Skip to main content

Exotoxins of Staphylococcus aureus

  • Chapter
  • First Online:
Staphylococcus aureus
  • 44 Accesses

Abstract

Staphylococcus aureus produces a variety of exotoxins, which are important virulence factors for S. aureus-related diseases. Representatively, staphylococcal enterotoxins induce staphylococcal food-born poisoning; toxic shock syndrome toxin-1, which is a typical superantigen, induces toxic shock syndrome; hemolysins induce cell damages of erythrocyte and leukocyte; and exfoliative toxin induces staphylococcal skin scalded syndrome. Recently, a cytotoxin, Panton-Valentine leukocidin which is produced by community-associated MRSA is noticeable. This chapter addresses novel information in activities and stability of the exotoxins produced by S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

Serotonin

ADAM10:

A disintegrin and metalloproteinase 10

agr:

Accessory gene regulator

APC:

Antigen-presenting cell

BCR:

B-cell receptor

CDR:

Complementarity-determining region

DARC:

DUFFY antigen receptor for chemokines

Dsg1:

Desmoglein 1

egc:

Enterotoxin gene cluster

ET:

Exfoliative toxin

FPR2:

Formyl peptide receptor 2

IFN-γ:

Gamma interferon

Ig:

Immunoglobulin

IL-1:

Interleukin 1

INCSS:

International Nomenclature Committee for Staphylococcal Superantigens

Luk:

Leukocidin

MDT:

Membrane-damaged toxin

MHC:

Major histocompatibility complex

PAMP:

Pathogen recognition molecular pattern

PC:

Phosphatidylcholine

PE:

Phosphatidyletanolamine

PFT:

Pore-forming toxin

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

Pmt:

Phenol-soluble modulin transporter

PS:

Phosphatidylserine

PSM:

Phenol-soluble modulin

PVL:

Panton-Valentine leucocidin

RBC:

Red blood cell

SAg:

Superantigen

SaPI:

Staphylococcus aureus pathogenicity island

SE:

Staphylococcal enterotoxin

SEA:

Staphylococcal enterotoxin A

SEl:

Staphylococcal enterotoxin-like toxin

SElU:

Staphylococcal enterotoxin-like toxin U

SMase:

Sphingomyelinase

SpA:

Staphylococcal protein A

TCR:

T-cell receptor

TNF-α:

Tumor necrosis factor α

TSS:

Toxic shock syndrome

TSST-1:

Toxic shock syndrome toxin-1

References

  1. Hu DL, Nakane A (2014) Mechanisms of staphylococcal enterotoxin-induced emesis. Eur J Pharmacol 722:95–107. https://doi.org/10.1016/j.ejphar.2013.08.050

    Article  CAS  PubMed  Google Scholar 

  2. Hu DL, Li S, Fang R, Ono HK (2021) Update on molecular diversity and multipathogenicity of staphylococcal superantigen toxins. Anim Dis 1(2):1–15. https://doi.org/10.1186/s44149-021-00007-7

    Article  Google Scholar 

  3. Tam K, Torres VJ (2019) Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol Spectr 7(2). https://doi.org/10.1128/microbiolspec.GPP3-0039-2018

  4. Oliveira D, Borges A, Simoes M (2018) Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins (Basel) 10(6):252. https://doi.org/10.3390/toxins10060252

    Article  CAS  PubMed  Google Scholar 

  5. Sato'o Y, Omoe K, Aikawa Y, Kano M, Ono HK, Hu DL et al (2021) Investigation of Staphylococcus aureus positive for staphylococcal enterotoxin S and T genes. J Vet Med Sci 83(7):1120–1127. https://doi.org/10.1292/jvms.20-0662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ono HK, Suzuki Y, Kubota H, Asano K, Takai S, Nakane A et al (2021) Complete genome sequence of Staphylococcus aureus strain 834, isolated from a septic patient in Japan. Microbiol Resour Announc 10(9). https://doi.org/10.1128/MRA.01477-20

  7. Balaban N, Rasooly A (2000) Staphylococcal enterotoxins. Int J Food Microbiol 61(1):1–10. https://doi.org/10.1016/s0168-1605(00)00377-9

    Article  CAS  PubMed  Google Scholar 

  8. Swaminathan S, Furey W, Pletcher J, Sax M (1995) Preliminary X-ray studies on two new crystal forms of staphylococcal enterotoxin C2. Acta Crystallogr D Biol Crystallogr 51(Pt 6):1080–1081. https://doi.org/10.1107/S0907444995003180

    Article  CAS  PubMed  Google Scholar 

  9. Todd J, Fishaut M, Kapral F, Welch T (1978) Toxic-shock syndrome associated with phage-group-I staphylococci. Lancet 2(8100):1116–1118. https://doi.org/10.1016/s0140-6736(78)92274-2

    Article  CAS  PubMed  Google Scholar 

  10. Omoe K, Hu DL, Takahashi-Omoe H, Nakane A, Shinagawa K (2003) Identification and characterization of a new staphylococcal enterotoxin-related putative toxin encoded by two kinds of plasmids. Infect Immun 71(10):6088–6094. https://doi.org/10.1128/IAI.71.10.6088-6094.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ono HK, Omoe K, Imanishi K, Iwakabe Y, Hu DL, Kato H et al (2008) Identification and characterization of two novel staphylococcal enterotoxins, types S and T. Infect Immun 76(11):4999–5005. https://doi.org/10.1128/IAI.00045-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ono HK, Sato'o Y, Narita K, Naito K, Hirose S, Hisatsune J et al (2015) Identification and characterization of a novel staphylococcal emetic toxin. Appl Environ Microbiol 81(20):7034–7040. https://doi.org/10.1128/AEM.01873-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzuki Y, Ono HK, Shimojima Y, Kubota H, Kato R, Kakuda T et al (2020) A novel staphylococcal enterotoxin SE02 involved in a staphylococcal food poisoning outbreak that occurred in Tokyo in 2004. Food Microbiol 92:103588. https://doi.org/10.1016/j.fm.2020.103588

    Article  CAS  PubMed  Google Scholar 

  14. Omoe K, Hu DL, Ono HK, Shimizu S, Takahashi-Omoe H, Nakane A et al (2013) Emetic potentials of newly identified staphylococcal enterotoxin-like toxins. Infect Immun 81(10):3627–3631. https://doi.org/10.1128/IAI.00550-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thomas DY, Jarraud S, Lemercier B, Cozon G, Echasserieau K, Etinne J et al (2006) Staphylococcal enterotoxin-like toxins U2 and V, two new staphylococcal superantigens arising from recombination within the enterotoxin gene cluster. Infect Immun 74(8):4724–4734. https://doi.org/10.1128/IAI.00132-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilson GJ, Seo KS, Cartwright RA, Connelley T, Chuang-Smith ON, Merriman JA et al (2011) A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLoS Pathog 7(10):e1002271. https://doi.org/10.1371/journal.ppat.1002271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sato'o Y, Omoe K, Naito I, Ono HK, Nakane A, Sugai M et al (2014) Molecular epidemiology and identification of a Staphylococcus aureus clone causing food poisoning outbreaks in Japan. J Clin Microbiol 52(7):2637–2640. https://doi.org/10.1128/JCM.00661-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lina G, Bohach GA, Nair SP, HIramatsu K, Jouvin-Marche E, Mariuzza R. (2004) Standard nomenclature for the superantigens expressed by Staphylococcus. J Infect Dis 189(12):2334–2336. https://doi.org/10.1086/420852

    Article  PubMed  Google Scholar 

  19. Ono HK, Hirose S, Narita K, Sugiyama M, Asano K, Hu DL et al (2019) Histamine release from intestinal mast cells induced by staphylococcal enterotoxin a (SEA) evokes vomiting reflex in common marmoset. PLoS Pathog 15(5):e1007803. https://doi.org/10.1371/journal.ppat.1007803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Umeda K, Ono HK, Wada T, Motooka D, Nakamura S, Nakamura H et al (2021) High production of egc2-related staphylococcal enterotoxins caused a food poisoning outbreak. Int J Food Microbiol 357:109366. https://doi.org/10.1016/j.ijfoodmicro.2021.109366

    Article  CAS  PubMed  Google Scholar 

  21. Alibayov B, Zdenkova K, Sykorova H, Demnerova K (2014) Molecular analysis of Staphylococcus aureus pathogenicity islands (SaPI) and their superantigens combination of food samples. J Microbiol Methods 107:197–204. https://doi.org/10.1016/j.mimet.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  22. Sato'o Y, Omoe K, Ono HK, Nakane A, Hu DL (2013) A novel comprehensive analysis method for Staphylococcus aureus pathogenicity islands. Microbiol Immunol 57(2):91–99. https://doi.org/10.1111/1348-0421.12007

