Skip to main content

Biomechanics of Osteoporotic Fracture Fixation

  • Chapter
  • First Online:
Surgery for Osteoporotic Fractures
  • 66 Accesses

Abstract

Osteoporotic fractures are challenging to treat, as poor bone strength can prevent fixation devices from firmly holding bone tissue in position during surgery and subsequent recovery. Surgeons are more likely to achieve maximal stability of such fractures if they understand the changes to bone strength and morphology that occur due to osteoporosis as well as the biomechanical principles that underlie the designs of commonly used fracture fixation devices. We discuss both topics in the following chapter, which provides an in-depth analysis of the principles of load-bearing and load-sharing in fractures fixed with either plates or intramedullary nails. The objective of this chapter is to aid in the development of surgical strategies for enhancing fracture fixation in osteoporotic bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burstein AH, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg Am. 1976;58(1):82–6.

    Article  CAS  PubMed  Google Scholar 

  2. Crowninshield RD, Pope MH. The response of compact bone in tension at various strain rates. Ann Biomed Eng. 1974;2(2):217–25.

    Article  Google Scholar 

  3. Currey JD. The effects of strain rate, reconstruction and mineral content on some mechanical properties of bovine bone. J Biomech. 1975;8(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  4. McElhaney JH. Dynamic response of bone and muscle tissue. J Appl Physiol. 1966;21(4):1231–6.

    Article  CAS  PubMed  Google Scholar 

  5. Merk BR, Stern SH, Cordes S, Lautenschlager EP. A fatigue life analysis of small fragment screws. J Orthop Trauma. 2001;15(7):494–9.

    Article  CAS  PubMed  Google Scholar 

  6. Currey JD, Butler G. The mechanical properties of bone tissue in children. J Bone Joint Surg Am. 1975;57(6):810–4.

    Article  CAS  PubMed  Google Scholar 

  7. Weaver JK, Chalmers J. Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content: I. Age changes in cancellous bone. JBJS. 1966;48(2):289–99.

    Article  CAS  Google Scholar 

  8. Currey JD. Changes in the impact energy absorption of bone with age. J Biomech. 1979;12(6):459–69.

    Article  CAS  PubMed  Google Scholar 

  9. Bartley MH Jr, Arnold JS, Haslam RK, Jee WSS. The relationship of bone strength and bone quantity in health, disease and aging 12. J Gerontol. 1966;21(4):517–21.

    Article  PubMed  Google Scholar 

  10. Bell GH, Dunbar O, Beck JS, Gibb A. Variations in strength of vertebrae with age and their relation to osteoporosis. Calcif Tissue Res. 1967;1(1):75–86.

    Article  CAS  PubMed  Google Scholar 

  11. Cody DD, Goldstein SA, Flynn MJ, Brown EB. Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load. Spine. 1991;16(2):146–54.

    Article  CAS  PubMed  Google Scholar 

  12. Galante J, Rostoker W, Ray RD. Physical properties of trabecular bone. Calcif Tissue Res. 1970;5(1):236–46.

    Article  CAS  PubMed  Google Scholar 

  13. Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am. 1977;59(7):954–62.

    Article  CAS  PubMed  Google Scholar 

  14. Frigg R, Appenzeller A, Christensen R, Frenk A, Gilbert S, Schavan R. The development of the distal femur less invasive stabilization system (LISS). Injury. 2001;32:24–31.

    Article  Google Scholar 

  15. Egol KA, Kubiak EN, Fulkerson E, Kummer FJ, Koval KJ. Biomechanics of locked plates and screws. J Orthop Trauma. 2004;18(8):488–93.

    Article  PubMed  Google Scholar 

  16. Ellis T, Bourgeault CA, Kyle RF. Screw position affects dynamic compression plate strain in an in vitro fracture model. J Orthop Trauma. 2001;15(5):333–7.

    Article  CAS  PubMed  Google Scholar 

  17. Sanders R, Haidukewych GJ, Milne T, Dennis J, Latta LL. Minimal versus maximal plate fixation techniques of the ulna: the biomechanical effect of number of screws and plate length. J Orthop Trauma. 2002;16(3):166–71.

    Article  PubMed  Google Scholar 

  18. ElMaraghy AW, ElMaraghy MW, Nousiainen M, Richards RR, Schemitsch EH. Influence of the number of cortices on the stiffness of plate fixation of diaphyseal fractures. J Orthop Trauma. 2001;15(3):186–91.

    Article  CAS  PubMed  Google Scholar 

  19. Hou S-M, Wang J-L, Lin J. Mechanical strength, fatigue life, and failure analysis of two prototypes and five conventional tibial locking screws. J Orthop Trauma. 2002;16(10):701–8.

    Article  PubMed  Google Scholar 

  20. Yee DKH, Lau W, Tiu KL, Leung F, Fang E, Pineda JPS, et al. Cementation: for better or worse? Interim results of a multi-centre cohort study using a fenestrated spiral blade cephalomedullary device for pertrochanteric fractures in the elderly. Arch Orthop Trauma Surg. 2020;140(12):1957–64.

    Article  PubMed  Google Scholar 

  21. Roberts TT, Prummer CM, Papaliodis DN, Uhl RL, Wagner TA. History of the orthopedic screw. Orthopedics. 2013;36:12–4.

    Article  PubMed  Google Scholar 

  22. Stahel PF, Alfonso NA, Henderson C, Baldini T. Introducing the “bone-screw-fastener” for improved screw fixation in orthopedic surgery: a revolutionary paradigm shift? Patient Saf Surg. 2017;11:6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Feng X, Lin G, Fang CX, et al. Bone resorption triggered by high radial stress: the mechanism of screw loosening in plate fixation of long bone fractures. J Orthop Res. 2019;37:1498–507.

    Article  PubMed  Google Scholar 

  24. Feng X, Qi W, Zhang T, et al. Lateral migration resistance of screw is essential in evaluating bone screw stability of plate fixation. Sci Rep. 2021;11:12510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng X, Qi W, Fang CX, et al. Can barb thread design improve the pullout strength of bone screws? A biomechanical study and finite element analysis. Bone Joint Res. 2021;10:105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feng X, Zhang S, Liang H, Chen B, Leung F. Development and initial validation of a novel undercut thread design for locking screws. Injury. 2022;53(7):2533–40. https://doi.org/10.1016/j.injury.2022.02.048.

    Article  PubMed  Google Scholar 

  27. Feng X, Zhang S, Luo Z, Liang H, Chen B, Leung F. Development and initial validation of a novel thread design for non-locking cancellous screws. J Orthop Res. 2022;40(12):2813–21. https://doi.org/10.1002/jor.25305.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, X., Leung, F., Kulper, S., Ueda, E. (2024). Biomechanics of Osteoporotic Fracture Fixation. In: Leung, F., Lau, T.W. (eds) Surgery for Osteoporotic Fractures. Springer, Singapore. https://doi.org/10.1007/978-981-99-9696-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9696-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9695-7

  • Online ISBN: 978-981-99-9696-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics