Skip to main content

Drain Current and Transconductance Analysis of Double-Gate Vertical Doped Layer TFET

  • Conference paper
  • First Online:
Micro-Electronics and Telecommunication Engineering (ICMETE 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 894))

  • 75 Accesses

Abstract

Due to its sharp subthreshold swing and low leakage current, VDL-TFET has become a potential option for low-power electronic devices. In this study, we examine the influence of various device settings on the electrical properties of VDL-TFETs to assess their performance in low-power applications. We analysis how the doping level, layer thickness, gate length, and temperatures affect the functionality of VDL-TFETs. Simulations conducted by us demonstrate that by carefully tuning those parameters, the device’s ON-current, subthreshold swing, and delay properties may be greatly enhanced, rendering it appropriate for low-power digital and analogue electronics. We additionally contrast the efficiency of VDL-TFETs against that of various other low-power transistors, including FinFETs, and show that the subthreshold swing and delay features of VDL-TFETs are comparable to those of FinFETs. According to our research, VDL-TFETs are an intriguing technology for low-power semiconductor purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta SK (2019) Analytical modeling of a triple material double gate TFET with hetero-dielectric gate stack. SILICON 11(3):1355–1369

    Article  Google Scholar 

  2. Ko E, Lee H, Park JD, Shin C (2016) Vertical tunnel FET: design optimization with triple metal-gate layers. IEEE Trans Electron Devices 63(12):5030–5035

    Article  Google Scholar 

  3. Goswami RN, Poorvasha S, Lakshmi B (2018) Tunable work function in junctionless tunnel FETs for performance enhancement. Aust J Electr Electron Eng 15(3):80–85. https://doi.org/10.1080/1448837X.2018.1525173

  4. Gautam R, Saxena M, Gupta RS, Gupta M (2013) Gate-all-around nanowire MOSFET with catalytic metal gate for gas sensing applications. IEEE Trans Nanotechnol 12(6):939–944. https://doi.org/10.1109/TNANO.2013.2276394

    Article  Google Scholar 

  5. Lee B, Oh J, Tseng H, Jammy R, Huf H (2006) Gate stack technology for nanoscale devices. Mater Today 9:32–40. https://doi.org/10.1016/S1369-7021(06)71541-3

  6. Verhulst AS, Vandenberghe WG, Maex K, De Gendt S, Heyns MM, Groeseneken G (2008) Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates. IEEE Electron Devices Lett 29(12):1398–1401

    Google Scholar 

  7. Avci UE, Morris DH, Young IA (2015) Tunnel field-effect transistors: Prospects and challenges. IEEE J Electron Devices Soc 3(3):88–95

    Article  Google Scholar 

  8. Raad B, Nigam K, Sharma D, Kondekar P (2016) Dielectric and work function engineered TFET for ambipolar suppression and RF performance enhancement. Electron Lett 52(9):770–772

    Article  Google Scholar 

  9. Singh S, Raj B (2018) Vertical tunnel-fet analysis for excessive low power digital applications. In: 2018 First International conference on secure cyber computing and communication (ICSCCC). IEEE, pp 192–197

    Google Scholar 

  10. Begam SS, Selvachandran G, Ngan TT, Sharma R (2020) Similarity measure of lattice ordered multi-fuzzy soft sets based on set theoretic approach and its application in decision making. Mathematics 8:1255

    Google Scholar 

  11. Vo T, Sharma R, Kumar R, Son LH, Pham BT, Tien BD, Priyadarshini I, Sarkar M, Le T (2020) Crime rate detection using social media of different crime locations and Twitter part-of-speech tagger with brown clustering. J Intell Fuzzy Syst 4287–4299

    Google Scholar 

  12. Nguyen PT, Ha DH, Avand M, Jaafari A, Nguyen HD, Al-Ansari N, Van Phong T, Sharma R, Kumar R, Le HV, Ho LS, Prakash I, Pham BT (2020) Soft computing ensemble models based on logistic regression for groundwater potential mapping. Appl Sci 10:2469

    Article  Google Scholar 

  13. Jha S et al (2019) Deep learning approach for software maintainability metrics prediction. IEEE Access 7:61840–61855

    Article  Google Scholar 

  14. Sharma R, Kumar R, Sharma DK, Son LH, Priyadarshini I, Pham BT, Bui DT, Rai S (2019) Inferring air pollution from air quality index by different geographical areas: case study in India. Air Qual Atmos Health 12:1347–1357

    Google Scholar 

  15. Sharma R, Kumar R, Singh PK, Raboaca MS, Felseghi R-A (2020) A systematic study on the analysis of the emission of CO, CO2 and HC for four-wheelers and its impact on the sustainable ecosystem. Sustainability 12:6707

    Article  Google Scholar 

  16. Dansana D, Kumar R, Das Adhikari J, Mohapatra M, Sharma R, Priyadarshini I, Le D-N (2020) Global forecasting confirmed and fatal cases of COVID-19 outbreak using autoregressive integrated moving average model. Front Public Health 8:580327. https://doi.org/10.3389/fpubh.2020.580327

    Article  Google Scholar 

  17. Malik PK, Sharma R, Singh R, Gehlot A, Satapathy SC, Alnumay WS, Pelusi D, Ghosh U, Nayak J (2021) Industrial internet of things and its applications in industry 4.0: state of the art. Comput Commun 166:125–139. ISSN 0140-3664. https://doi.org/10.1016/j.comcom.2020.11.016

  18. Sharma R, Kumar R, Satapathy SC, Al-Ansari N, Singh KK, Mahapatra RP, Agarwal AK, Le HV, Pham BT (2020) Analysis of water pollution using different physicochemical parameters: a study of Yamuna River. Front Environ Sci 8:581591. https://doi.org/10.3389/fenvs.2020.581591

    Article  Google Scholar 

  19. Dansana D, Kumar R, Parida A, Sharma R, Adhikari JD et al (2021) Using susceptible-exposed-infectious-recovered model to forecast coronavirus outbreak. Comput Mater Continua 67(2):1595–1612

    Article  Google Scholar 

  20. Vo MT, Vo AH, Nguyen T, Sharma R, Le T (2021) Dealing with the class imbalance problem in the detection of fake job descriptions. Comput Mater Continua 68(1):521–535

    Article  Google Scholar 

  21. Sachan S, Sharma R, Sehgal A (2021) Energy efficient scheme for better connectivity in sustainable mobile wireless sensor networks. Sustain Comput: Inf Syst 30:100504

    Google Scholar 

  22. Ghanem S, Kanungo P, Panda G et al (2021) Lane detection under artificial colored light in tunnels and on highways: an IoT-based framework for smart city infrastructure. Complex Intell Syst. https://doi.org/10.1007/s40747-021-00381-2

    Article  Google Scholar 

  23. Sachan S, Sharma R, Sehgal A (2021) SINR based energy optimization schemes for 5G vehicular sensor networks. Wireless Pers Commun. https://doi.org/10.1007/s11277-021-08561-6

    Article  Google Scholar 

  24. Memisevic E, Svensson J, Lind E, Wernersson LE (2017) InAs/InGaAsSb/GaSb nanowire tunnel field-effect transistors. IEEE Trans Electron Devices 64:4746–4751

    Article  Google Scholar 

  25. Moselund KE, Schmid H, Bessire C, Bjork MT, Ghoneim H, Riel H (2012) InAs–Si nanowire heterojunction tunnel FETs. IEEE Electron Device Lett 33:1453–1455

    Article  Google Scholar 

  26. Nigam K, Kondekar P, Sharma D (2016) High frequency performance of dual metal gate vertical tunnel field effect transistor based on work function engineering. Micro Nano Lett 11(6):319–322

    Article  Google Scholar 

  27. Sterkel M, Wang PF, Nirschl T, Fabel B, Bhuwalka KK, Schulze J, Eisele I, Schmitt-Landsiedel D, Hansch W (2005) Characteristics and optimisation of vertical and planar tunnelling-FETs. J Phys: Conf Ser 10(1):15

    Google Scholar 

  28. Saurabh S, Kumar MJ (2009) Impact of strain on drain current and threshold voltage of nanoscale double gate tunnel field effect transistor (TFET): theoretical investigation and analysis. Jpn J Appl Phys 48:064503

    Google Scholar 

  29. Verhulst AS, Vandenberghe WG, Maex K, De Gendt S, Heyns MM, Groeseneken G (2008) Complementary silicon-based hetero-structure tunnel-FETs with high tunnel rates. IEEE Electron Device Lett 29(12):1398–1401

    Google Scholar 

  30. Wang PF, Hilsenbeck K, Nirschl T, Oswald M, Stepper C, Weis M, Schmitt-Landsiedel D, Hansch W (2004) Complementary tunneling transistor for low power application. Solid State Electron 48(12):2281–2286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandeep Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, M., Teja, N.S., Chaudhary, T., Raj, B., Kakkar, D. (2024). Drain Current and Transconductance Analysis of Double-Gate Vertical Doped Layer TFET. In: Sharma, D.K., Peng, SL., Sharma, R., Jeon, G. (eds) Micro-Electronics and Telecommunication Engineering. ICMETE 2023. Lecture Notes in Networks and Systems, vol 894. Springer, Singapore. https://doi.org/10.1007/978-981-99-9562-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9562-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9561-5

  • Online ISBN: 978-981-99-9562-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics