Skip to main content

High-Performance Carbon from Recycled Mattress for Supercapacitor Devices

  • Chapter
  • First Online:
NanoCarbon: A Wonder Material for Energy Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 67 Accesses

Abstract

This chapter is focused on the use of wastes such as mattresses for energy storage devices. A process for the fabrication of carbon-based electrodes using recycled mattresses for supercapacitors is presented. The first section emphasizes the importance of recycling materials both from industrial and domestic waste. The second section describes some of the most utilized processes for the development of activated carbon from various sources including a detailed characterization study. The third section covers energy storage mechanisms such as EDLC, pseudocapacitor, and hybrid energy devices. Also, different types of energy devices and their configurations that are currently being researched are discussed. The fourth section depicts some of the results obtained for supercapacitors fabricated using carbons derived from various components of mattresses such as shoddy, coconut fiber, cotton, and foam. These carbon-based materials were then used for the fabrication of electrodes for supercapacitors and their electrochemical properties were studied through several characterizations. The effect of activating agent ratio and pyrolysis temperature on the properties of supercapacitors is provided. Finally, a conclusion section illustrates the main hurdles and some of the approaches that can be used to further optimize the electrochemical properties of such carbon-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BASF advances polyurethane recycling. C&EN Glob. Enterp. 98(26), 10 (2020)

    Google Scholar 

  2. Goodenough, J.B., Park, K.-S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. Winter, M., Barnett, B., Xu, K.: Before Li-ion batteries. Chem. Rev. 118(23), 11433–11456 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. Liu, Z., Yu, Q., Zhao, Y., He, R., Xu, M., Feng, S., Li, S., Zhou, L., Mai, L.: Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48(1), 285–309 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. Whittingham, M.S.: Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114(23), 11414–11443 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. Lu, J., Chen, Z., Pan, F., Cui, Y., Amine, K.: High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 1(1), 35–53 (2018)

    Article  CAS  Google Scholar 

  7. Lin, Y., Li, F., Zhang, Q., Liu, G., Xue, C.: Controllable preparation of green biochar based high-performance supercapacitors. Ionics (Kiel) 28(6), 2525–2561 (2022)

    Article  CAS  Google Scholar 

  8. Bhat, S.A., Kumar, V., Kumar, S., Atabani, A.E., Anjum Badruddin, I., Chae, K.J.: Supercapacitors production from waste: a new window for sustainable energy and waste management. Fuel 337, 127125 (2023)

    Google Scholar 

  9. 39 Official Mattress Industry Statistics

    Google Scholar 

  10. Mehta, R., Golkaram, M.: Sustainability evaluation of pyrolysis of waste mattresses: a comparison with alternative end-of-life treatments. In: E3S Web Conferenve, 349 (2022)

    Google Scholar 

  11. Choi, J., Zequine, C., Bhoyate, S., Lin, W., Li, X., Kahol, P., Gupta, R., Choi, J., Zequine, C., Bhoyate, S., et al.: Waste coffee management: deriving high-performance supercapacitors using nitrogen-doped coffee-derived carbon. C. J. Carbon Res. 5(3), 44 (2019)

    Article  CAS  Google Scholar 

  12. Mensah-Darkwa, K., Zequine, C., Kahol, P.K., Gupta, R.K.: Supercapacitor energy storage device using biowastes: a sustainable approach to green energy. Sustainability 11(2), 414 (2019)

    Article  CAS  Google Scholar 

  13. Teo, E.Y.L., Muniandy, L., Ng, E.-P., Adam, F., Mohamed, A.R., Jose, R., Chong, K.F.: High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim. Acta. Acta 192, 110–119 (2016)

    Article  CAS  Google Scholar 

  14. Thubsuang, U., Laebang, S., Manmuanpom, N., Wongkasemjit, S., Chaisuwan, T.: Tuning pore characteristics of porous carbon monoliths prepared from rubber wood waste treated with H3PO4 or NaOH and their potential as supercapacitor electrode materials. J. Mater. Sci. 52(11), 6837–6855 (2017)

    Article  CAS  Google Scholar 

  15. Zequine, C., Ranaweera, C.K., Wang, Z., Dvornic, P.R., Kahol, P.K., Singh, S.S., Tripathi, P., Srivastava, O.N., Singh, S.S., Gupta, B.K., et al.: High-performance flexible supercapacitors obtained via recycled jute: bio-waste to energy storage approach. Sci. Rep. 7(1), 1–12 (2017)

    Article  CAS  Google Scholar 

  16. Ma, Q., Yu, Y., Sindoro, M., Fane, A.G., Wang, R., Zhang, H.: Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage. Adv. Mater. 29(13), 1605361 (2017)

    Article  Google Scholar 

  17. Gupta, V.K., Nayak, A., Agarwal, S., Tyagi, I.: Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J. Colloid Interface Sci. 417, 420–430 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. Gupta, A., Allison, C.A., Chaudhari, M., Zalavadiya, P., de Souza, F.M., Gupta, R.K., Dawsey, T.: A Facile approach to recycling used facemasks for high-performance energy-storage devices. In: Gupta, R.K. (ed.) Specialty Polymers: Fundamentals, Properties, Applications and Advances. CRC Press, Boca Raton, FL (2023)

    Google Scholar 

  19. Mestre, A.S., Pires, J., Nogueira, J.M.F., Parra, J.B., Carvalho, A.P., Ania, C.O.: Waste-derived activated carbons for removal of ibuprofen from solution: role of surface chemistry and pore structure. Bioresour. Technol.. Technol. 100(5), 1720–1726 (2009)

    Article  CAS  Google Scholar 

  20. Tamuly, J., Bhattacharjya, D., Saikia, B.K.: Graphene/graphene derivatives from coal, biomass, and wastes: synthesis, energy applications, and perspectives. Energy Fuels 36(21), 12847–12874 (2022)

    Article  CAS  Google Scholar 

  21. Crini, G.: Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol.. Technol. 97(9), 1061–1085 (2006)

    Article  CAS  Google Scholar 

  22. Wang, R., Wang, P., Yan, X., Lang, J., Peng, C., Xue, Q.: Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl. Mater. Interfaces 4(11), 5800–5806 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. Raymundo-Piñero, E., Azaïs, P., Cacciaguerra, T., Cazorla-Amorós, D., Linares-Solano, A., Béguin, F.: KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon N. Y. 43(4), 786–795 (2005)

    Article  Google Scholar 

  24. Jin, J., Tanaka, S., Egashira, Y., Nishiyama, N.: KOH activation of ordered mesoporous carbons prepared by a soft-templating method and their enhanced electrochemical properties. Carbon N. Y. 48(7), 1985–1989 (2010)

    Article  CAS  Google Scholar 

  25. Portet, C., Lillo-Ródenas, M.Á., Linares-Solano, A., Gogotsi, Y.: Capacitance of KOH activated carbide-derived carbons. Phys. Chem. Chem. Phys. 11(25), 4943–4945 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. Lillo-Ródenas, M.A., Cazorla-Amorós, D., Linares-Solano, A.: Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon N. Y. 41(2), 267–275 (2003)

    Article  Google Scholar 

  27. Han, J., Wei, W., Zhang, C., Tao, Y., Lv, W., Ling, G., Kang, F., Yang, Q.-H.: Engineering graphenes from the nano to the macroscale for electrochemical energy storage. Electrochem. Energy Rev. 1(2), 139–168 (2018)

    Article  CAS  Google Scholar 

  28. Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)

    Article  CAS  PubMed  Google Scholar 

  29. Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., Taberna, P.L.: Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science (80), 313(5794), 1760–1763 (2006)

    Google Scholar 

  30. Naoi, K., Suematsu, S., Manago, A.: Electrochemistry of poly(1,5-diaminoanthraquinone) and its application in electrochemical capacitor materials. J. Electrochem. Soc. 147(2), 420 (2000)

    Article  CAS  Google Scholar 

  31. Dvoyashkin, M., Wang, A., Vasenkov, S., Bowers, C.R.: Xenon in L-Alanyl-l-Valine nanochannels: a highly ideal molecular single-file system. J. Phys. Chem. Lett. 4(19), 3263–3267 (2013)

    Article  CAS  Google Scholar 

  32. Tao, Y., Kong, D., Zhang, C., Lv, W., Wang, M., Li, B., Huang, Z.-H., Kang, F., Yang, Q.-H.: Monolithic carbons with spheroidal and hierarchical pores produced by the linkage of functionalized graphene sheets. Carbon N. Y. 69, 169–177 (2014)

    Article  CAS  Google Scholar 

  33. Borchardt, L., Leistenschneider, D., Haase, J., Dvoyashkin, M.: Revising the concept of pore hierarchy for ionic transport in carbon materials for supercapacitors. Adv. Energy Mater. 8(24), 1800892 (2018)

    Article  Google Scholar 

  34. Sevilla, M., Mokaya, R. Energy Environ. Sci. 7, 1250–1280 (2014); (b) Wang, J.C., Kaskel, S. J. Mater. Chem. 22, 23710–23725 (2012)

    Google Scholar 

  35. Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors?(Vol 104, Pg 4245, 2003). Chem. Rev. 105(3), 1021 (2005)

    Article  CAS  Google Scholar 

  36. Li, B., Tian, Z., Li, H., Yang, Z., Wang, Y., Wang, X.: Self-supporting graphene aerogel electrode intensified by NiCo2S4 nanoparticles for asymmetric supercapacitor. Electrochim. Acta. Acta 314, 32–39 (2019)

    Article  CAS  Google Scholar 

  37. Hou, R., Liu, B., Sun, Y., Liu, L., Meng, J., Levi, M.D., Ji, H., Yan, X.: Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy 72, 104728 (2020)

    Article  CAS  Google Scholar 

  38. Taer, E., Apriwandi, A., Mardiah, M.A., Awitdrus, Taslim, R.: Synthesis free-template highly micro-mesoporous carbon nanosheet as electrode materials for boosting supercapacitor performances. Int. J. Energy Res. 46(13), 18740–18756 (2022)

    Google Scholar 

  39. Mehare, M.D., Deshmukh, A.D., Dhoble, S.J.: Bio-waste lemon peel derived carbon based electrode in perspect of supercapacitor. J. Mater. Sci. Mater. Electron. 32(10), 14057–14071 (2021)

    Article  CAS  Google Scholar 

  40. Shao, Y., El-Kady, M.F., Sun, J., Li, Y., Zhang, Q., Zhu, M., Wang, H., Dunn, B., Kaner, R.B.: Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. Olabi, A.G., Abbas, Q., Abdelkareem, M.A., Alami, A.H., Mirzaeian, M., Sayed, E.T.: Carbon-based materials for supercapacitors: recent progress, challenges and barriers. Batteries (2023)

    Google Scholar 

  42. Sun, Y., Yan, X.: Recent advances in dual-functional devices integrating solar cells and supercapacitors. Sol. RRL 1(3–4), 1700002 (2017)

    Article  Google Scholar 

  43. He, Y., Chen, W., Gao, C., Zhou, J., Li, X., Xie, E.: An overview of carbon materials for flexible electrochemical capacitors. Nanoscale 5(19), 8799–8820 (2013)

    Article  CAS  PubMed  Google Scholar 

  44. Guo, R.: Culture as an anti-darwinian process BT. In: Guo, R. (ed.) An Economic Inquiry into the Nonlinear Behaviors of Nations: Dynamic Developments and the Origins of Civilizations, pp. 11–37. Springer International Publishing, Cham (2017)

    Google Scholar 

  45. Pech, D., Brunet, M., Durou, H., Huang, P., Mochalin, V., Gogotsi, Y., Taberna, P.-L., Simon, P.: Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol.Nanotechnol. 5(9), 651–654 (2010)

    Article  CAS  Google Scholar 

  46. Lin, J., Zhang, C., Yan, Z., Zhu, Y., Peng, Z., Hauge, R.H., Natelson, D., Tour, J.M.: 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13(1), 72–78 (2013)

    Article  PubMed  Google Scholar 

  47. Lian, C., Liu, K., Van Aken, K.L., Gogotsi, Y., Wesolowski, D.J., Liu, H.L., Jiang, D.E., Wu, J.Z.: Enhancing the capacitive performance of electric double-layer capacitors with ionic liquid mixtures. ACS Energy Lett. 1(1), 21–26 (2016)

