Skip to main content

Mechanisms Underlying HFMD Clinical Pathology in Children

  • Chapter
  • First Online:
Molecular Biology of Hand-Foot-Mouth Diseases
  • 41 Accesses

Abstract

Hand, foot, and mouth disease (HFMD) is generally recognized as a contagious viral disease that commonly occurs in children worldwide, with a high incidence in Asia–Pacific regions in the past 20 years (Koh et al., Pediatr Infect Dis J 35(10):e285–e300, 2016; Puenpa et al., J Biomed Sci 26(1):75, 2019). Since 2000, major epidemics have emerged in East Asia (Huang et al., Emerg Infect Dis 24(3):432, 2018), and numerous large outbreaks have been reported in Taiwan (Chang et al., Pediatrics 109(6):e88, 2002), China; Anhui Province, mainland China; Australia (McMinn et al., Clin Infect Dis 32(2):236–242, 2001); and Southeast Asia (Khanh et al., Emerg Infect Dis 18(12):2002–2005, 2012). Several million HFMD cases have been reported in children. In approximately 1.5–2% of fatal cases, evidence of neurological disorders is identified (Koh et al., BMJ Glob Health 3(1):e000442, 2018; Gonzalez et al., Int J Mol Sci 20(20):5201, 2019), and in some cases, death may be potentially attributed to neurogenic pulmonary edema (PE) or cardiovascular complications occurring within a short time of damage to the nervous system (Wang et al., Pathology 48(3):267–274, 2016). Although cases of fatal HFMD account for only 0.1% of all cases, because HFMD primarily affects children under 2 years of age (Chan et al., Clin Infect Dis 31(3):678–683, 2000), HFMD, especially fatal HFMD, is a public health issue worthy of attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koh WM, Bogich T, Siegel K, Jin J, Chong EY, Tan CY, et al. The epidemiology of hand, foot and mouth disease in Asia: a systematic review and analysis. Pediatr Infect Dis J. 2016;35(10):285–300.

    Article  Google Scholar 

  2. Puenpa J, Wanlapakorn N, Vongpunsawad S, Poovorawan Y. The history of enterovirus A71 outbreaks and molecular epidemiology in the Asia-Pacific region. J Biomed Sci. 2019;26(1):75.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huang J, Liao Q, Ooi MH, Cowling BJ, Chang Z, Wu P, et al. Epidemiology of recurrent hand, foot and mouth disease, China, 2008-2015. Emerg Infect Dis. 2018;24(3):432.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chang LY, King CC, Hsu KH, Ning HC, Tsao KC, Li CC, et al. Risk factors of enterovirus 71 infection and associated hand, foot, and mouth disease/herpangina in children during an epidemic in Taiwan. Pediatrics. 2002;109(6):e88.

    Article  PubMed  Google Scholar 

  5. Khanh TH, Sabanathan S, Thanh TT, Thoa le PK, Thuong TC, Hang V, et al. Enterovirus 71-associated hand, foot, and mouth disease, Southern Vietnam, 2011. Emerg Infect Dis. 2012;18(12):2002–5.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis. 2010;10(11):778–90.

    Article  PubMed  Google Scholar 

  7. Cabrerizo M, Tarrago D, Munoz-Almagro C, Del Amo E, Dominguez-Gil M, Eiros JM, et al. Molecular epidemiology of enterovirus 71, coxsackievirus A16 and A6 associated with hand, foot and mouth disease in Spain. Clin Microbiol Infect. 2014;20(3):150–6.

    Article  Google Scholar 

  8. Hu YQ, Xie GC, Li DD, Pang LL, Xie J, Wang P, et al. Prevalence of coxsackievirus A6 and enterovirus 71 in hand, foot and mouth disease in Nanjing, China in 2013. Pediatr Infect Dis J. 2015;34(9):951–7.

    Article  PubMed  Google Scholar 

  9. Yang Q, Ding J, Cao J, Huang Q, Hong C, Yang B. Epidemiological and etiological characteristics of hand, foot, and mouth disease in Wuhan, China from 2012 to 2013: outbreaks of coxsackieviruses A10. J Med Virol. 2015;87(6):954–60.

    Article  PubMed  Google Scholar 

  10. Zhang Jing SJ, Zhaorui C, Weidong Z, Zijun W, Zijian F. Characterization of hand, foot, and mouth disease in China between 2008 and 2009. Biomed Environ Sci. 2011;24(3):214–21.

    CAS  PubMed  Google Scholar 

  11. Liu B, Luo L, Yan S, Wen T, Bai W, Li H, et al. Clinical features for mild hand, foot and mouth disease in China. PLoS One. 2015;10(8):e0135503.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T. Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol. 2010;9(11):1097–105.

