217–26. https://doi.org/10.1128/CMR.2.2.217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lomeli H, Tyagi S, Pritchard CG, Lizardi PM, Kramer FR. Quantitative assays based on the use of replicatable hybridization probes. Clin Chem. 1989;35:1826–31.

    Article  CAS  PubMed  Google Scholar 

  23. Tofalo R, Corsetti A. RAPD-PCR as a rapid approach for the evaluation of Genotoxin-induced damage to bacterial DNA. In: Didenko VV, editor. Fast detection of DNA damage. New York, NY: Springer; 2017. p. 195–201. https://doi.org/10.1007/978-1-4939-7187-9_18.

    Chapter  Google Scholar 

  24. Ben-Hamouda T, Foulon T, Ben-Cheikh-Masmoudi A, Fendri C, Belhadj O, Ben-Mahrez K. Molecular epidemiology of an outbreak of multiresistant Klebsiella pneumoniae in a Tunisian neonatal ward. J Med Microbiol. 2003;52:427–33. https://doi.org/10.1099/jmm.0.04981-0.

    Article  CAS  PubMed  Google Scholar 

  25. Ramadan H, Rasha B, Mona IS, Lamiaa A. Random amplified DNA polymorphism of Klebsiella pneumoniae isolates from Mansoura University hospitals, Egypt. Afr J Microbiol Res. 2015;9:621–30. https://doi.org/10.5897/AJMR2014.7256.

    Article  CAS  Google Scholar 

  26. Andrighetto C, Marcazzan G, Lombardi A. Use of RAPD-PCR and TTGE for the evaluation of biodiversity of whey cultures for grana Padano cheese. Lett Appl Microbiol. 2004;38:400–5. https://doi.org/10.1111/j.1472-765X.2004.01504.x.

    Article  CAS  PubMed  Google Scholar 

  27. Wolff K, Peters-van Rijn J. Rapid detection of genetic variability in chrysanthemum (Dendranthema grandiflora Tzvelev) using random primers. Heredity. 1993;71:335–41. https://doi.org/10.1038/hdy.1993.147.

    Article  CAS  PubMed  Google Scholar 

  28. Maslow JN, Mulligan ME, Arbeit RD. Molecular epidemiology: application of contemporary techniques to the typing of microorganisms. Clin Infect Dis. 1993;17:153–62. https://doi.org/10.1093/clinids/17.2.153.

    Article  CAS  PubMed  Google Scholar 

  29. Murphy NB, Pellé R. The use of arbitrary primers and the RADES method for the rapid identification of developmentally regulated genes in trypanosomes. Gene. 1994;141:53–61. https://doi.org/10.1016/0378-1119(94)90127-9.

    Article  CAS  PubMed  Google Scholar 

  30. Rothuizen J, Wolferen M. Randomly amplified DNA polymorphisms in dogs are reproducible and display Mendelian transmission. Anim Genet. 2009;25:13–8. https://doi.org/10.1111/j.1365-2052.1994.tb00049.x.

    Article  Google Scholar 

  31. Wei G, Pan L, Du H, Chen J, Zhao L. ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. J Microbiol Methods. 2004;59:91–108. https://doi.org/10.1016/j.mimet.2004.06.007.

    Article  CAS  PubMed  Google Scholar 

  32. Syrmis MW. Rapid genotyping of Pseudomonas aeruginosa isolates harboured by adult and paediatric patients with cystic fibrosis using repetitive-element-based PCR assays. J Med Microbiol. 2004;53:1089–96. https://doi.org/10.1099/jmm.0.45611-0.

    Article  CAS  PubMed  Google Scholar 

  33. Stehling EG, Leite DS, Silveira WD. Molecular typing and biological characteristics of Pseudomonas aeruginosa isolated from cystic fibrosis patients in Brazil. Braz J Infect Dis. 2010;14:462–7.

    Article  PubMed  Google Scholar 

  34. Kidd TJ, Gibson JS, Moss S, Greer RM, Cobbold RN, Wright JD, Ramsay KA, Grimwood K, Bell SC. Clonal complex Pseudomonas aeruginosa in horses. Vet Microbiol. 2011;149:508–12. https://doi.org/10.1016/j.vetmic.2010.11.030.

    Article  PubMed  Google Scholar 

  35. Ranjbar R, Tabatabaee A, Behzadi P, Kheiri R. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) genotyping of Escherichia coli strains isolated from different animal stool specimens. Iran J Pathol. 2017;12:25–34.