    Article  CAS  Google Scholar 

  48. Van Aken, K.L., Beidaghi, M., Gogotsi, Y.: Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. Angew. Chemie Int. Ed. 54(16), 4806–4809 (2015)

    Article  Google Scholar 

  49. Weng, Z., Li, F., Wang, D.-W., Wen, L., Cheng, H.-M.: Controlled electrochemical charge injection to maximize the energy density of supercapacitors. Angew. Chemie Int. Ed. 52(13), 3722–3725 (2013)

    Article  CAS  Google Scholar 

  50. Khomenko, V., Raymundo-Piñero, E., Béguin, F.: High-energy density graphite/AC capacitor in organic electrolyte. J. Power. Sources 177(2), 643–651 (2008)

    Article  CAS  Google Scholar 

  51. Naderi, R., Shellikeri, A., Hagen, M., Cao, W., Zheng, J.P.: The influence of anode/cathode capacity ratio on cycle life and potential variations of lithium-ion capacitors. J. Electrochem. Soc. 166(12), A2610 (2019)

    Article  CAS  Google Scholar 

  52. Wang, P., Zhang, G., Li, M.-Y., Yin, Y.-X., Li, J.-Y., Li, G., Wang, W.-P., Peng, W., Cao, F.-F., Guo, Y.-G.: Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors. Chem. Eng. J. 375, 122020 (2019)

    Article  CAS  Google Scholar 

  53. Kim, H.-J., Yoon, Y.-R.: Pharmacometabolomics: current applications and future perspectives. Transl. Clin. Pharmacol. 22(1), 8–10 (2014)

    Article  CAS  Google Scholar 

  54. Zhang, T., Zhang, F., Zhang, L., Lu, Y., Zhang, Y., Yang, X., Ma, Y., Huang, Y.: High energy density Li-ion capacitor assembled with all graphene-based electrodes. Carbon N. Y. 92, 106–118 (2015)

    Article  CAS  Google Scholar 

  55. Niu, J., Shao, R., Liu, M., Liang, J., Zhang, Z., Dou, M., Huang, Y., Wang, F.: Porous carbon electrodes with battery-capacitive storage features for high performance Li-ion capacitors. Energy Storage Mater. 12, 145–152 (2018)

    Article  Google Scholar 

  56. Wang, Y.-Z., Shan, X.-Y., Wang, D.-W., Cheng, H.-M., Li, F.: Mitigating self-discharge of carbon-based electrochemical capacitors by modifying their electric-double layer to maximize energy efficiency. J. Energy Chem. 38, 214–218 (2019)

    Article  Google Scholar 

  57. Yang, H., Shi, X., Deng, T., Qin, T., Sui, L., Feng, M., Chen, H., Zhang, W., Zheng, W.: Carbon-based dual-ion battery with enhanced capacity and cycling stability. ChemElectroChem 5(23), 3612–3618 (2018)

    Article  CAS  Google Scholar 

  58. Seel, J.A., Dahn, J.R.: Electrochemical intercalation of PF 6 into graphite. J. Electrochem. Soc. 147(3), 892 (2000)

    Article  CAS  Google Scholar 

  59. Zhang, L., Tsay, K., Bock, C., Zhang, J.: Ionic liquids as electrolytes for non-aqueous solutions electrochemical supercapacitors in a temperature range of 20–80℃. J. Power. Sources 324, 615–624 (2016)

    Article  CAS  Google Scholar 

  60. Galimzyanov, R.R., Stakhanova, S.V., Krechetov, I.S., Kalashnik, A.T., Astakhov, M.V., Lisitsin, A.V., Rychagov, A.Y., Galimzyanov, T.R., Tabarov, F.S.: Electrolyte mixture based on acetonitrile and ethyl acetate for a wide temperature range performance of the supercapacitors. J. Power. Sources 495, 229442 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Ram Gupta gratefully acknowledges the financial support provided by Mattress Recycling Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Souza, F.M., Gupta, A., Gupta, R.K. (2024). High-Performance Carbon from Recycled Mattress for Supercapacitor Devices. In: Gupta, R.K. (eds) NanoCarbon: A Wonder Material for Energy Applications. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-9931-6_16

Download citation

Publish with us

Policies and ethics