    Article  PubMed  Google Scholar 

  13. Yan X, Zhang ZZ, Yang ZH, Zhu CM, Hu YG, Liu QB. Clinical and etiological characteristics of atypical hand-foot-and-mouth disease in children from Chongqing, China: a retrospective study. Biomed Res Int. 2015;2015:802046.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bian L, Gao F, Mao Q, Sun S, Wu X, Liu S, et al. Hand, foot, and mouth disease associated with coxsackievirus A10: more serious than it seems. Expert Rev Anti-Infect Ther. 2019;17(4):233–42.

    Article  CAS  PubMed  Google Scholar 

  15. Sinclair C, Gaunt E, Simmonds P, Broomfield D, Nwafor N, Wellington L, et al. Atypical hand, foot, and mouth disease associated with coxsackievirus A6 infection, Edinburgh, United Kingdom, January to February 2014. Euro Surveill. 2014;19(12):20745.

    Article  CAS  PubMed  Google Scholar 

  16. Hoffmann AJ, Latrous M, Lam JM. Atypical hand-foot-and-mouth disease. CMAJ. 2020;192(3):E69.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kar BR, Dwibedi B, Kar SK. An outbreak of hand, foot and mouth disease in Bhubaneswar, Odisha. Indian Pediatr. 2013;50(1):139–42.

    Article  PubMed  Google Scholar 

  18. McMinn P, Stratov I, Nagarajan L, Davis S. Neurological manifestations of enterovirus 71 infection in children during an outbreak of hand, foot, and mouth disease in Western Australia. Clin Infect Dis. 2001;32(2):236–42.

    Article  CAS  PubMed  Google Scholar 

  19. Koh WM, Badaruddin H, La H, Chen MI, Cook AR. Severity and burden of hand, foot and mouth disease in Asia: a modelling study. BMJ Glob Health. 2018;3(1):e000442.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gonzalez G, Carr MJ, Kobayashi M, Hanaoka N, Fujimoto T. Enterovirus-associated hand-foot and mouth disease and neurological complications in Japan and the rest of the world. Int J Mol Sci. 2019;20(20):5201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Z, Nicholls JM, Liu F, Wang J, Feng Z, Liu D, et al. Pulmonary and central nervous system pathology in fatal cases of hand foot and mouth disease caused by enterovirus A71 infection. Pathology. 2016;48(3):267–74.

    Article  PubMed  Google Scholar 

  22. Zhang YC, Li XW, Zhu XD, Qian SY, Shang YX, Li BR, et al. Clinical characteristics and treatment of severe encephalitis associated with neurogenic pulmonary edema caused by enterovirus 71 in China. World J Emerg Med. 2010;1(2):108–13.

    PubMed  PubMed Central  Google Scholar 

  23. Tian H, Yang QZ, Liang J, Dong SY, Liu ZJ, Wang LX. Clinical features and management outcomes of severe hand, foot and mouth disease. Med Princ Pract. 2012;21(4):355–9.

    Article  PubMed  Google Scholar 

  24. Chan LG, Parashar UD, Lye MS, Ong FG, Zaki SR, Alexander JP, et al. Deaths of children during an outbreak of hand, foot, and mouth disease in Sarawak, Malaysia: clinical and pathological characteristics of the disease. For the Outbreak Study Group. Clin Infect Dis. 2000;31(3):678–83.

    Article  CAS  PubMed  Google Scholar 

  25. Gu YY, Shi K, Yao S, Yang X, Liu YH, Tang L, et al. Morphological characteristics of fatal pediatric hand, foot and mouth disease: a clinicopathological study with related receptors of EV71. Pathol Res Pract. 2017;213(9):1144–51.

    Article  PubMed  Google Scholar 

  26. Lin JY, Shih SR. Cell and tissue tropism of enterovirus 71 and other enteroviruses infections. J Biomed Sci. 2014;21:18.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chang GH, Lin L, Luo YJ, Cai LJ, Wu XY, Xu HM, et al. Sequence analysis of six enterovirus 71 strains with different virulences in humans. Virus Res. 2010;151(1):66–73.

    Article  CAS  PubMed  Google Scholar 

  28. Plevka P, Perera R, Cardosa J, Kuhn RJ, Rossmann MG. Crystal structure of human enterovirus 71. Science. 2012;336(6086):1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang X, Peng W, Ren J, Hu Z, Xu J, Lou Z, et al. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol. 2012;19(4):424–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yorihiro Nishimura HL, Hafenstein S, Kataoka C, Wakita T, Bergelson JM, Shimizu H. Enterovirus 71 binding to PSGL-1 on leukocytes: VP1-145 acts as a molecular switch to control receptor interaction. PLoS Pathog. 2013;9(7):e1003511.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tan CW, Poh CL, Sam IC, Chan YF. Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol. 2013;87(1):611–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee H, Cifuente JO, Ashley RE, Conway JF, Makhov AM, Tano Y, et al. A strain-specific epitope of enterovirus 71 identified by cryo-electron microscopy of the complex with fab from neutralizing antibody. J Virol. 2013;87(21):11363–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chua BH, Phuektes P, Sanders SA, Nicholls PK, McMinn PC. The molecular basis of mouse adaptation by human enterovirus 71. J Gen Virol. 2008;89(7):1622–32.