    Article  PubMed  Google Scholar 

  36. Strommenger B, Kettlitz C, Werner G, Witte W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J Clin Microbiol. 2003;41:4089–94. https://doi.org/10.1128/JCM.41.9.4089-4094.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iradukunda L, Wang Y-P, Nkurikiyimfura O, Wang T, Yang L-N, Zhan J. Establishment and application of a multiplex PCR assay for the rapid detection of Rhizoctonia solani anastomosis group (AG)-3PT, the pathogen causing potato black scurf and stem canker. Pathogens. 2022;11:627. https://doi.org/10.3390/pathogens11060627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Singh C, Roy-Chowdhuri S. Quantitative real-time PCR: recent advances. In: Luthra R, Singh RR, Patel KP, editors. Clinical applications of PCR. New York, NY: Springer; 2016. p. 161–76. https://doi.org/10.1007/978-1-4939-3360-0_15.

    Chapter  Google Scholar 

  39. Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Landegren U. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science. 1994;265:2085–8. https://doi.org/10.1126/science.7522346.

    Article  CAS  PubMed  Google Scholar 

  40. Shoemaker DD, Lashkari DA, Morris D, Mittmann M, Davis RW. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar–coding strategy. Nat Genet. 1996;14:450–6. https://doi.org/10.1038/ng1296-450.

    Article  CAS  PubMed  Google Scholar 

  41. Hardenbol P, Banér J, Jain M, Nilsson M, Namsaraev EA, Karlin-Neumann GA, Fakhrai-Rad H, Ronaghi M, Willis TD, Landegren U, Davis RW. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol. 2003;21:673–8. https://doi.org/10.1038/nbt821.

    Article  CAS  PubMed  Google Scholar 

  42. Szemes M. Diagnostic application of padlock probes—multiplex detection of plant pathogens using universal microarrays. Nucleic Acids Res. 2005;33:e70. https://doi.org/10.1093/nar/gni069.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kuska B. Beer, Bethesda, and biology: how “genomics” came into being. JNCI J Natl Cancer Inst. 1998;90:93. https://doi.org/10.1093/jnci/90.2.93.

    Article  CAS  PubMed  Google Scholar 

  44. Evans JP, Powell BC, Berg JS. Finding the rare pathogenic variants in a human genome. JAMA. 2017;317:1904. https://doi.org/10.1001/jama.2017.0432.

    Article  PubMed  Google Scholar 

  45. Armstrong GL, MacCannell DR, Taylor J, Carleton HA, Neuhaus EB, Bradbury RS, Posey JE, Gwinn M. Pathogen genomics in public health. N Engl J Med. 2019;381:2569–80. https://doi.org/10.1056/NEJMsr1813907.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kwong JC, Mccallum N, Sintchenko V, Howden BP. Whole genome sequencing in clinical and public health microbiology. Pathology. 2015;47:199–210. https://doi.org/10.1097/PAT.0000000000000235.

    Article  CAS  PubMed  Google Scholar 

  47. Govindan V, Kumar SV, Shamanna V, Ranganathan N, Kumar KR. Introduction to genome sequencing, principles and its applications to a diagnostic medical microbiology laboratory. J Acad Clin Microbiol. 2022;24:1. https://doi.org/10.4103/jacm.jacm_14_22.

    Article  Google Scholar 

  48. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–7. https://doi.org/10.1073/pnas.74.12.5463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bertelli C, Greub G. Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clin Microbiol Infect. 2013;19:803–13. https://doi.org/10.1111/1469-0691.12217.

    Article  CAS  PubMed  Google Scholar 

  50. Green ED. Strategies for the systematic sequencing of complex genomes. Nat Rev Genet. 2001;2:573–83. https://doi.org/10.1038/35084503.

    Article  CAS  PubMed  Google Scholar 

  51. Bachmann LM, Miller WG. Spectrophotometry. In: Contemporary practice in clinical chemistry. Amsterdam: Elsevier; 2020. p. 119–33. https://doi.org/10.1016/B978-0-12-815499-1.00007-7.

    Chapter  Google Scholar 

  52. Arridge SR. Optical tomography in medical imaging. Inverse Problems. 1999;15:R41–93. https://doi.org/10.1088/0266-5611/15/2/022.

    Article  Google Scholar 

  53. Richards-Kortum R, Sevick-Muraca E. Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem. 1996;47:555–606. https://doi.org/10.1146/annurev.physchem.47.1.555.

    Article  CAS  PubMed  Google Scholar 

  54. Hielscher AH, Bluestone AY, Abdoulaev GS, Klose AD, Lasker J, Stewart M, Netz U, Beuthan J. Near-infrared diffuse optical tomography. Dis Markers. 2002;18:313–37. https://doi.org/10.1155/2002/164252.