    Article  CAS  PubMed  Google Scholar 

  23. Tallent SM, Langston TB, Moran RG, Christie GE (2007) Transducing particles of Staphylococcus aureus pathogenicity Island SaPI1 are comprised of helper phage-encoded proteins. J Bacteriol 1899(20):7520–7524. https://doi.org/10.1128/JB.00738-07

    Article  CAS  Google Scholar 

  24. Novick RP, Subedi A (2007) The SaPIs: mobile pathogenicity islands of Staphylococcus. Chem Immunol Allergy 93:42–57. https://doi.org/10.1159/000100857

    Article  CAS  PubMed  Google Scholar 

  25. Letertre C, Perelle S, Dilasser F, Fach P (2003) Identification of a new putative enterotoxin SEU encoded by the egc cluster of Staphylococcus aureus. J Appl Microbiol 95(1):38–43. https://doi.org/10.1046/j.1365-2672.2003.01957.x

    Article  CAS  PubMed  Google Scholar 

  26. Monday SR, Bohach GA (2001) Genes encoding staphylococcal enterotoxins G and I are linked and separated by DNA related to other staphylococcal enterotoxins. J Nat Toxins 10(1):1–8

    CAS  PubMed  Google Scholar 

  27. Collery MM, Smyth DS, Tumilty JJG, Twohig JM, Smyth CJ (2009) Associations between enterotoxin gene cluster types egc1, egc2 and egc3, agr types, enterotoxin and enterotoxin-like gene profiles, and molecular typing characteristics of human nasal carriage and animal isolates of Staphylococcus aureus. J Med Microbiol 58(Pt 1):13–25. https://doi.org/10.1099/jmm.0.005215-0

    Article  CAS  PubMed  Google Scholar 

  28. Omoe K, Hu DL, Takahashi-Omoe H, Nakane A, Shinagawa K (2005) Comprehensive analysis of classical and newly described staphylococcal superantigenic toxin genes in Staphylococcus aureus isolates. FEMS Microbiol Lett 246(2):191–198. https://doi.org/10.1016/j.femsle.2005.04.007

    Article  CAS  PubMed  Google Scholar 

  29. Betley MJ, Mekalanos JJ (1985) Staphylococcal enterotoxin a is encoded by phage. Science 229(4709):185–187. https://doi.org/10.1126/science.3160112

    Article  CAS  PubMed  Google Scholar 

  30. Soltis MT, Mekalanos JJ, Betley MJ (1990) Identification of a bacteriophage containing a silent staphylococcal variant enterotoxin gene (sezA+). Infect Immun 58(6):1614–1619. https://doi.org/10.1128/iai.58.6.1614-1619.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Coleman DC, Sullivan DJ, Russell RJ, Arbuthnott JP, Carey BF, Pomeroy HM (1989) Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin a: molecular mechanism of triple conversion. J Gen Microbiol 135(6):1679–1697. https://doi.org/10.1099/00221287-135-6-1679

    Article  CAS  PubMed  Google Scholar 

  32. Zeaki N, Susilo YB, Pregiel A, Radstrom P, Schelin J (2015) Prophage-encoded staphylococcal enterotoxin a: regulation of production in Staphylococcus aureus strains representing different sea regions. Toxins (Basel) 7(12):5359–5376. https://doi.org/10.3390/toxins7124889

    Article  CAS  PubMed  Google Scholar 

  33. Couch JL, Soltis MT, Betley MJ (1988) Cloning and nucleotide sequence of the type E staphylococcal enterotoxin gene. J Bacteriol 170(7):2954–2960. https://doi.org/10.1128/jb.170.7.2954-2960.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Spaulding AR, Salgado-Pabon W, Kohler PL, Horswill AR, Leung DY, Schlievert PM (2013) Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev 26(3):422–447. https://doi.org/10.1128/CMR.00104-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Günther S, Varma AK, Moza B, Kasper KJ, Wyatt AW, Zhu P et al (2007) A novel loop domain in superantigens extends their T cell receptor recognition site. J Mol Biol 371(1):210–221. https://doi.org/10.1016/j.jmb.2007.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Petersson K, Thunnissen M, Forsberg G, Walse B (2002) Crystal structure of a SEA variant in complex with MHC class II reveals the ability of SEA to crosslink MHC molecules. Structure 10(12):1619–1626. https://doi.org/10.1016/s0969-2126(02)00895-x

    Article  CAS  PubMed  Google Scholar 

  37. Mollick JA, Chintagumpala M, Cook RG, Rich RR (1991) Staphylococcal exotoxin activation of T cells. Role of exotoxin-MHC class II binding affinity and class II isotype. J Immunol 146(2):463–468

    Article  CAS  PubMed  Google Scholar 

  38. Herman A, Croteau G, Sekaly RP, Kappler J, Marrack P (1990) HLA-DR alleles differ in their ability to present staphylococcal enterotoxins to T cells. J Exp Med 172(3):709–717. https://doi.org/10.1084/jem.172.3.709

    Article  CAS  PubMed  Google Scholar 

  39. Ferry T, Thomas D, Perpoint T, Lina G, Monneret G, Mohammedi I et al (2008) Analysis of superantigenic toxin Vβ T-cell signatures produced during cases of staphylococcal toxic shock syndrome and septic shock. Clin Microbiol Infect 14(6):546–554. https://doi.org/10.1111/j.1469-0691.2008.01975.x

    Article  CAS  PubMed  Google Scholar 

  40. Marrack P, Kappler J (1990) The staphylococcal enterotoxins and their relatives. Science 248(4956):705–711. https://doi.org/10.1126/science.2185544

    Article  CAS  PubMed  Google Scholar 

  41. Faulkner L, Cooper A, Fantino C, Altmann DM, Sriskandan S (2005) The mechanism of superantigen-mediated toxic shock: not a simple Th1 cytokine storm. J Immunol 175(10):6870–6877. https://doi.org/10.4049/jimmunol.175.10.6870

    Article  CAS  PubMed  Google Scholar 

  42. Leder L, Llera A, Lavoie PM, Lebedeva MI, Li H, Sékaly RP et al (1998) A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor β chain and major histocompatibility complex class II. J Exp Med 187(6):823–833. https://doi.org/10.1084/jem.187.6.823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li H, Llera A, Tsuchiya D, Leder L, Ysern X, Schlievert PM et al (1998) Three-dimensional structure of the complex between a T cell receptor β chain and the superantigen staphylococcal enterotoxin B. Immunity 9(6):807–816. https://doi.org/10.1016/s1074-7613(00)80646-9

    Article  CAS  PubMed  Google Scholar 

  44. Ono HK, Hirose S, Naito I, Sato'o Y, Asano K, Hu DL et al (2017) The emetic activity of staphylococcal enterotoxins, SEK, SEL, SEM, SEN and SEO in a small emetic animal model, the house musk shrew. Microbiol Immunol 61(1):12–16. https://doi.org/10.1111/1348-0421.12460

    Article  CAS  PubMed  Google Scholar 

  45. Swaminathan S, Furey W, Pletcher J, Sax M (1992) Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 359(6398):801–806. https://doi.org/10.1038/359801a0

    Article  CAS  PubMed  Google Scholar 

  46. Swaminathan S, Furey W, Pletcher J, Sax M (1995) Residues defining Vβ specificity in staphylococcal enterotoxins. Nat Struct Biol 2(8):680–686. https://doi.org/10.1038/nsb0895-680

    Article  CAS  PubMed  Google Scholar 

  47. Swaminathan S, Yang DS, Furey W, Abrams L, Pletcher J, Sax M (1988) Crystallization and preliminary X-ray study of staphylococcal enterotoxin B. J Mol Biol 199(2):397. https://doi.org/10.1016/0022-2836(88)90326-9

    Article  CAS  PubMed  Google Scholar 

  48. Li SJ, Hu DL, Maina EK, Shinagawa K, Omoe K, Nakane A (2011) Superantigenic activity of toxic shock syndrome toxin-1 is resistant to heating and digestive enzymes. J Appl Microbiol 110(3):729–736. https://doi.org/10.1111/j.1365-2672.2010.04927.x

    Article  CAS  PubMed  Google Scholar 

  49. Hu DL, Ono HK, Isayama S, Okada R, Okamura M, Lei LC et al (2017) Biological characteristics of staphylococcal enterotoxin Q and its potential risk for food poisoning. J Appl Microbiol 122(6):1672–1679. https://doi.org/10.1111/jam.13462

    Article  CAS  PubMed  Google Scholar 

  50. Jupin C, Anderson S, Damais C, Alouf JE, Parant M (1988) Toxic shock syndrome toxin 1 as an inducer of human tumor necrosis factors and gamma interferon. J Exp Med 167(3):752–761. https://doi.org/10.1084/jem.167.3.752

    Article  CAS  PubMed  Google Scholar 

  51. Trede NS, Geha RS, Chatila T (1991) Transcriptional activation of IL-1 beta and tumor necrosis factor-alpha genes by MHC class II ligands. J Immunol 146(7):2310–2315

    Article  CAS  PubMed  Google Scholar 

  52. Tessier PA, Naccache PH, Diener KR, Gladue RP, Neote KS, Clark-Lewis I et al (1998) Induction of acute inflammation in vivo by staphylococcal superantigens. II. Critical role for chemokines, ICAM-1, and TNF-α. J Immunol 161(3):1204–1211. https://doi.org/10.4049/jimmunol.161.3.1204

    Article  CAS  PubMed  Google Scholar 

  53. Irwin MJ, Hudson KR, Fraser JD, Gascoigne NR (1992) Enterotoxin residues determining T-cell receptor Vβ binding specificity. Nature 359(6398):841–843. https://doi.org/10.1038/359841a0

    Article  CAS  PubMed  Google Scholar 

  54. Irwin MJ, Hudson KR, Ames KT, Fraser JD, Gascoigne NR (1993) T-cell receptor β-chain binding to enterotoxin superantigens. Immunol Rev 131:61–78. https://doi.org/10.1111/j.1600-065x.1993.tb01530.x

    Article  CAS  PubMed  Google Scholar 

  55. Hu DL, Cui JC, Omoe K, Sashinami H, Yokomizo Y, Shinagawa K et al (2005) A mutant of staphylococcal enterotoxin C devoid of bacterial superantigenic activity elicits a Th2 immune response for protection against Staphylococcus aureus infection. Infect Immun 73(1):174–180. https://doi.org/10.1128/IAI.73.1.174-180.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu DL, Zhu G, Mori F, Omoe K, Okada M, Wakabayashi K et al (2007) Staphylococcal enterotoxin induces emesis through increasing serotonin release in intestine and it is downregulated by cannabinoid receptor 1. Cell Microbiol 9(9):2267–2277. https://doi.org/10.1111/j.1462-5822.2007.00957.x

    Article  CAS  PubMed  Google Scholar 

  57. Hu DL, Omoe K, Sashinami H, Shinagawa K, Nakane A (2009) Immunization with a nontoxic mutant of staphylococcal enterotoxin a, SEAD227A, protects against enterotoxin-induced emesis in house musk shrews. J Infect Dis 199(3):302–310. https://doi.org/10.1086/596065

    Article  CAS  PubMed  Google Scholar 

  58. Schad EM, Zaitseva I, Zaitsev VN, Dohlsten M, Kalland T, Schlievert PM et al (1995) Crystal structure of the superantigen staphylococcal enterotoxin type A. EMBO J 14(4):3292–3301. https://doi.org/10.1002/j.1460-2075.1995.tb07336.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu DL, Omoe K, Nakane A, Sugii S, Ono K, Sasaki S et al (1999) Studies on the functional site on staphylococcal enterotoxin a responsible for production of murine gamma interferon. FEMS Immunol Med Microbiol 25(3):237–244. https://doi.org/10.1111/j.1574-695X.1999.tb01348.x

    Article  CAS  PubMed  Google Scholar 

  60. Krakauer T (2019) Staphylococcal superantigens: pyrogenic toxins induce toxic shock. Toxins (Basel) 11(3):178. https://doi.org/10.3390/toxins11030178

    Article  CAS  PubMed  Google Scholar 

  61. Omoe K, Nunomura W, Kato H, Li ZJ, Igarashi O, Araake M et al (2010) High affinity of interaction between superantigen and T cell receptor Vβ molecules induces a high level and prolonged expansion of superantigen-reactive CD4+ T cells. J Biol Chem 285(40):30427–30435. https://doi.org/10.1074/jbc.M110.140871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Suzuki Y, Omoe K, Hu DL, Sato'o Y, Ono HK, Monm C et al (2014) Molecular epidemiological characterization of Staphylococcus aureus isolates originating from food poisoning outbreaks that occurred in Tokyo, Japan. Microbiol Immunol 58(10):570–580. https://doi.org/10.1111/1348-0421.12188

    Article  CAS  PubMed  Google Scholar 

  63. Chai SJ, Gu W, O'Connor KA, Richardson LC, Tauxe RV (2019) Incubation periods of enteric illnesses in foodborne outbreaks, United States, 1998-2013. Epidemiol Infect 147:e285. https://doi.org/10.1017/S0950268819001651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tauxe RV (2002) Emerging foodborne pathogens. Int J Food Microbiol 78(1–2):31–41. https://doi.org/10.1016/s0168-1605(02)00232-5

    Article  CAS  PubMed  Google Scholar 

  65. Wieneke AA, Roberts D, Gilbert RJ (1993) Staphylococcal food poisoning in the United Kingdom, 1969-90. Epidemiol Infect 110(3):519–531. https://doi.org/10.1017/s0950268800050949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Veras JF, do Carmo LS, Tong LC, Shupp JW, Cummings C, Dos Santos DA et al (2008) A study of the enterotoxigenicity of coagulase-negative and coagulase-positive staphylococcal isolates from food poisoning outbreaks in Minas Gerais, Brazil. Int J Infect Dis 12(4):410–415. https://doi.org/10.1016/j.ijid.2007.09.018

    Article  CAS  PubMed  Google Scholar 

  67. Kitamoto M, Kito K, Niimi Y, Shoda S, Takamura A, Hiramatsu T et al (2009) Food poisoning by Staphylococcus aureus at a university festival. Jpn J Infect Dis 62(3):242–243. https://doi.org/10.7883/yoken.JJID.2009.242

    Article  PubMed  Google Scholar 

  68. Le Loir Y, Baron F, Gautier M (2003) Staphylococcus aureus and food poisoning. Genet Mol Res 2(1):63–76

    PubMed  Google Scholar 

  69. Hu DL, Omoe K, Shimoda Y, Nakane A, Shinagawa K (2003) Induction of emetic response to staphylococcal enterotoxins in the house musk shrew (Suncus murinus). Infect Immun 71(1):567–570. https://doi.org/10.1128/IAI.71.1.567-570.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hu DL, Omoe K, Saleh MH, Sugii S, Nakane A, Shinagawa K (2001) Analysis of the epitopes on staphylococcal enterotoxin a responsible for emetic activity. J Vet Med Sci 63(3):237–241. https://doi.org/10.1292/jvms.63.237

    Article  CAS  PubMed  Google Scholar 

  71. Omoe K, Imanishi K, Hu DL, Kato H, Fugane Y, Abe Y et al (2005) Characterization of novel staphylococcal enterotoxin-like toxin type P. Infect Immun 73(9):5540–5546. https://doi.org/10.1128/IAI.73.9.5540-5546.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Omoe K, Imanishi K, Hu DL, Kato H, Takahashi-Omoe H, Nakane A et al (2004) Biological properties of staphylococcal enterotoxin-like toxin type R. Infect Immun 72(6):3664–3667. https://doi.org/10.1128/IAI.72.6.3664-3667.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ono HK, Nishizawa M, Yamamoto Y, Hu DL, Nakane A, Shinagawa K et al (2012) Submucosal mast cells in the gastrointestinal tract are a target of staphylococcal enterotoxin type A. FEMS Immunol Med Microbiol 64(3):392–402. https://doi.org/10.1111/j.1574-695X.2011.00924.x

    Article  CAS  PubMed  Google Scholar 

  74. Hirose S, Ono HK, Omoe K, Hu DL, Asano K, Yamamoto Y et al (2016) Goblet cells are involved in translocation of staphylococcal enterotoxin a in the intestinal tissue of house musk shrew (Suncus murinus). J Appl Microbiol 120(3):781–789. https://doi.org/10.1111/jam.13029

    Article  CAS  PubMed  Google Scholar 

  75. Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RP (1998) The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 29(2):527–543. https://doi.org/10.1046/j.1365-2958.1998.00947.x