    Article  CAS  PubMed  Google Scholar 

  34. Huang SW, Wang YF, Yu CK, Su IJ, Wang JR. Mutations in VP2 and VP1 capsid proteins increase infectivity and mouse lethality of enterovirus 71 by virus binding and RNA accumulation enhancement. Virology. 2012;422(1):132–43.

    Article  CAS  PubMed  Google Scholar 

  35. Zaini Z, McMinn P. A single mutation in capsid protein VP1 (Q145E) of a genogroup C4 strain of human enterovirus 71 generates a mouse-virulent phenotype. J Gen Virol. 2012;93(9):1935–40.

    Article  CAS  PubMed  Google Scholar 

  36. Kataoka C, Suzuki T, Kotani O, Iwata-Yoshikawa N, Nagata N, Ami Y, et al. The role of VP1 amino acid residue 145 of enterovirus 71 in viral fitness and pathogenesis in a cynomolgus monkey model. PLoS Pathog. 2015;11(7):e1005033.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chang SC, Li WC, Chen GW, Tsao KC, Huang CG, Huang YC, et al. Genetic characterization of enterovirus 71 isolated from patients with severe disease by comparative analysis of complete genomes. J Med Virol. 2012;84(6):931–9.

    Article  CAS  PubMed  Google Scholar 

  38. Bao Zhang XW, Huang K, Li L, Zheng L, Wan C, He M-L, Zhao W. The variations of VP1 protein might be associated with nervous system symptoms caused by enterovirus 71 infection. BMC Infect Dis. 2014;14:243.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li R, Zou Q, Chen L, Zhang H, Wang Y. Molecular analysis of virulent determinants of enterovirus 71. PLoS One. 2011;6(10):e26237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin JY, Chen TC, Weng KF, Chang SC, Chen LL, Shih SR. Viral and host proteins involved in picornavirus life cycle. J Biomed Sci. 2009;16:103.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dang M, Wang X, Wang Q, Wang Y, Lin J, Sun Y, et al. Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71. Protein Cell. 2014;5(9):692–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ling Zhu KX, Wang N, Cao L, Junlan W, Gao Q, Fry EE, Stuart DI, Rao Z, Wang J, Wang X. Neutralization mechanisms of two highly potent antibodies against human enterovirus 71. MBio. 2018;9(4):e01013.

    PubMed  PubMed Central  Google Scholar 

  43. Cai Y, Chen Q, Zhou W, Chu C, Ji W, Ding Y, et al. Association analysis of polymorphisms in OAS1 with susceptibility and severity of hand, foot and mouth disease. Int J Immunogenet. 2014;41(5):384–92.

    Article  CAS  PubMed  Google Scholar 

  44. Luan-Yin Chang I-SC, Chen W-J, Huang Y-C, Chen G-W, Shih S-R, Juang J-L, Shih H-M, Hsiung CA, Lin T-Y, Huang L-M. HLA-A33 is associated with susceptibility to enterovirus 71 infection. Pediatrics. 2008;122(6):1271–6.

    Article  PubMed  Google Scholar 

  45. Carosella ED, HoWangYin KY, Favier B, Le Maoult J. HLA-G-dependent suppressor cells: diverse by nature, function, and significance. Hum Immunol. 2008;69(11):700–7.

    Article  CAS  PubMed  Google Scholar 

  46. Paul FAC, Ibrahim EC, Lefebvre S, Khalil-Daher I, Vazeux G, Quiles RM, Bermond F, Dausset J, Carosella ED. Identification of HLA-G7 as a new splice variant of the HLA-G mRNA and expression of soluble HLA-G5, -G6, and -G7 transcripts in human transfected cells. Hum Immunol. 2000;61(11):1138–49.

    Article  CAS  PubMed  Google Scholar 

  47. Zheng XQ, Chen XQ, Gao Y, Fu M, Chen YP, Xu DP, et al. Elevation of human leukocyte antigen-G expression is associated with the severe encephalitis associated with neurogenic pulmonary edema caused by Enterovirus 71. Clin Exp Med. 2014;14(2):161–7.

    Article  PubMed  Google Scholar 

  48. Chen XQ, Wang HY, Gao Y, Yu LL, Chen D, Zheng XQ. Association of HLA-G 14bp gene polymorphisms and plasma sHLA-G level with susceptibility to EV71 infection in children. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2012;26(6):429–31.