    Article  CAS  PubMed  Google Scholar 

  55. Brown JQ, Vishwanath K, Palmer GM, Ramanujam N. Advances in quantitative UV–visible spectroscopy for clinical and pre-clinical application in cancer. Curr Opin Biotechnol. 2009;20:119–31. https://doi.org/10.1016/j.copbio.2009.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Theophanides T. Introduction to infrared spectroscopy. In: Theophanides T, editor. Infrared spectroscopy-materials science, engineering and technology. London: InTech; 2012. https://doi.org/10.5772/49106.

    Chapter  Google Scholar 

  57. Perera AGU. Editorial for the special issue on semiconductor infrared devices and applications. Micromachines. 2021;12:1069. https://doi.org/10.3390/mi12091069.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Beć KB, Grabska J, Huck CW. Near-infrared spectroscopy in bio-applications. Molecules. 2020;25:2948. https://doi.org/10.3390/molecules25122948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leong Y, Ker P, Jamaludin M, Nomanbhay SM, Ismail A, Abdullah F, Looe H, Lo C. UV-vis spectroscopy: a new approach for assessing the color index of transformer insulating oil. Sensors. 2018;18:2175. https://doi.org/10.3390/s18072175.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Houeto P, Buneaux F, Galliot-Guilley M, Baud FJ, Levillain P. Determination of Hydroxocobalamin and cyanocobalamin by derivative spectrophotometry in cyanide poisoning. J Anal Toxicol. 1994;18:154–8. https://doi.org/10.1093/jat/18.3.154.

    Article  CAS  PubMed  Google Scholar 

  61. Allen RH, Stabler SP. Identification and quantitation of cobalamin and cobalamin analogues in human feces. Am J Clin Nutr. 2008;87:1324–35. https://doi.org/10.1093/ajcn/87.5.1324.

    Article  CAS  PubMed  Google Scholar 

  62. Chen W, Yao Y, Chen T, Shen W, Tang S, Lee HK. Application of smartphone-based spectroscopy to biosample analysis: a review. Biosens Bioelectron. 2021;172:112788. https://doi.org/10.1016/j.bios.2020.112788.

    Article  CAS  PubMed  Google Scholar 

  63. Urban PL. Quantitative mass spectrometry: an overview. Phil Trans R Soc A. 2016;374:20150382. https://doi.org/10.1098/rsta.2015.0382.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zia K, Siddiqui T, Ali S, Farooq I, Zafar MS, Khurshid Z. Nuclear magnetic resonance spectroscopy for medical and dental applications: a comprehensive review. Eur J Dent. 2019;13:124–8. https://doi.org/10.1055/s-0039-1688654.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gronenborn AM, Polenova T. Introduction: biomolecular NMR spectroscopy. Chem Rev. 2022;122:9265–6. https://doi.org/10.1021/acs.chemrev.2c00142.

    Article  CAS  PubMed  Google Scholar 

  66. Turker S. Application of infrared spectroscopy in the study of neurological diseases. Biomed Spectroscopy Imaging. 2012;1:303–23. https://doi.org/10.3233/BSI-120023.

    Article  CAS  Google Scholar 

  67. Heaton P, Patel R. Mass spectrometry applications in infectious disease and pathogens identification. In: Principles and applications of clinical mass spectrometry. Amsterdam: Elsevier; 2018. p. 93–114. https://doi.org/10.1016/B978-0-12-816063-3.00004-9.

    Chapter  Google Scholar 

  68. Le Bas JF, Estève F, Grand S, Rubin C, Rémy C, Benabid AL, Décorps M. NMR Spectroscopy and brain diseases. Clinical applications. J Neuroradiol. 1998;25:55–69.

    PubMed  Google Scholar 

  69. Nagana Gowda G. NMR spectroscopy for discovery and quantitation of biomarkers of disease in human bile. Bioanalysis. 2011;3:1877–90. https://doi.org/10.4155/bio.11.152.

    Article  CAS  Google Scholar 

  70. Singh S, Chatterji T, Sen M, Dhayal IR, Mishra S, Husain N, Goel A, Roy R. Serum procalcitonin levels in combination with 1H NMR spectroscopy: a rapid indicator for differentiation of urosepsis. Clin Chim Acta. 2016;453:205–14. https://doi.org/10.1016/j.cca.2015.12.021.

    Article  CAS  PubMed  Google Scholar 

  71. Nagesh Babu G, Gupta M, Paliwal VK, Singh S, Chatterji T, Roy R. Serum metabolomics study in a group of Parkinson’s disease patients from northern India. Clin Chim Acta. 2018;480:214–9. https://doi.org/10.1016/j.cca.2018.02.022.