    Article  CAS  PubMed  Google Scholar 

  76. McCormick JK, Yarwood JM, Schlievert PM (2001) Toxic shock syndrome and bacterial superantigens: an update. Annu Rev Microbiol 55:77–104. https://doi.org/10.1146/annurev.micro.55.1.77

    Article  CAS  PubMed  Google Scholar 

  77. Kim J, Urban RG, Strominger JL, Wiley DC (1994) Toxic shock syndrome toxin-1 complexed with a class II major histocompatibility molecule HLA-DR1. Science 266(5192):1870–1874. https://doi.org/10.1126/science.7997880

    Article  CAS  PubMed  Google Scholar 

  78. Cui JC, Zhang BJ, Lin YC, Wang QK, Qian AD, Nakane A et al (2010) Protective effect of glutathione S-transferase-fused mutant staphylococcal enterotoxin C against Staphylococcus aureus-induced bovine mastitis. Vet Immunol Immunopathol 135(1–2):64–70. https://doi.org/10.1016/j.vetimm.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  79. Shopsin B, Gomez M, Montgomery SO, Smith DH, Waddington M, Dodge DE et al (1999) Evaluation of protein a gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 37(11):3556–3563. https://doi.org/10.1128/JCM.37.11.3556-3563.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Becker S, Frankel MB, Schneewind O, Missiakas D (2014) Release of protein a from the cell wall of Staphylococcus aureus. Proc Natl Acad Sci U S A 111(4):1574–1579. https://doi.org/10.1073/pnas.1317181111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim HK, Thammavongsa V, Schneewind O, Missiakas D (2012) Recurrent infections and immune evasion strategies of Staphylococcus aureus. Curr Opin Microbiol 15(1):92–99. https://doi.org/10.1016/j.mib.2011.10.012

    Article  CAS  PubMed  Google Scholar 

  82. Guss B, Uhlen M, Nilsson B, Lindberg M, Sjoquist J, Sjodahl J et al (1984) The cell-wall-attachment part of staphylococcal protein A. Eur J Biochem 138(2):413–420. https://doi.org/10.1111/j.1432-1033.1984.tb07931.x

    Article  CAS  PubMed  Google Scholar 

  83. Peterson PK, Verhoef J, Sabath LD, Quie PG (1977) Effect of protein A on staphylococcal opsonization. Infect Immun 15(3):760–764. https://doi.org/10.1128/iai.15.3.760-764.1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Graille M, Stura EA, Corper AL, Sutton BJ, Taussig MJ, Charbonnjer J-B et al (2000) Crystal structure of a Staphylococcus aureus protein a domain complexed with the fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A 97(10):5399–5404. https://doi.org/10.1073/pnas.97.10.5399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Silverman GJ, Goodyear CS (2006) Confounding B-cell defences: lessons from a staphylococcal superantigen. Nat Rev Immunol 6(6):465–475. https://doi.org/10.1038/nri1853

    Article  CAS  PubMed  Google Scholar 

  86. Dumont AL, Nygaard TK, Watkins RL, Smith A, Kuzhaya L, Kreiswirth BN et al (2011) Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol Microbiol 79(3):814–825. https://doi.org/10.1111/j.1365-2958.2010.07490.x

    Article  CAS  PubMed  Google Scholar 

  87. Sun Y, Emolo C, Holtfreter S, Wiles S, Kreiswirth B, Missiakas D et al (2018) Staphylococcal protein a contributes to persistent colonization of mice with Staphylococcus aureus. J Bacteriol 200(9):e00735–e00717. https://doi.org/10.1128/JB.00735-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kennedy AD, Wardenburg JB, Gardner DJ, Long D, Whitney AR, Braughton KR et al (2010) Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J Infect Dis 202(7):1050–1058. https://doi.org/10.1086/656043

    Article  PubMed  Google Scholar 

  89. Kielian T, Cheung A, Hickey WF (2001) Diminished virulence of an alpha-toxin mutant of Staphylococcus aureus in experimental brain abscesses. Infect Immun 69(11):6902–6911. https://doi.org/10.1128/IAI.69.11.6902-6911.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. O'Callaghan RJ, Callegan MC, Moreau JM, Green LC, Foster TJ, Hartford OM et al (1997) Specific roles of alpha-toxin and beta-toxin during Staphylococcus aureus corneal infection. Infect Immun 65(5):1571–1578. https://doi.org/10.1128/iai.65.5.1571-1578.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Suttorp N, Seeger W, Dewein E, Bhakdi S, Roka L (1985) Staphylococcal alpha-toxin-induced PGI2 production in endothelial cells: role of calcium. Am J Physiol 248(1 Pt1):C127–C134. https://doi.org/10.1152/ajpcell.1985.248.1.C127

    Article  CAS  PubMed  Google Scholar 

  92. Bhakdi S, Muhly M, Korom S, Hugo F (1989) Release of interleukin-1 beta associated with potent cytocidal action of staphylococcal alpha-toxin on human monocytes. Infect Immun 57(11):3512–3519. https://doi.org/10.1128/iai.57.11.3512-3519.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274(5294):1859–1866. https://doi.org/10.1126/science.274.5294.1859

    Article  CAS  PubMed  Google Scholar 

  94. Freer JH, Arbuthnott JP, Bernheimer AW (1968) Interaction of staphylococcal alpha-toxin with artificial and natural membranes. J Bacteriol 95(3):1153–1168. https://doi.org/10.1128/jb.95.3.1153-1168.1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Watanabe M, Tomita T, Yasuda T (1987) Membrane-damaging action of staphylococcal alpha-toxin on phospholipid-cholesterol liposomes. Biochim Biophys Acta 898(3):257–265. https://doi.org/10.1016/0005-2736(87)90065-4

    Article  CAS  PubMed  Google Scholar 

  96. Valeva A, Hellmann N, Walev I, Strand D, Plate M, Boukhallouk F et al (2006) Evidence that clustered phosphocholine head groups serve as sites for binding and assembly of an oligomeric protein pore. J Biol Chem 281(36):26014–26021. https://doi.org/10.1074/jbc.M601960200

    Article  CAS  PubMed  Google Scholar 

  97. Wilke GA, Wardenburg JB (2010) Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin-mediated cellular injury. Proc Natl Acad Sci U S A 107(30):13473–13478. https://doi.org/10.1073/pnas.1001815107

    Article  PubMed  PubMed Central  Google Scholar 

  98. Popov LM, Marceau CD, Starkl PM, Lumb JH, Sheh J, Guerrera D et al (2015) The adherens junctions control susceptibility to Staphylococcus aureus α-toxin. Proc Natl Acad Sci U S A 112(46):14337–14342. https://doi.org/10.1073/pnas.1510265112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Virreira Winter S, Zychlinsky A, Bardoel BW (2016) Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus α-hemolysin-mediated toxicity. Sci Rep 6:24242. https://doi.org/10.1038/srep24242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. von Hoven G, Rivas AJ, Neukirch C, Klein S, Hamm C, Qin Q et al (2016) Dissecting the role of ADAM10 as a mediator of Staphylococcus aureus α-toxin action. Biochem J 473(13):1929–1940. https://doi.org/10.1042/BCJ20160062

    Article  CAS  Google Scholar 

  101. Lemjabbar H, Basbaum C (2002) Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med 8(1):41–46. https://doi.org/10.1038/nm0102-41

    Article  CAS  PubMed  Google Scholar 

  102. Maretzky T, Reiss K, Ludwig A, Buchholz J, Scholz F, Proksch E et al (2005) ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and β-catenin translocation. Proc Natl Acad Sci U S A 102(26):9182–9187. https://doi.org/10.1073/pnas.0500918102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schulz B, Pruessmeyer J, Maretzky T, Ludwig A, Blobel CP, Safting P et al (2008) ADAM10 regulates endothelial permeability and T-cell transmigration by proteolysis of vascular endothelial cadherin. Circ Res 102(10):1192–1201. https://doi.org/10.1161/CIRCRESAHA.107.169805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Colciaghi F, Borroni B, Pastorino L, Marcello E, Zimmermann CF et al (2002) αSecretase ADAM10 as well as αAPPs is reduced in platelets and CSF of Alzheimer disease patients. Mol Med 8(2):67–74. https://doi.org/10.1007/BF03402076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hattori M, Osterfield M, Flanagan JG (2000) Regulated cleavage of a contact-mediated axon repellent. Science 289(5483):1360–1365. https://doi.org/10.1126/science.289.5483.1360

    Article  CAS  PubMed  Google Scholar 

  106. Alonzo F 3rd, Torres VJ (2014) The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 78(2):199–230. https://doi.org/10.1128/MMBR.00055-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sugawara-Tomita N, Tomita T, Kamio Y (2002) Stochastic assembly of two-component staphylococcal gamma-hemolysin into heteroheptameric transmembrane pores with alternate subunit arrangements in ratios of 3:4 and 4:3. J Bacteriol 184(17):4747–4756. https://doi.org/10.1128/JB.184.17.4747-4756.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bhakdi S, Tranum-Jensen J (1991) Alpha-toxin of Staphylococcus aureus. Microbiol Rev 55(4):733–751. https://doi.org/10.1128/mr.55.4.733-751.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Powers ME, Kim HK, Wang Y, Wardenburg JB (2012) ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J Infect Dis 206(3):352–356. https://doi.org/10.1093/infdis/jis192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bhakdi S, Muhly M, Mannhardt U, Hugo F, Klapettek K, Mueller-Eckhardt C et al (1988) Staphylococcal α toxin promotes blood coagulation via attack on human platelets. J Exp Med 168(2):527–542. https://doi.org/10.1084/jem.168.2.527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nygaard TK, Pallister KB, DuMont AL, DeWald M, Watkins RL, Pallister EQ et al (2012) Alpha-toxin induces programmed cell death of human T cells, B cells, and monocytes during USA300 infection. PloS One 7(5):e36532. https://doi.org/10.1371/journal.pone.0036532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bubeck Wardenburg J, Patel RJ, Schneewind O (2007) Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect Immun 75(2):1040–1044. https://doi.org/10.1128/IAI.01313-06

    Article  CAS  PubMed  Google Scholar 

  113. Parker MW, Feil SC (2005) Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol 88(1):91–142. https://doi.org/10.1016/j.pbiomolbio.2004.01.009

    Article  CAS  PubMed  Google Scholar 

  114. Berube BJ, Bubeck WJ (2013) Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins (Basel) 5(6):1140–1166. https://doi.org/10.3390/toxins5061140

    Article  PubMed  Google Scholar 

  115. Lizak M, Yarovinsky TO (2012) Phospholipid scramblase 1 mediates type I interferon-induced protection against staphylococcal α-toxin. Cell Host Microbe 11(1):70–80. https://doi.org/10.1016/j.chom.2011.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Grimminger F, Rose F, Sibelius U, Meinhardt M, Pötzsch B, Spriestersbach R et al (1997) Human endothelial cell activation and mediator release in response to the bacterial exotoxins Escherichia coli hemolysin and staphylococcal alpha-toxin. J Immunol 159(4):1909–1916

    Article  CAS  PubMed  Google Scholar 

  117. Rose F, Dahlem G, Guthmann B, Grimminger F, Maus U, Hänze J et al (2002) Mediator generation and signaling events in alveolar epithelial cells attacked by S. aureus α-toxin. Am J Physiol Lung Cell Mol Physiol 282(2):L207–L214. https://doi.org/10.1152/ajplung.00156.2001

    Article  CAS  PubMed  Google Scholar 

  118. Grumann D, Nubel U, Broker BM (2014) Staphylococcus aureus toxins—their functions and genetics. Infect Genet Evol 21:583–592. https://doi.org/10.1016/j.meegid.2013.03.013

    Article  CAS  PubMed  Google Scholar 

  119. Inoshima I, Inoshima N, Wilke GA, Wilke GA, Powers ME, Frank KM et al (2011) A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med 17(10):1310–1314. https://doi.org/10.1038/nm.2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kolata J, Bode LG, Holtfreter S, Steil L, Kusch H, Holtfreter B et al (2011) Distinctive patterns in the human antibody response to Staphylococcus aureus bacteremia in carriers and non-carriers. Proteomics 11(19):3914–3927. https://doi.org/10.1002/pmic.201000760

    Article  CAS  PubMed  Google Scholar 

  121. Fritz SA, Tiemann KM, Hogan PG, Epplin EK, Rodriguez M, Al-Zubeidi DN et al (2013) A serologic correlate of protective immunity against community-onset Staphylococcus aureus infection. Clin Infect Dis 56(1):1554–1561. https://doi.org/10.1093/cid/cit123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Doery HM, Magnusson BJ, Cheyne IM, Sulasekharam J (1963) A phospholipase in staphylococcal toxin which hydrolyses sphingomyelin. Nature 198:1091–1092. https://doi.org/10.1038/1981091a0

    Article  CAS  PubMed  Google Scholar 

  123. Huseby M, Shi K, Brown CK, Digre J, Mengistu F, Seo KS et al (2007) Structure and biological activities of beta toxin from Staphylococcus aureus. J Bacteriol 189(23):8719–8726. https://doi.org/10.1128/JB.00741-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Huseby MJ, Kruse AC, Digre J, Kohler PL, Vocke JA, Mann EE et al (2010) Beta toxin catalyzes formation of nucleoprotein matrix in staphylococcal biofilms. Proc Natl Acad Sci U S A 107(32):14407–14412. https://doi.org/10.1073/pnas.0911032107

    Article  PubMed  PubMed Central  Google Scholar 

  125. Low DK, Freer JH, Arbuthnott JP, Mollby R, Wadström T (1974) Consequences of spingomyelin degradation in erythrocyte ghost membranes by staphylococcal β-toxin (sphingomyelinase C). Toxicon 12(3):279–285. https://doi.org/10.1016/0041-0101(74)90070-1

    Article  CAS  PubMed  Google Scholar 

  126. Cifrian E, Guidry AJ, Bramley AJ, Norcross NL, Bastida-Corcuera FD, Marquardt WW (1996) Effect of staphylococcal β toxin on the cytotoxicity, proliferation and adherence of Staphylococcus aureus to bovine mammary epithelial cells. Vet Microbiol 48(3–4):187–198. https://doi.org/10.1016/0378-1135(95)00159-x

    Article  CAS  PubMed  Google Scholar 

  127. Katayama Y, Baba T, Sekine M, Fukuda M, Hiramatsu K (2013) Beta-hemolysin promotes skin colonization by Staphylococcus aureus. J Bacteriol 195(6):1194–1203. https://doi.org/10.1128/JB.01786-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tajima A, Iwase T, Shinji H, Seki K, Mizunoe Y (2009) Inhibition of endothelial interleukin-8 production and neutrophil transmigration by Staphylococcus aureus beta-hemolysin. Infect Immun 77(1):327–334. https://doi.org/10.1128/IAI.00748-08

    Article  CAS  PubMed  Google Scholar 

  129. Salgado-Pabon W, Herrera A, Vu BG, Stach CS, Merriman JA, Spaulding AR et al (2014) Staphylococcus aureus β-toxin production is common in strains with the β-toxin gene inactivated by bacteriophage. J Infect Dis 210(5):784–792. https://doi.org/10.1093/infdis/jiu146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hayashida A, Bartlett AH, Foster TJ, Park PW (2009) Staphylococcus aureus beta-toxin induces lung injury through syndecan-1. Am J Pathol 174(2):509–518. https://doi.org/10.2353/ajpath.2009.080394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yoong P, Torres VJ (2013) The effects of Staphylococcus aureus leukotoxins on the host: cell lysis and beyond. Curr Opin Microbiol 16(1):63–69. https://doi.org/10.1016/j.mib.2013.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Prevost G, Cribier B, Couppie P, Petiau P, Supersac G, Finck-Barbançon V et al (1995) Panton-valentine leucocidin and gamma-hemolysin from Staphylococcus aureus ATCC 49775 are encoded by distinct genetic loci and have different biological activities. Infect Immun 63(10):4121–4129. https://doi.org/10.1128/iai.63.10.4121-4129.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Morinaga N, Kaihou Y, Noda M (2003) Purification, cloning and characterization of variant LukE-LukD with strong leukocidal activity of staphylococcal bi-component leukotoxin family. Microbiol Immunol 47(1):81–90. https://doi.org/10.1111/j.1348-0421.2003.tb02789.x

    Article  CAS  PubMed  Google Scholar 

  134. Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N et al (2011) Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components. Proc Natl Acad Sci U S A 108(42):17314–17319. https://doi.org/10.1073/pnas.1110402108

    Article  PubMed  PubMed Central  Google Scholar 

  135. Aman MJ, Karauzum H, Bowden MG, Nguyen TL (2010) Structural model of the pre-pore ring-like structure of Panton-valentine leukocidin: providing dimensionality to biophysical and mutational data. J Biomol Struct Dyn 28(1):1–12. https://doi.org/10.1080/073911010010524952

    Article  CAS  PubMed  Google Scholar 

  136. Woodin AM (1960) Purification of the two components of leucocidin from Staphylococcus aureus. Biochem J 75:158–165. https://doi.org/10.1042/bj0750158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Spaan AN, van Strijp JAG, Torres VJ (2017) Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol 15(7):435–447. https://doi.org/10.1038/nrmicro.2017.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yamashita D, Sugawara T, Takeshita M, Koneko J, Kamio Y, Tanaka I et al (2014) Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins. Nat Commun 5:4897. https://doi.org/10.1038/ncomms5897

    Article  CAS  PubMed  Google Scholar 

  139. Yanai M, Rocha MA, Matolek AZ, Chintalacharuvu A, Taira Y, Chintalacharuvu K et al (2014) Separately or combined, LukG/LukH is functionally unique compared to other staphylococcal bicomponent leukotoxins. PloS One 9(2):e89308. https://doi.org/10.1371/journal.pone.0089308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Perret M, Badiou C, Lina G, Burbaud S, Benito Y, Bes M et al (2012) Cross-talk between Staphylococcus aureus leukocidins-intoxicated macrophages and lung epithelial cells triggers chemokine secretion in an inflammasome-dependent manner. Cell Microbiol 14(7):1019–1036. https://doi.org/10.1111/j.1462-5822.2012.01772.x

    Article  CAS  PubMed  Google Scholar 

  141. Holzinger D, Gieldon L, Mysore V, Nippe N, Taxman DJ, Duncan JA et al (2012) Staphylococcus aureus Panton-valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol 92(5):1069–1081. https://doi.org/10.1189/jlb.0112014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Melehani JH, James DB, DuMont AL, Torres VJ, Duncan JA (2015) Staphylococcus aureus leukocidin a/B (LukAB) kills human monocytes via host NLRP3 and ASC when extracellular, but not intracellular. PLoS Pathog 11(6):e1004970. https://doi.org/10.1371/journal.ppat.1004970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Vrieling M, Boerhout EM, van Wigcheren GF, Koymans KJ, Mols-Vorstermans TG, de Haas CJ et al (2016) LukMF’ is the major secreted leukocidin of bovine Staphylococcus aureus and is produced in vivo during bovine mastitis. Sci Rep 6:37759. https://doi.org/10.1038/srep37759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yamada T, Tochimaru N, Nakasuji S, Hata E, Kobayashi H, Eguchi M et al (2005) Leukotoxin family genes in Staphylococcus aureus isolated from domestic animals and prevalence of lukM-lukF-PV genes by bacteriophages in bovine isolates. Vet Microbiol 110(1–2):97–103. https://doi.org/10.1016/j.vetmic.2005.07.006

    Article  CAS  PubMed  Google Scholar 

  145. McCarthy AJ, Lindsay JA (2013) Staphylococcus aureus innate immune evasion is lineage-specific: a bioinfomatics study. Infect Genet Evol 19:7–14. https://doi.org/10.1016/j.meegid.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  146. von Eiff C, Friedrich AW, Peters G, Becker K (2004) Prevalence of genes encoding for members of the staphylococcal leukotoxin family among clinical isolates of Staphylococcus aureus. Diagn Microbiol Infect Dis 49(3):157–162. https://doi.org/10.1016/j.diagmicrobio.2004.03.009

    Article  CAS  Google Scholar 

  147. Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17(1):7–30. https://doi.org/10.1101/gad.1039703

    Article  CAS  PubMed  Google Scholar 

  148. Fackrell HB, Wiseman GM (1976) Properties of the gamma haemolysin of Staphylococcus aureus ‘Smith 5R’. J Gen Microbiol 92(1):11–24. https://doi.org/10.1099/00221287-92-1-11

    Article  CAS  PubMed  Google Scholar 

  149. Spaan AN, Reyes-Robles T, Badiou C, Cochet S, Boguslawski KM, Yoong P et al (2015) Staphylococcus aureus targets the Duffy antigen receptor for chemokines (DARC) to lyse erythrocytes. Cell Host Microbe 18(3):363–370. https://doi.org/10.1016/j.chom.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Noda M, Hirayama T, Kato I, Matsuda F (1980) Crystallization and properties of staphylococcal leukocidin. Biochim Biophys Acta 633(1):33–44. https://doi.org/10.1016/0304-4165(80)90035-5

    Article  CAS  PubMed  Google Scholar 

  151. Spaan AN, Vrieling M, Wallet P, Badiou C, Reyes-Robles T, Ohneck EA et al (2014) The staphylococcal toxins γ-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nat Commun 5:5438. https://doi.org/10.1038/ncomms6438

    Article  CAS  PubMed  Google Scholar 

  152. Hildebrand A, Pohl M, Bhakdi S (1991) Staphylococcus aureus alpha-toxin. Dual mechanism of binding to target cells. J Biol Chem 266(26):17195–17200. https://doi.org/10.1016/S0021-9258(19)47358-4

    Article  CAS  PubMed  Google Scholar 

  153. DeLeo FR, Kennedy AD, Chen L, Wardenburg JB, Kobayashi SD, Mathema B et al (2011) Molecular differentiation of historic phage-type 80/81 and contemporary epidemic Staphylococcus aureus. Proc Natl Acad Sci U S A 108(44):18091–18096. https://doi.org/10.1073/pnas.1111084108

    Article  PubMed  PubMed Central  Google Scholar 

  154. Siqueira JA, Speeg-Schatz C, Freitas FI, Sahel J, Monteil H, Prevost G (1997) Channel-forming leucotoxins from Staphylococcus aureus cause severe inflammatory reactions in a rabbit eye model. J Med Microbiol 46(6):486–494. https://doi.org/10.1099/00222615-46-6-486

    Article  CAS  PubMed  Google Scholar 

  155. Munoz-Planillo R, Franchi L, Miller LS, Nunez G (2009) A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J Immunol 183(6):3942–3948. https://doi.org/10.4049/jimmunol.0900729

    Article  CAS  PubMed  Google Scholar 

  156. Nilsson IM, Hartford O, Foster T, Tarkowski A (1999) Alpha-toxin and gamma-toxin jointly promote Staphylococcus aureus virulence in murine septic arthritis. Infect Immun 67(3):1045–1049. https://doi.org/10.1128/IAI.67.3.1045-1049.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Malachowa N, Whitney AR, Kobayashi SD, Sturdevant D, Kennedy AD, Braughton K et al (2011) Global changes in Staphylococcus aureus gene expression in human blood. PloS One 6(4):e18617. https://doi.org/10.1371/journal.pone.0018617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Goerke C, Pantucek R, Holtfreter S, Schulte B, Zink M, Grumann D et al (2009) Diversity of prophages in dominant Staphylococcus aureus clonal lineages. J Bacteriol 191(11):3462–3468. https://doi.org/10.1128/JB.01804-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kaneko J, Kimura T, Narita S, Tomita T, Kamio Y (1998) Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage phiPVL carrying Panton-valentine leukocidin genes. Gene 215(1):57–67. https://doi.org/10.1016/s0378-1119(98)00278-9

    Article  CAS  PubMed  Google Scholar 

  160. Spaan AN, Henry T, van Rooijen WJM, Perret M, Badiou C, Aerts PC et al (2013) The staphylococcal toxin Panton-valentine Leukocidin targets human C5a receptors. Cell Host Microbe 13(5):584–594. https://doi.org/10.1016/j.chom.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  161. Spaan AN, Schiepers A, de Haas CJ et al (2015) Differential interaction of the staphylococcal toxins Panton-valentine Leukocidin and γ-hemolysin CB with human C5a receptors. J Immunol 195(3):1034–1043. https://doi.org/10.4049/jimmunol.1500604

    Article  CAS  PubMed  Google Scholar 

  162. Couppie P, Cribier B, Prevost G (1994) Leukocidin from Staphylococcus aureus and cutaneous infections: an epidemiologic study. Arch Dermatol 130(9):1208–1209. https://doi.org/10.1001/archderm.130.9.1208

    Article  CAS  PubMed  Google Scholar 

  163. Prevost G, Couppie P, Prevost P, Gayet S, Petiau P, Cribier B et al (1995) Epidemiological data on Staphylococcus aureus strains producing synergohymenotropic toxins. J Med Microbiol 42(4):237–245. https://doi.org/10.1099/00222615-42-4-237

    Article  CAS  PubMed  Google Scholar 

  164. Diep BA, Chan L, Tattevin P, Kajikawa O, Nartin TR, Basuino L et al (2010) Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-valentine leukocidin-induced lung inflammation and injury. Proc Natl Acad Sci U S A 107(12):5587–5592. https://doi.org/10.1073/pnas.0912403107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cremieux AC, Dumitrescu O, Lina G, Vallee C, Côté J-F, Muffat-Joly M et al (2009) Panton-valentine leukocidin enhances the severity of community-associated methicillin-resistant Staphylococcus aureus rabbit osteomyelitis. PloS One 4(9):e7204. https://doi.org/10.1371/journal.pone.0007204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Graves SF, Kobayashi SD, Braughton KR, Whitney A, Sturdevant DE, Rasmussen DL et al (2012) Sublytic concentrations of Staphylococcus aureus Panton-valentine leukocidin alter human PMN gene expression and enhance bactericidal capacity. J Leukoc Biol 92(2):361–374. https://doi.org/10.1189/jlb.1111575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kobayashi SD, Malachowa N, Whitney AR, Braughton KR, Gardner DJ, Long D et al (2011) Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J Infect Dis 204(6):937–941. https://doi.org/10.1093/infdis/jir441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chi CY, Lin CC, Liao IC, Yao YC, Shen FC, Liu CC et al (2014) Panton-valentine leukocidin facilitates the escape of Staphylococcus aureus from human keratinocyte endosomes and induces apoptosis. J Infect Dis 209(2):224–235. https://doi.org/10.1093/infdis/jit445

    Article  CAS  PubMed  Google Scholar 

  169. Boakes E, Kearns AM, Ganner M, Perry C, Hill RL, Ellington MJ (2011) Distinct bacteriophages encoding Panton-valentine leukocidin (PVL) among international methicillin-resistant Staphylococcus aureus clones harboring PVL. J Clin Microbiol 49(2):684–692. https://doi.org/10.1128/JCM.01917-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gillet Y, Issartel B, Vanhems P, Fournet J-C, Lina G, Bes M et al (2002) Association between Staphylococcus aureus strains carrying gene for Panton-valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359(9308):753–759. https://doi.org/10.1016/S0140-6736(02)07877-7

    Article  CAS  PubMed  Google Scholar 

  171. DuMont AL, Yoong P, Liu X, Day CJ, Chumber NM, James DBA et al (2014) Identification of a crucial residue required for Staphylococcus aureus LukAB cytotoxicity and receptor recognition. Infect Immun 82(3):1268–1276. https://doi.org/10.1128/IAI.01444-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Badarau A, Rouha H, Malafa S, Logan DT, Håkansson M, Stulik L et al (2015) Structure-function analysis of heterodimer formation, oligomerization, and receptor binding of the Staphylococcus aureus bi-component toxin LukGH. J Biol Chem 290(1):142–156. https://doi.org/10.1074/jbc.M114.598110

    Article  CAS  PubMed  Google Scholar 

  173. Ventura CL, Malachowa N, Hammer CH, Nardone GA, Robinson MA, Kobayashi SD et al (2010) Identification of a novel Staphylococcus aureus two-component leukotoxin using cell surface proteomics. PloS One 5(7):e11634. https://doi.org/10.1371/journal.pone.0011634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Malachowa N, Kobayashi SD, Braughton KR, Whitney AR, Parnell MJ, Gardner DJ et al (2012) Staphylococcus aureus leukotoxin GH promotes inflammation. J Infect Dis 206(8):1185–1193. https://doi.org/10.1093/infdis/jis495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. DuMont AL, Yoong P, Day CJ, Alonzo F 3rd, McDonald WH, Jennings MP et al (2013) Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin mac-1. Proc Natl Acad Sci U S A 110(26):10794–10799. https://doi.org/10.1073/pnas.1305121110

    Article  PubMed  PubMed Central  Google Scholar 

  176. Dozois A, Thomsen I, Jimenez-Truque N, Soper N, Pearson A, Mohamed-Rambaran P et al (2015) Prevalence and molecular characteristics of methicillin-resistant Staphylococcus aureus among skin and soft tissue infections in an emergency department in Guyana. Emerg Med J 32(10):800–803. https://doi.org/10.1136/emermed-2013-203373

    Article  PubMed  Google Scholar 

  177. Thomsen IP, Dumont AL, James DB, Yoong P, Saville BR, Soper N et al (2014) Children with invasive Staphylococcus aureus disease exhibit a potently neutralizing antibody response to the cytotoxin LukAB. Infect Immun 82(3):1234–1242. https://doi.org/10.1128/IAI.01558-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chadha AD, Thomsen IP, Jimenez-Truque N, Soper NR, Jones LS, Sokolaw AG et al (2016) Host response to Staphylococcus aureus cytotoxins in children with cystic fibrosis. J Cyst Fibros 15(5):597–604. https://doi.org/10.1016/j.jcf.2015.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. DuMont AL, Yoong P, Surewaard BG, Benson MA, Nijland R, van Strijp JAG et al (2013) Staphylococcus aureus elaborates leukocidin AB to mediate escape from within human neutrophils. Infect Immun 81(5):1830–1841. https://doi.org/10.1128/IAI.00095-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Gravet A, Colin DA, Keller D, Girardot R, Monteil H, Prevost G (1998) Characterization of a novel structural member, LukE-LukD, of the bi-component staphylococcal leucotoxins family. FEBS Lett 436(2):202–208. https://doi.org/10.1016/s0014-5793(98)01130-2

    Article  CAS  PubMed  Google Scholar 

  181. Liu C, Chen ZJ, Sun Z, Gao S, Jiang G, Zhou Z et al (2015) Molecular characteristics and virulence factors in methicillin-susceptible, resistant, and heterogeneous vancomycin-intermediate Staphylococcus aureus from Central-Southern China. J Microbiol Immunol Infect 48(5):490–496. https://doi.org/10.1016/j.jmii.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  182. Haveri M, Roslof A, Rantala L, Pyorala S (2007) Virulence genes of bovine Staphylococcus aureus from persistent and nonpersistent intramammary infections with different clinical characteristics. J Appl Microbiol 103(4):993–1000. https://doi.org/10.1111/j.1365-2672.2007.03356.x

    Article  CAS  PubMed  Google Scholar 

  183. Alonzo F 3rd, Benson MA, Chen J, Novick RP, Shopsin B, Torres VJ (2012) Staphylococcus aureus leucocidin ED contributes to systemic infection by targeting neutrophils and promoting bacterial growth in vivo. Mol Microbiol 83(2):423–435. https://doi.org/10.1111/j.1365-2958.2011.07942.x

    Article  CAS  PubMed  Google Scholar 

  184. Reyes-Robles T, Alonzo F 3rd, Kozhaya L, Lacy DB, Unutmaz D, Torres VJ (2013) Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe 14(4):453–439. https://doi.org/10.1016/j.chom.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  185. Alonzo F 3rd, Kozhaya L, Rawlings SA, Reyes-Robles T, Dumont AL, Myszka DG et al (2013) CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature 493(7430):51–55. https://doi.org/10.1038/nature11724

    Article  CAS  PubMed  Google Scholar 

  186. Reyes-Robles T, Lubkin A, Alonzo F 3rd, Lacy DB, Torres VJ (2016) Exploiting dominant-negative toxins to combat Staphylococcus aureus pathogenesis. EMBO Rep 17(5):780. https://doi.org/10.15252/embr.201670010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Fromageau A, Cunha P, Gilbert FB, Rainard P (2011) Purified Staphylococcus aureus leukotoxin LukM/F' does not trigger inflammation in the bovine mammary gland. Microb Pathog 51(6):396–401. https://doi.org/10.1016/j.micpath.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  188. Vrieling M, Koymans KJ, Heesterbeek DA, Aerts PC, Rutten VPMG, de Haas CJC et al (2015) Bovine Staphylococcus aureus secretes the leukocidin LukMF’ to kill migrating neutrophils through CCR1. MBio 6(3):e00335. https://doi.org/10.1128/mBio.00335-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Koop G, Vrieling M, Storisteanu DM, Lok LSC, Monie T, van Wigcheren G et al (2017) Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Sci Rep 7:40660. https://doi.org/10.1038/srep40660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Merriman JA, Klingelhutz AJ, Diekema DJ, Leung DY, Schlievert PM (2015) Novel Staphylococcus aureus secreted protein alters keratinocyte proliferation and elicits a proinflammatory response in vitro and in vivo. Biochemistry 54(31):4855–4862. https://doi.org/10.1021/acs.biochem.5b00523

    Article  CAS  PubMed  Google Scholar 

  191. Mehlin C, Headley CM, Klebanoff SJ (1999) An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. J Exp Med 189(6):907–918. https://doi.org/10.1084/jem.189.6.907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wang R, Braughton KR, Kretschmer D, Bach T-HL, Queck SY, Li M et al (2007) Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13(12):1510–1514. https://doi.org/10.1038/nm1656

    Article  CAS  PubMed  Google Scholar 

  193. Peschel A, Otto M (2013) Phenol-soluble modulins and staphylococcal infection. Nat Rev Microbiol 11(10):667–673. https://doi.org/10.1038/nrmicro3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Towle KM, Lohans CT, Miskolzie M, Acedo JZ, van Belkum MJ, Vederas JC (2016) Solution structures of phenol-soluble modulins α1, α3, and β2, virulence factors from Staphylococcus aureus. Biochemistry 55(34):4798–4806. https://doi.org/10.1021/acs.biochem.6b00615

    Article  CAS  PubMed  Google Scholar 

  195. Otto M (2014) Phenol-soluble modulins. Int J Med Microbiol 304(2):164–169. https://doi.org/10.1016/j.ijmm.2013.11.019

    Article  CAS  PubMed  Google Scholar 

  196. Rasigade JP, Trouillet-Assant S, Ferry T, An Diep B, Sapin A, Lhoste Y et al (2013) PSMs of hypervirulent Staphylococcus aureus act as intracellular toxins that kill infected osteoblasts. PloS One 8(5):e63176. https://doi.org/10.1371/journal.pone.0063176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Surewaard BG, de Haas CJ, Vervoort F, Rigby KM, DeLeo FR, Otto M et al (2013) Staphylococcal alpha-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell Microbiol 15(8):1427–1437. https://doi.org/10.1111/cmi.12130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kretschmer D, Gleske AK, Rautenberg M, Wang R, Köberle M, Bohn E et al (2010) Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe 7(6):463–473. https://doi.org/10.1016/j.chom.2010.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Periasamy S, Joo HS, Duong AC, Bach T-HL, Tan VY, Chatterjee S et al (2012) How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci U S A 109(4):1281–1286. https://doi.org/10.1073/pnas.1115006109

    Article  PubMed  PubMed Central  Google Scholar 

  200. Yamaguchi T, Hayashi T, Takami H, Nakasone K, Ohnishi M, Nakayama K et al (2000) Phage conversion of exfoliative toxin a production in Staphylococcus aureus. Mol Microbiol 38(4):694–705. https://doi.org/10.1046/j.1365-2958.2000.02169.x

    Article  CAS  PubMed  Google Scholar 

  201. Yamaguchi T, Nishifuji K, Sasaki M, Fudaba Y, Aepfelbacher M, Takata T et al (2002) Identification of the Staphylococcus aureus etd pathogenicity Island which encodes a novel exfoliative toxin, ETD, and EDIN-B. Infect Immun 70(10):5835–5845. https://doi.org/10.1128/IAI.70.10.5835-5845.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bukowski M, Wladyka B, Dubin G (2010) Exfoliative toxins of Staphylococcus aureus. Toxins (Basel) 2(5):1148–1165. https://doi.org/10.3390/toxins2051148

    Article  CAS  PubMed  Google Scholar 

  203. Vath GM, Earhart CA, Rago JV, Kim MM, Bohach GA, Schlievert PM et al (1997) The structure of the superantigen exfoliative toxin a suggests a novel regulation as a serine protease. Biochemistry 36(7):1559–1566. https://doi.org/10.1021/bi962614f

    Article  CAS  PubMed  Google Scholar 

  204. Amagai M, Yamaguchi T, Hanakawa Y, Nishifuji K, Sugai M, Stanley JR (2002) Staphylococcal exfoliative toxin B specifically cleaves desmoglein 1. J Invest Dermatol 118(5):845–850. https://doi.org/10.1046/j.1523-1747.2002.01751.x

    Article  CAS  PubMed  Google Scholar 

  205. Ladhani S (2001) Recent developments in staphylococcal scalded skin syndrome. Clin Microbiol Infect 7(6):301–307. https://doi.org/10.1046/j.1198-743x.2001.00258.x

    Article  CAS  PubMed  Google Scholar 

  206. Amagai M, Matsuyoshi N, Wang ZH, Andl C, Stanley JR (2000) Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nat Med 6(11):1275–1277. https://doi.org/10.1038/81385

    Article  CAS  PubMed  Google Scholar 

  207. Cribier B, Piemont Y, Grosshans E (1994) Staphylococcal scalded skin syndrome in adults. A clinical review illustrated with a new case. J Am Acad Dermatol 30(2 Pt 2):319–324. https://doi.org/10.1016/s0190-9622(94)70032-x

    Article  CAS  PubMed  Google Scholar 

  208. Melish ME, Glasgow LA (1970) The staphylococcal scalded-skin syndrome. N Engl J Med 282(20):1114–1119. https://doi.org/10.1056/NEJM197005142822002

    Article  CAS  PubMed  Google Scholar 

  209. Watanabe S, Ito T, Takeuchi F, Endo M, Okuno E, Hiramatsu K (2005) Structural comparison of ten serotypes of staphylocoagulases in Staphylococcus aureus. J Bacteriol 187(11):3698–3707. https://doi.org/10.1128/JB.187.11.3698-3707.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Peetermans M, Verhamme P, Vanassche T (2015) Coagulase activity by Staphylococcus aureus: a potential target for therapy? Semin Thromb Hemost 41(4):433–444. https://doi.org/10.1055/s-0035-1549849

    Article  CAS  PubMed  Google Scholar 

  211. Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O (2010) Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog 6(8):e1001036. https://doi.org/10.1371/journal.ppat.1001036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. McAdow M, DeDent AC, Emolo C, Cheng AG, Krieswirth BN, Missiakas DM et al (2012) Coagulases as determinants of protective immune responses against Staphylococcus aureus. Infect Immun 80(10):3389–3398. https://doi.org/10.1128/IAI.00562-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zapotoczna M, McCarthy H, Rudkin JK, O’Gara JP, O’Neill E (2015) An essential role for coagulase in Staphylococcus aureus biofilm development reveals new therapeutic possibilities for device-related infections. J Infect Dis 212(12):1883–1893. https://doi.org/10.1093/infdis/jiv319

    Article  CAS  PubMed  Google Scholar 

  214. Horii T, Yokoyama K, Barua S, Odagiri T, Futamura N, Hasegawa T et al (2000) The staphylokinase gene is located in the structural gene encoding N-acetylmuramyl-L-alanine amidase in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 185(2):221–224. https://doi.org/10.1111/j.1574-6968.2000.tb09065.x

    Article  CAS  PubMed  Google Scholar 

  215. Grella DK, Castellino FJ (1997) Activation of human plasminogen by staphylokinase. Direct evidence that preformed plasmin is necessary for activation to occur. Blood 89(5):1585–1589. https://doi.org/10.1182/blood.V89.5.1585

    Article  CAS  PubMed  Google Scholar 

  216. Tang J, Zhou R, Shi X, Kang M, Wang H, Chen H (2008) Two thermostable nucleases coexisted in Staphylococcus aureus: evidence from mutagenesis and in vitro expression. FEMS Microbiol Lett 284(2):176–183. https://doi.org/10.1111/j.1574-6968.2008.01194.x

    Article  CAS  PubMed  Google Scholar 

  217. Olson ME, Nygaard TK, Ackermann L, Watkins RL, Zurek OW, Pallister KB et al (2013) Staphylococcus aureus nuclease is an SaeRS-dependent virulence factor. Infect Immun 81(14):1316–1324. https://doi.org/10.1128/IAI.01242-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Hu C, Xiong N, Zhang Y, Rayner S, Chen S (2012) Functional characterization of lipase in the pathogenesis of Staphylococcus aureus. Biochem Biophys Res Commun 419(4):617–620. https://doi.org/10.1016/j.bbrc.2012.02.057

    Article  CAS  PubMed  Google Scholar 

  219. Cadieux B, Vijayakumaran V, Bernards MA, McGavin MJ, Heinrichs DE (2014) Role of lipase from community-associated methicillin-resistant Staphylococcus aureus strain USA300 in hydrolyzing triglycerides into growth-inhibitory free fatty acids. J Bacteriol 196(23):4044–4056. https://doi.org/10.1128/JB.02044-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Liang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, DL., Ono, H.K., Li, S., Fang, R. (2024). Exotoxins of Staphylococcus aureus. In: Nakane, A., Asano, K. (eds) Staphylococcus aureus. Springer, Singapore. https://doi.org/10.1007/978-981-99-9428-1_3

Download citation

Publish with us

Policies and ethics