    CAS  PubMed  Google Scholar 

  49. Kobayashi K, Koike S. Cellular receptors for enterovirus A71. J Biomed Sci. 2020;27(1):23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen KR, Ling P. Interplays between Enterovirus A71 and the innate immune system. J Biomed Sci. 2019;26(1):95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lim HX, Poh CL. Insights into innate and adaptive immune responses in vaccine development against EV-A71. Ther Adv Vaccines Immunother. 2019;7:2515135519888998.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pathinayake PS, Hsu AC, Wark PA. Innate immunity and immune evasion by enterovirus 71. Viruses. 2015;7(12):6613–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin Y, Zhang R, Wu W, Duan G. Antiviral and inflammatory cellular signaling associated with enterovirus 71 infection. Viruses. 2018;10(4):155.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang H, Gomez AM, Wang X, Yan Y, Zheng M, Cheng H. ROS regulation of microdomain Ca(2+) signalling at the dyads. Cardiovasc Res. 2013;98(2):248–58.

    Article  CAS  PubMed  Google Scholar 

  55. Cheng ML, Weng SF, Kuo CH, Ho HY. Enterovirus 71 induces mitochondrial reactive oxygen species generation that is required for efficient replication. PLoS One. 2014;9(11):e113234.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ho HY, Cheng ML, Weng SF, Chang L, Yeh TT, Shih SR, et al. Glucose-6-phosphate dehydrogenase deficiency enhances enterovirus 71 infection. J Gen Virol. 2008;89(9):2080–9.

    Article  CAS  PubMed  Google Scholar 

  57. Qin Y, Lin L, Chen Y, Wu S, Si X, Wu H, et al. Curcumin inhibits the replication of enterovirus 71 in vitro. Acta Pharm Sin B. 2014;4(4):284–94.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lv X, Qiu M, Chen D, Zheng N, Jin Y, Wu Z. Apigenin inhibits enterovirus 71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. Antivir Res. 2014;109:30–41.

    Article  CAS  PubMed  Google Scholar 

  59. Xie GC, Guo NJ, Grenman R, Wang H, Wang Y, Vuorenmma M, et al. Susceptibility of human tonsillar epithelial cells to enterovirus 71 with normal cytokine response. Virology. 2016;494:108–18.

    Article  CAS  PubMed  Google Scholar 

  60. Tung WH, Hsieh HL, Yang CM. Enterovirus 71 induces COX-2 expression via MAPKs, NF-kappaB, and AP-1 in SK-N-SH cells: role of PGE(2) in viral replication. Cell Signal. 2010;22(2):234–46.

    Article  CAS  PubMed  Google Scholar 

  61. Tung WH, Lee IT, Hsieh HL, Yang CM. EV71 induces COX-2 expression via c-Src/PDGFR/PI3K/Akt/p42/p44 MAPK/AP-1 and NF-kappaB in rat brain astrocytes. J Cell Physiol. 2010;224(2):376–86.

    Article  CAS  PubMed  Google Scholar 

  62. Tung WH, Sun CC, Hsieh HL, Wang SW, Horng JT, Yang CM. EV71 induces VCAM-1 expression via PDGF receptor, PI3-K/Akt, p38 MAPK, JNK and NF-kappaB in vascular smooth muscle cells. Cell Signal. 2007;19(10):2127–37.

    Article  CAS  PubMed  Google Scholar 

  63. Huimin Xiao RZ, He Y, Liu Y, He Q, Wang S, Chen F. Siji Antiviral mixture protects against CA16 induced brain injury through inhibiting PERK/STAT3/NF- κ B pathway. Biomed Res Int. 2018;2018:8475463.

    PubMed  PubMed Central  Google Scholar 

  64. Tung WH, Hsieh HL, Lee IT, Yang CM. Enterovirus 71 modulates a COX-2/PGE2/cAMP-dependent viral replication in human neuroblastoma cells: role of the c-Src/EGFR/p42/p44 MAPK/CREB signaling pathway. J Cell Biochem. 2011;112(2):559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tung WH, Hsieh HL, Lee IT, Yang CM. Enterovirus 71 induces integrin beta1/EGFR-Rac1-dependent oxidative stress in SK-N-SH cells: role of HO-1/CO in viral replication. J Cell Physiol. 2011;226(12):3316–29.

    Article  CAS  PubMed  Google Scholar 

  66. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802(4):396–405.

    Article  CAS  PubMed  Google Scholar 

  67. Chakraborty C, Sharma AR, Patra BC, Bhattacharya M, Sharma G, Lee SS. MicroRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia. Oncotarget. 2016;7(27):42683–97.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Peng H, Shi M, Zhang L, Li Y, Sun J, Zhang L, et al. Activation of JNK1/2 and p38 MAPK signaling pathways promotes enterovirus 71 infection in immature dendritic cells. BMC Microbiol. 2014;14:147.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang C, Gao L, Jin Y, Cardona CJ, Xing Z. Regulation of host responses and viral replication by the mitogen-activated protein kinases in intestinal epithelial cells infected with Enterovirus 71. Virus Res. 2015;197:75–84.

