Skip to main content

Advertisement

Log in

Cementation: for better or worse? Interim results of a multi-centre cohort study using a fenestrated spiral blade cephalomedullary device for pertrochanteric fractures in the elderly

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Cephallomedullary nail fixation is currently the most popular treatment for pertrochanteric fractures. Despite continuous improvement in implant design, fixation failures still occur in a concerning number of cases. This study aims to evaluate the effect of cement augmentation of the new-generation Trochanteric Femoral Nail Advanced (TFNA) perforated spiral blade on complications including fixation failure in the elderly population.

Materials and methods

We retrospectively evaluated 107 patients aged 65 + treated for pertrochanteric fractures via TFNA between 2015 and 2019 based on whether cementation was used. Baseline demographics, fracture classifications, and reduction quality were compared. Patients with a follow-up of at least 6 months were analyzed for the primary outcome of fixation failure. All patients, regardless of loss to follow-up within 6 months, were analyzed for other complications including mortality.

Results

Seventy-six patients (47 cemented, 29 non-cemented) had a minimum follow-up of 6 months (mean 13 months). There were no statistically significant differences between the two treatment groups in terms of patient demographics, ASA or AO/OTA fracture classification, reduction quality, or length of follow-up. There was a lower rate of fixation failure in the cement-augmented (CA) group versus the non-cement-augmented (NCA) group (2.1% vs 13.8%; p = 0.047). No cut-out or cut-through was observed in the CA group. Seven patients had adverse intraoperative events, with a significantly higher rate of fixation failure in these patients (40% vs 2.8%; p = 0.00). There were no statistically significant differences in 30-day mortality (6.3% CA vs 4.3% NCA; p = 0.632) or 3-month mortality (9.5% CA vs 12.8% NCA; p = 0.589).

Conclusions

Cementation of TFNA blades may decrease risk of fixation failure, however, the surgeon must be aware of potential complications such as cement leakage into the hip joint and be able to manage them as they arise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data

The data that support this study are available from the Hong Kong Hospital Authority Clinical Data and Reporting System (CDARS), but restrictions apply to these data, which were used under license for the current study, and so are not publicly available.

References

  1. Braithwaite RS, Col NF, Wong JB (2003) Estimating hip fracture morbidity, mortality and costs. J Am Geriatr Soc 51(3):364–370. https://doi.org/10.1046/j.1532-5415.2003.51110.x

    Article  PubMed  Google Scholar 

  2. Dhanwal DK, Dennison EM, Harvey NC, Cooper C (2011) Epidemiology of hip fracture: worldwide geographic variation. Indian J Orthop 45(1):15–22. https://doi.org/10.4103/0019-5413.73656

    Article  PubMed  PubMed Central  Google Scholar 

  3. Murena L, Moretti A, Meo F, Saggioro E, Barbati G, Ratti C, Canton G (2018) Predictors of cut-out after cephalomedullary nail fixation of pertrochanteric fractures: a retrospective study of 813 patients. Arch Orthop Trauma Surg 138(3):351–359. https://doi.org/10.1007/s00402-017-2863-z

    Article  PubMed  Google Scholar 

  4. Bojan AJ, Beimel C, Taglang G, Collin D, Ekholm C, Jönsson A (2013) Critical factors in cut-out complication after Gamma Nail treatment of proximal femoral fractures. BMC Musculoskelet Disord 14:1. https://doi.org/10.1186/1471-2474-14-1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Turgut A, Kalenderer O, Karapinar L, Kumbaraci M, Akkan HA, Agus H (2016) Which factor is most important for occurrence of cutout complications in patients treated with proximal femoral nail antirotation? Retrospective analysis of 298 patients. Arch Orthop Trauma Surg 136(5):623–630. https://doi.org/10.1007/s00402-016-2410-3