    Article  CAS  PubMed  Google Scholar 

  72. Anon. The enzyme-linked immunosorbent assay (ELISA). Bull World Health Organ. 1976;54:129–39.

    Google Scholar 

  73. Sakamoto S, Putalun W, Vimolmangkang S, Phoolcharoen W, Shoyama Y, Tanaka H, Morimoto S. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J Nat Med. 2018;72:32–42. https://doi.org/10.1007/s11418-017-1144-z.

    Article  CAS  PubMed  Google Scholar 

  74. Alahi M, Mukhopadhyay S. Detection methodologies for pathogen and toxins: a review. Sensors. 2017;17:1885. https://doi.org/10.3390/s17081885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lin AV. Direct ELISA. In: Hnasko R, editor. ELISA. New York, NY: Springer; 2015. p. 61–7. https://doi.org/10.1007/978-1-4939-2742-5_6.

    Chapter  Google Scholar 

  76. Ching WM, Angkasekwinai N, Grieco J, Chao CC, Atkins EH, Romero S. An evaluation study of enzyme-linked immunosorbent assay (ELISA) using recombinant protein Pap31 for detection of antibody against Bartonella bacilliformis infection among the Peruvian population. Am J Trop Med Hyg. 2014;90:690–6. https://doi.org/10.4269/ajtmh.13-0131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mohan S, Lawton R, Palmer C, Rojas AC. Competitive ELISA method for novel estrogen-negative breast cancer biomarker quantitation. J Immunol Methods. 2019;474:112671. https://doi.org/10.1016/j.jim.2019.112671.

    Article  CAS  PubMed  Google Scholar 

  78. Ma T, Liu K, Yang X, Yang J, Pan M, Wang S. Development of indirect competitive ELISA and Visualized multicolor ELISA based on gold Nanorods growth for the determination of Zearalenone. Food Secur. 2021;10:2654. https://doi.org/10.3390/foods10112654.

    Article  CAS  Google Scholar 

  79. Jang K-S, Kim YH. Rapid and robust MALDI-TOF MS techniques for microbial identification: a brief overview of their diverse applications. J Microbiol. 2018;56:209–16. https://doi.org/10.1007/s12275-018-7457-0.

    Article  CAS  PubMed  Google Scholar 

  80. Dingle TC, Butler-Wu SM. MALDI-TOF mass spectrometry for microorganism identification. Clin Lab Med. 2013;33:589–609. https://doi.org/10.1016/j.cll.2013.03.001.

    Article  PubMed  Google Scholar 

  81. Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem. 2015;61:100–11. https://doi.org/10.1373/clinchem.2014.221770.

    Article  CAS  PubMed  Google Scholar 

  82. Schubert S, Kostrzewa M. MALDI-TOF MS in the microbiology laboratory: current trends. Curr Issues Mol Biol. 2017;23:17–20. https://doi.org/10.21775/cimb.023.017.

    Article  PubMed  Google Scholar 

  83. Nakano S, Matsumura Y, Ito Y, Fujisawa T, Chang B, Suga S, Kato K, Yunoki T, Hotta G, Noguchi T, Yamamoto M, Nagao M, Takakura S, Ohnishi M, Ihara T, Ichiyama S. Development and evaluation of MALDI-TOF MS-based serotyping for Streptococcus pneumoniae. Eur J Clin Microbiol Infect Dis. 2015;34:2191–8. https://doi.org/10.1007/s10096-015-2468-9.

    Article  CAS  PubMed  Google Scholar 

  84. Kollef MH. Broad-Spectrum antimicrobials and the treatment of serious bacterial infections: getting it right up front. Clin Infect Dis. 2008;47:S3–S13. https://doi.org/10.1086/590061.

    Article  CAS  PubMed  Google Scholar 

  85. Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect Carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol. 2011;49:3321–4. https://doi.org/10.1128/JCM.00287-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hrabák J, Walková R, Študentová V, Chudáčková E, Bergerová T. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49:3222–7. https://doi.org/10.1128/JCM.00984-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hrabák J, Chudáčková E, Walková R. Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev. 2013;26:103–14. https://doi.org/10.1128/CMR.00058-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatterji, T., Khanna, N., Bhagat, T. (2024). Common Techniques Used for Automated Diagnosis in Medical Microbiology. In: Kumar, S., Kumar, A. (eds) Automated Diagnostic Techniques in Medical Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-99-9943-9_2

Download citation

Publish with us

Policies and ethics