    Article  CAS  PubMed  Google Scholar 

  70. Wang C, Zhou R, Zhang Z, Jin Y, Cardona CJ, Xing Z. Intrinsic apoptosis and proinflammatory cytokines regulated in human astrocytes infected with enterovirus 71. J Gen Virol. 2015;96(10):3010–22.

    Article  CAS  PubMed  Google Scholar 

  71. Patel RK, Mohan C. PI3K/AKT signaling and systemic autoimmunity. Immunol Res. 2005;31(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  72. Hawkins PT, Stephens LR. PI3K signalling in inflammation. Biochim Biophys Acta. 2015;1851(6):882–97.

    Article  CAS  PubMed  Google Scholar 

  73. Shi W, Li X, Hou X, Peng H, Jiang Q, Shi M, et al. Differential apoptosis gene expressions of rhabdomyosarcoma cells in response to enterovirus 71 infection. BMC Infect Dis. 2012;12:327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lu JR, Lu WW, Lai JZ, Tsai FL, Wu SH, Lin CW, et al. Calcium flux and calpain-mediated activation of the apoptosis-inducing factor contribute to enterovirus 71-induced apoptosis. J Gen Virol. 2013;94(Pt 7):1477–85.

    Article  CAS  PubMed  Google Scholar 

  75. Haolong C, Du N, Hongchao T, Yang Y, Wei Z, Hua Z, et al. Enterovirus 71 VP1 activates calmodulin-dependent protein kinase II and results in the rearrangement of vimentin in human astrocyte cells. PLoS One. 2013;8(9):e73900.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhang W, Huang Z, Huang M, Zeng J. Predicting severe enterovirus 71-infected hand, foot, and mouth disease: cytokines and chemokines. Mediat Inflamm. 2020;2020:9273241.

    Article  Google Scholar 

  77. Shao P, Wu X, Li H, Wu Z, Yang Z, Yao H. Clinical significance of inflammatory cytokine and chemokine expression in hand, foot and mouth disease. Mol Med Rep. 2017;15(5):2859–66.

    Article  CAS  PubMed  Google Scholar 

  78. Xu Y, Li S, Cai C, Liu J, Wang Y, Jiang Y, et al. Characterization of inflammatory cytokine profiles in cerebrospinal fluid of hand, foot, and mouth disease children with enterovirus 71-related encephalitis in Hangzhou, Zhejiang, China. Medicine. 2019;98(52):e18464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang SM, Lei HY, Liu CC. Cytokine immunopathogenesis of enterovirus 71 brain stem encephalitis. Clin Dev Immunol. 2012;2012:876241.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Randow F, Munz C. Autophagy in the regulation of pathogen replication and adaptive immunity. Trends Immunol. 2012;33(10):475–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huang SC, Chang CL, Wang PS, Tsai Y, Liu HS. Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J Med Virol. 2009;81(7):1241–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cui B, Lin H, Yu J, Yu J, Hu Z. Autophagy and the immune response. Adv Exp Med Biol. 2019;1206:595–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kuballa P, Nolte WM, Castoreno AB, Xavier RJ. Autophagy and the immune system. Annu Rev Immunol. 2012;30:611–46.

    Article  CAS  PubMed  Google Scholar 

  84. Deretic V. Multiple regulatory and effector roles of autophagy in immunity. Curr Opin Immunol. 2009;21(1):53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lai JKF, Sam IC, Verlhac P, Baguet J, Eskelinen EL, Faure M, et al. 2BC non-structural protein of enterovirus A71 interacts with SNARE proteins to trigger autolysosome formation. Viruses. 2017;9(7):169.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yang W, Li D, Ru Y, Bai J, Ren J, Zhang J, et al. Foot-and-mouth disease virus 3A protein causes upregulation of autophagy-related protein LRRC25 to inhibit the G3BP1-mediated RIG-like helicase-signaling pathway. J Virol. 2020;94(8):e02086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. You L, Chen J, Liu W, Xiang Q, Luo Z, Wang W, et al. Enterovirus 71 induces neural cell apoptosis and autophagy through promoting ACOX1 downregulation and ROS generation. Virulence. 2020;11(1):537–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cao L, Zhang X, Yuan S, Cheng K, Zhang X. Autophagy induced by enterovirus 71 regulates the production of IL-6 through the p38MAPK and ERK signaling pathways. Microb Pathog. 2019;131:120–7.

    Article  CAS  PubMed  Google Scholar 

  89. Wang B, Zhu Y, Liu L, Wang B, Chen M, Wang J, et al. Enterovirus 71 induces autophagy in mice via mTOR inhibition and ERK pathway activation. Life Sci. 2021;271:119188.

    Article  CAS  PubMed  Google Scholar 

  90. Lee YR, Wang PS, Wang JR, Liu HS. Enterovirus 71-induced autophagy increases viral replication and pathogenesis in a suckling mouse model. J Biomed Sci. 2014;21:80.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Timmer T, de Vries EG, de Jong S. Fas receptor-mediated apoptosis: a clinical application? J Pathol. 2002;196(2):125–34.

    Article  CAS  PubMed  Google Scholar 

  93. Wang YF, Wang XY, Ren Z, Qian CW, Li YC, Kaio K, et al. Phyllaemblicin B inhibits Coxsackie virus B3 induced apoptosis and myocarditis. Antivir Res. 2009;84(2):150–8.

    Article  CAS  PubMed  Google Scholar 

  94. Chang YL, Ho BC, Sher S, Yu SL, Yang PC. miR-146a and miR-370 coordinate enterovirus 71-induced cell apoptosis through targeting SOS1 and GADD45beta. Cell Microbiol. 2015;17(6):802–18.

    Article  CAS  PubMed  Google Scholar 

  95. Falah N, Montserret R, Lelogeais V, Schuffenecker I, Lina B, Cortay JC, et al. Blocking human enterovirus 71 replication by targeting viral 2A protease. J Antimicrob Chemother. 2012;67(12):2865–9.

    Article  CAS  PubMed  Google Scholar 

  96. Ventoso I, MacMillan SE, Hershey JW, Carrasco L. Poliovirus 2A proteinase cleaves directly the eIF-4G subunit of eIF-4F complex. FEBS Lett. 1998;435(1):79–83.

    Article  CAS  PubMed  Google Scholar 

  97. Li J, Yao Y, Chen Y, Xu X, Lin Y, Yang Z, et al. Enterovirus 71 3C promotes apoptosis through cleavage of PinX1, a telomere binding protein. J Virol. 2017;91(2):e02016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Longding Liu HZ, Zhang Y, Wang J, Che Y, Dong C, Zhang X, Na R, Shi H, Jiang L, Wang L, Xie Z, Cui P, Xiong X, Liao Y, Zhao S, Gao J, Tang D, Li Q. Neonatal rhesus monkey is a potential animal model for studying pathogenesis of EV71 infection. Virology. 2011;412(1):91–100.

    Article  PubMed  Google Scholar 

  99. Hooi YT, Ong KC, Tan SH, Perera D, Wong KT. A novel orally infected hamster model for Coxsackievirus A16 hand-foot-and-mouth disease and encephalomyelitis. Lab Investig. 2020;100(9):1262–75.

    Article  CAS  PubMed  Google Scholar 

  100. Maria Herrero HK, Fraga J, Llamas-Velasco M. Immunohistochemical study of 2 cases of coxsackie A6-induced atypical hand-foot-and-mouth disease. Am J Dermatopathol. 2019;41(10):741–3.

    Article  PubMed  Google Scholar 

  101. Chung WH, Shih SR, Chang CF, Lin TY, Huang YC, Chang SC, et al. Clinicopathologic analysis of coxsackievirus a6 new variant induced widespread mucocutaneous bullous reactions mimicking severe cutaneous adverse reactions. J Infect Dis. 2013;208(12):1968–78.

    Article  CAS  PubMed  Google Scholar 

  102. Zhao T, Zhang Z, Zhang Y, Feng M, Fan S, Wang L, et al. Dynamic interaction of enterovirus 71 and dendritic cells in infected neonatal rhesus macaques. Front Cell Infect Microbiol. 2017;7:171.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yorihiro Nishimura MS, Tano Y, Miyamura T, Wakita T, Shimizu H. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med. 2009;15(7):794–7.

    Article  PubMed  Google Scholar 

  104. Wei Xu C-L, Yan L, Li J-j, Wang L-j, Qi Y, Cheng R-b, Xiong X-y. Distribution of enteroviruses in hospitalized children with hand, foot and mouth disease and relationship between pathogens and nervous system complications. Virol J. 2012;9:8.

    Article  PubMed  Google Scholar 

  105. Li J, Chen F, Liu T, Wang L. MRI findings of neurological complications in hand-foot-mouth disease by enterovirus 71 infection. Int J Neurosci. 2012;122(7):338–44.

    Article  PubMed  Google Scholar 

  106. Chen F, Liu T, Li J, Xing Z, Huang S, Wen G. MRI characteristics and follow-up findings in patients with neurological complications of enterovirus 71-related hand, foot, and mouth disease. Int J Clin Exp Med. 2014;7(9):2696–704.

    PubMed  PubMed Central  Google Scholar 

  107. Sanjaykumar S, Tikute PBW, Varanasi G. Pathological and molecular studies on Coxsackie virus A-16 isolated from hand, foot, and mouth disease cases in India: approach using neonatal mouse model. J Med Virol. 2019;91(10):1765–75.

    Article  Google Scholar 

  108. Chen CS, Yao YC, Lin SC, Lee YP, Wang YF, Wang JR, et al. Retrograde axonal transport: a major transmission route of enterovirus 71 in mice. J Virol. 2007;81(17):8996–9003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yu P, Gao Z, Zong Y, Bao L, Xu L, Deng W, et al. Histopathological features and distribution of EV71 antigens and SCARB2 in human fatal cases and a mouse model of enterovirus 71 infection. Virus Res. 2014;189:121–32.

    Article  CAS  PubMed  Google Scholar 

  110. Xing J, Wang K, Wei H, Wei D. Pathologic and molecular studies of enterovirus 71 infection in a fatal case from a recent epidemic in China: a case report. Medicine. 2018;97(48):e13447.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Xing J, Liu D, Shen S, Su Z, Zhang L, Duan Y, et al. Pathologic studies of fatal encephalomyelitis in children caused by enterovirus 71. Am J Clin Pathol. 2016;146(1):95–106.

    Article  CAS  PubMed  Google Scholar 

  112. Cox JA, Hiscox JA, Solomon T, Ooi MH, Ng LFP. Immunopathogenesis and virus-host interactions of enterovirus 71 in patients with hand, foot and mouth disease. Front Microbiol. 2017;8:2249.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Jing Xie YJ, Qiu Z, Li Q, Li T. Significant elevation of B cells at the acute stage in enterovirus 71-infected children with central nervous system involvement. Scand J Infect Dis. 2010;42(11-12):931–5.

    Article  PubMed  Google Scholar 

  114. Jia CS, Liu JN, Li WB, Ma CM, Lin SZ, Hao Y, et al. The cross-reactivity of the enterovirus 71 to human brain tissue and identification of the cross-reactivity related fragments. Virol J. 2010;7:47.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Peihu Fan XL, Sun S, Su W, An D, Gao F, Kong W, Jiang C. Identification of a common epitope between enterovirus 71 and human MED25 proteins which may explain virus-associated neurological disease. Viruses. 2015;7(4):1558–77.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Taylor A, Foo SS, Bruzzone R, Dinh LV, King NJ, Mahalingam S. Fc receptors in antibody-dependent enhancement of viral infections. Immunol Rev. 2015;268(1):340–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuan G, Gordon A, et al. Antibody-dependent enhancement of severe dengue disease in humans. Science. 2017;358(6365):929–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Han JF, Cao RY, Deng YQ, Tian X, Jiang T, Qin ED, et al. Antibody dependent enhancement infection of enterovirus 71 in vitro and in vivo. Virol J. 2011;8:106.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Cao RY, Dong DY, Liu RJ, Han JF, Wang GC, Zhao H, et al. Human IgG subclasses against enterovirus Type 71: neutralization versus antibody dependent enhancement of infection. PLoS One. 2013;8(5):e64024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lehmann SM, Kruger C, Park B, Derkow K, Rosenberger K, Baumgart J, et al. An unconventional role for miRNA: let-7 activates toll-like receptor 7 and causes neurodegeneration. Nat Neurosci. 2012;15(6):827–35.

    Article  CAS  PubMed  Google Scholar 

  121. Gu L, Zhou J, Tan J, Su L, Wei Q, Jiang H, et al. TLR7 rs2897827 polymorphism affects TLR7 gene mRNA expression and serum apolipoprotein A1 level of ischemic stroke patients in a Chinese Han population. J Mol Neurosci. 2016;59(3):397–403.

    Article  CAS  PubMed  Google Scholar 

  122. Hu G, Liao K, Niu F, Yang L, Dallon BW, Callen S, et al. Astrocyte EV-induced lincRNA-Cox2 regulates microglial phagocytosis: implications for morphine-mediated neurodegeneration. Mol Ther Nucleic Acids. 2018;13:450–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Luo Z, Su R, Wang W, Liang Y, Zeng X, Shereen MA, et al. EV71 infection induces neurodegeneration via activating TLR7 signaling and IL-6 production. PLoS Pathog. 2019;15(11):e1008142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen KT, Chang HL, Wang ST, Cheng YT, Yang JY. Epidemiologic features of hand-foot-mouth disease and herpangina caused by enterovirus 71 in Taiwan, 1998-2005. Pediatrics. 2007;120(2):e244–52.

    Article  PubMed  Google Scholar 

  125. Chang LY, Lin TY, Hsu KH, Huang YC, Lin KL, Hsueh C, et al. Clinical features and risk factors of pulmonary oedema after enterovirus-71-related hand, foot, and mouth disease. Lancet. 1999;354(9191):1682–6.

    Article  CAS  PubMed  Google Scholar 

  126. Ulrike Fiedler YR, Scharpfenecker M, Grunow V, Koidl S, Thurston G, Gale NW, Witzenrath M, Rosseau S, Suttorp N, Sobke A, Herrmann M, Preissner KT, Vajkoczy P, Augustin HG. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med. 2006;12(2):235–9.

    Article  PubMed  Google Scholar 

  127. Samir M, Parikh TM, Schultz A, Yuan H-T, David Christiani S, Karumanchi A, Sukhatme VP. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med. 2006;3(3):e46.

    Article  Google Scholar 

  128. Zhijiang Qi ZL, Hao D, Wang T, Xia Y, Sun T, Wang J, Zhuang F, Wang X. Association between angiopoietin-2 and enterovirus 71 induced pulmonary edema. Indian J Pediatr. 2016;83(5):391–6.

    Article  PubMed  Google Scholar 

  129. Jin Y, Zhang C, Wang H, Zhou G, Wang X, Zhang R, et al. Mast cells contribute to enterovirus 71 infection-induced pulmonary edema in neonatal mice. Lab Investig. 2018;98(8):1039–51.

    Article  CAS  PubMed  Google Scholar 

  130. Naidoo V, Mahabeer R, Raidoo DM. Cellular distribution of endothelin-1 mRNA in human brain by in situ RT-PCR. Metab Brain Dis. 2001;16(3-4):207–18.

    Article  CAS  PubMed  Google Scholar 

  131. Poulat P. Increased pulmonary vascular permeability and oedema induced by intrathecally injected endothelins in rats. Eur J Pharmacol. 1998;344(2-3):251–9.

    Article  CAS  PubMed  Google Scholar 

  132. Kuwaki T, Kurihara H, Cao WH, Kurihara Y, Unekawa M, Yazaki Y, et al. Physiological role of brain endothelin in the central autonomic control: from neuron to knockout mouse. Prog Neurobiol. 1997;51(5):545–79.

    Article  CAS  PubMed  Google Scholar 

  133. Chai CY, Wang SC. Localization of central cardiovascular control mechanism in lower brain stem of the cat. Am J Phys. 1962;202:25–30.

    CAS  Google Scholar 

  134. Kao SJ, Yang FL, Hsu YH, Chen HI. Mechanism of fulminant pulmonary edema caused by enterovirus 71. Clin Infect Dis. 2004;38(12):1784–8.

    Article  PubMed  Google Scholar 

  135. Cui YJ, Song CL, Chen F, Li P, Cheng YB. Myocardial protective effect of L-carnitine in children with hand, foot and mouth disease caused by Coxsackie A16 virus. Zhongguo Dang Dai Er Ke Za Zhi. 2017;19(8):908–12.

    PubMed  Google Scholar 

  136. Tada Y, Suzuki J. Oxidative stress and myocarditis. Curr Pharm Des. 2016;22(4):450–71.

    Article  CAS  PubMed  Google Scholar 

  137. Huang TF, Wu XH, Wang X, Lu IJ. Fas-FasL expression and myocardial cell apoptosis in patients with viral myocarditis. Genet Mol Res. 2016;15(2):7607.

    Article  Google Scholar 

  138. Campos JC, Gomes KM, Ferreira JC. Impact of exercise training on redox signaling in cardiovascular diseases. Food Chem Toxicol. 2013;62:107–19.

    Article  CAS  PubMed  Google Scholar 

  139. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem. 2017;524:13–30.

    Article  CAS  PubMed  Google Scholar 

  140. Yao Xu YFW, Luo HH, Zhang DD, Yue W, Peng H. Acute kidney injury secondary to severe hand, foot and mouth disease caused by enterovirus-A71: hypertension is a common. J Trop Pediatr. 2019;65(5):510–3.

    Article  PubMed  Google Scholar 

  141. Cooper DJ, LaBrooy JT, Blumbergs P, Gilbert J, Simmons A. Fatal rhabdomyolysis and renal failure associated with hand, foot and mouth disease. Med J Aust. 1989;151(4):232–4.

    Article  CAS  PubMed  Google Scholar 

  142. Zhou HT, Wang B, Che XY. Nephrotic syndrome in hand, foot and mouth disease caused by coxsackievirus A16: a case report. Int J Infect Dis. 2014;28:1–2.

    Article  PubMed  Google Scholar 

  143. Conaldi PG, Biancone L, Bottelli A, De Martino A, Camussi G, Toniolo A. Distinct pathogenic effects of group B coxsackieviruses on human glomerular and tubular kidney cells. J Virol. 1997;71(12):9180–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pasch A, Frey FJ. Coxsackie B viruses and the kidney–a neglected topic. Nephrol Dial Transplant. 2006;21(5):1184–7.

    Article  PubMed  Google Scholar 

  145. Han FX, Gao JH, Gai JH. Clinical significance of combined liver function and high-sensitivity C-reactive protein measurement in children with hand-foot-mouth disease. Genet Mol Res. 2016;15:3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, X. (2024). Mechanisms Underlying HFMD Clinical Pathology in Children. In: Xu, X., Che, Y., Li, Q. (eds) Molecular Biology of Hand-Foot-Mouth Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-9660-5_3

Download citation

Publish with us

Policies and ethics