    Article  PubMed  Google Scholar 

  6. Frei HC, Hotz T, Cadosch D, Rudin M, Kach K (2012) Central head perforation, or “cut through”, caused by the helical blade of the proximal femoral nail antirotation. J Orthop Trauma 26(8):e102–107. https://doi.org/10.1097/BOT.0b013e31822c53c1

    Article  PubMed  Google Scholar 

  7. Chehade MJ, Carbone T, Awwad D, Taylor A, Wildenauer C, Ramasamy B, McGee M (2015) Influence of fracture stability on early patient mortality and reoperation after pertrochanteric and intertrochanteric hip fractures. J Orthop Trauma 29(12):538–543. https://doi.org/10.1097/bot.0000000000000359

    Article  PubMed  Google Scholar 

  8. Moran CG, Wenn RT, Sikand M, Taylor AM (2005) Early mortality after hip fracture: is delay before surgery important? J Bone Joint Surg Am 87(3):483–489. https://doi.org/10.2106/jbjs.D.01796

    Article  PubMed  Google Scholar 

  9. Heini PF, Franz T, Fankhauser C, Gasser B, Ganz R (2004) Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: a biomechanical investigation of PMMA reinforcement in cadaver bones. Clin Biomech (Bristol, Avon) 19(5):506–512. https://doi.org/10.1016/j.clinbiomech.2004.01.014

    Article  Google Scholar 

  10. Stoffel KK, Leys T, Damen N, Nicholls RL, Kuster MS (2008) A new technique for cement augmentation of the sliding hip screw in proximal femur fractures. Clin Biomech (Bristol, Avon) 23(1):45–51. https://doi.org/10.1016/j.clinbiomech.2007.08.014

    Article  Google Scholar 

  11. Lindner T, Kanakaris NK, Marx B, Cockbain A, Kontakis G, Giannoudis PV (2009) Fractures of the hip and osteoporosis: the role of bone substitutes. J Bone Joint Surg Br 91(3):294–303. https://doi.org/10.1302/0301-620x.91b3.21273

    Article  CAS  PubMed  Google Scholar 

  12. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 77(7):1058–1064. https://doi.org/10.2106/00004623-199507000-00012

    Article  CAS  PubMed  Google Scholar 

  13. Geller JA, Saifi C, Morrison TA, Macaulay W (2010) Tip-apex distance of intramedullary devices as a predictor of cut-out failure in the treatment of peritrochanteric elderly hip fractures. Int Orthop 34(5):719–722. https://doi.org/10.1007/s00264-009-0837-7

    Article  PubMed  Google Scholar 

  14. Cleveland M, Bosworth DM, Thompson FR, Wilson HJ Jr, Ishizuka T (1959) A ten-year analysis of intertrochanteric fractures of the femur. J Bone Jt Surg Am 41:1399–1408

    Article  Google Scholar 

  15. Davis TR, Sher JL, Horsman A, Simpson M, Porter BB, Checketts RG (1990) Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Jt Surg Br 72(1):26–31

    Article  CAS  Google Scholar 

  16. Parker MJ (1993) Valgus reduction of trochanteric fractures. Injury 24(5):313–316. https://doi.org/10.1016/0020-1383(93)90053-9

    Article  CAS  PubMed  Google Scholar 

  17. Mainds CC, Newman RJ (1989) Implant failures in patients with proximal fractures of the femur treated with a sliding screw device. Injury 20(2):98–100. https://doi.org/10.1016/0020-1383(89)90151-4

    Article  CAS  PubMed  Google Scholar 

  18. Kim WY, Han CH, Park JI, Kim JY (2001) Failure of intertrochanteric fracture fixation with a dynamic hip screw in relation to pre-operative fracture stability and osteoporosis. Int Orthop 25(6):360–362. https://doi.org/10.1007/s002640100287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stoffel KK, Lim T, Billik B (2006) An analysis of the predictive factors of failure of the sliding hip screw fixation of fractures of the proximal femur. In: MOA-APOA Trauma Section Combined Meeting. Kuala Lumpur

  20. O'Neill F, Condon F, McGloughlin T, Lenehan B, Coffey JC, Walsh M (2011) Dynamic hip screw versus DHS blade: a biomechanical comparison of the fixation achieved by each implant in bone. J Bone Jt Surg Br 93(5):616–621. https://doi.org/10.1302/0301-620x.93b5.25539

    Article  CAS  Google Scholar 

  21. Barton TM, Gleeson R, Topliss C, Greenwood R, Harries WJ, Chesser TJ (2010) A comparison of the long gamma nail with the sliding hip screw for the treatment of AO/OTA 31-A2 fractures of the proximal part of the femur: a prospective randomized trial. J Bone Jt Surg Am 92(4):792–798. https://doi.org/10.2106/jbjs.I.00508

    Article  Google Scholar 

  22. Mereddy P, Kamath S, Ramakrishnan M, Malik H, Donnachie N (2009) The AO/ASIF proximal femoral nail antirotation (PFNA): a new design for the treatment of unstable proximal femoral fractures. Injury 40(4):428–432. https://doi.org/10.1016/j.injury.2008.10.014

    Article  PubMed  Google Scholar 

  23. Simmermacher RK, Ljungqvist J, Bail H, Hockertz T, Vochteloo AJ, Ochs U, Werken C (2008) The new proximal femoral nail antirotation (PFNA) in daily practice: results of a multicentre clinical study. Injury 39(8):932–939. https://doi.org/10.1016/j.injury.2008.02.005

    Article  CAS  PubMed  Google Scholar 

  24. Muhr G, Tscherne H, Thomas R (1979) Comminuted trochanteric femoral fractures in geriatric patients: the results of 231 cases treated with internal fixation and acrylic cement. Clin Orthop Relat Res 138:41–44

    Google Scholar 

  25. Eriksson F, Mattsson P, Larsson S (2002) The effect of augmentation with resorbable or conventional bone cement on the holding strength for femoral neck fracture devices. J Orthop Trauma 16(5):302–310. https://doi.org/10.1097/00005131-200205000-00003

    Article  PubMed  Google Scholar 

  26. von der Linden P, Gisep A, Boner V, Windolf M, Appelt A, Suhm N (2006) Biomechanical evaluation of a new augmentation method for enhanced screw fixation in osteoporotic proximal femoral fractures. J Orthop Res 24(12):2230–2237. https://doi.org/10.1002/jor.20299

    Article  PubMed  Google Scholar 

  27. Erhart S, Schmoelz W, Blauth M, Lenich A (2011) Biomechanical effect of bone cement augmentation on rotational stability and pull-out strength of the Proximal Femur Nail Antirotation. Injury 42(11):1322–1327. https://doi.org/10.1016/j.injury.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  28. Sermon A, Boner V, Boger A, Schwieger K, Boonen S, Broos PL, Richards RG, Windolf M (2012) Potential of polymethylmethacrylate cement-augmented helical proximal femoral nail antirotation blades to improve implant stability—a biomechanical investigation in human cadaveric femoral heads. J Trauma Acute Care Surg 72(2):E54–59

    Article  CAS  Google Scholar 

  29. Sermon A, Boner V, Schwieger K, Boger A, Boonen S, Broos P, Richards G, Windolf M (2012) Biomechanical evaluation of bone-cement augmented Proximal Femoral Nail Antirotation blades in a polyurethane foam model with low density. Clin Biomech (Bristol, Avon) 27(1):71–76. https://doi.org/10.1016/j.clinbiomech.2011.07.006

    Article  CAS  Google Scholar 

  30. Kammerlander C, Gebhard F, Meier C, Lenich A, Linhart W, Clasbrummel B, Neubauer-Gartzke T, Garcia-Alonso M, Pavelka T, Blauth M (2011) Standardised cement augmentation of the PFNA using a perforated blade: a new technique and preliminary clinical results. A prospective multicentre trial. Injury 42(12):1484–1490. https://doi.org/10.1016/j.injury.2011.07.010

    Article  CAS  PubMed  Google Scholar 

  31. Kammerlander C, Doshi H, Gebhard F, Scola A, Meier C, Linhart W, Garcia-Alonso M, Nistal J, Blauth M (2014) Long-term results of the augmented PFNA: a prospective multicenter trial. Arch Orthop Trauma Surg 134(3):343–349. https://doi.org/10.1007/s00402-013-1902-7

    Article  CAS  PubMed  Google Scholar 

  32. Kammerlander C, Hem ES, Klopfer T, Gebhard F, Sermon A, Dietrich M, Bach O, Weil Y, Babst R, Blauth M (2018) Cement augmentation of the Proximal Femoral Nail Antirotation (PFNA)—a multicentre randomized controlled trial. Injury 49(8):1436–1444. https://doi.org/10.1016/j.injury.2018.04.022

    Article  PubMed  Google Scholar 

  33. Wähnert D, Hofmann-Fliri L, Richards RG, Gueorguiev B, Raschke MJ, Windolf M (2014) Implant augmentation: adding bone cement to improve the treatment of osteoporotic distal femur fractures: a biomechanical study using human cadaver bones. Medicine (Baltimore) 93(23):e166. https://doi.org/10.1097/md.0000000000000166

    Article  Google Scholar 

  34. Hisatome T, Yasunaga Y, Ikuta Y, Fujimoto Y (2002) Effects on articular cartilage of subchondral replacement with polymethylmethacrylate and calcium phosphate cement. J Biomed Mater Res 59(3):490–498. https://doi.org/10.1002/jbm.1263

    Article  CAS  PubMed  Google Scholar 

  35. Chen H, Sun J, Hoemann CD, Lascau-Coman V, Ouyang W, McKee MD, Shive MS, Buschmann MD (2009) Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res 27(11):1432–1438. https://doi.org/10.1002/jor.20905

    Article  PubMed  Google Scholar 

  36. Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 213:34–40

    Google Scholar 

  37. Goetzen M, Hofmann-Fliri L, Arens D, Zeiter S, Stadelmann V, Nehrbass D, Richards RG, Blauth M (2015) Does metaphyseal cement augmentation in fracture management influence the adjacent subchondral bone and joint cartilage?: an in vivo study in sheep stifle joints. Medicine (Baltimore) 94(3):e414. https://doi.org/10.1097/md.0000000000000414

    Article  Google Scholar 

  38. Laros GS, Moore JF (1974) Complications of fixation in intertrochanteric fractures. Clin Orthop Relat Res 101:110–119

    Google Scholar 

  39. Larsson S, Friberg S, Hansson LI (1990) Trochanteric fractures. Influence of reduction and implant position on impaction and complications. Clin Orthop Relat Res 259:130–139

    Google Scholar 

  40. Rao JP, Banzon MT, Weiss AB, Rayhack J (1983) Treatment of unstable intertrochanteric fractures with anatomic reduction and compression hip screw fixation. Clin Orthop Relat Res 175:65–71

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Yip Siu On for assisting with radiographic measurement.

Funding

This study was not supported by any research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis K. H. Yee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Ethical approval is not required for secondary data according to regional guidelines as set out by the Hospital Authority Head Office Steering Committee on Research Ethics (https://www.med.hku.hk/images/document/04research/institution/ha-investigator-cop.pdf).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yee, D.K.H., Lau, W., Tiu, K.L. et al. Cementation: for better or worse? Interim results of a multi-centre cohort study using a fenestrated spiral blade cephalomedullary device for pertrochanteric fractures in the elderly. Arch Orthop Trauma Surg 140, 1957–1964 (2020). https://doi.org/10.1007/s00402-020-03449-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-020-03449-9

Keywords

Navigation