Skip to main content

Part of the book series: Comprehensive Gynecology and Obstetrics ((CGO))

  • 68 Accesses

Abstract

Cervical cancer is the fourth most common malignant tumor in women worldwide in terms of incidence and mortality. Although cervical cancer is a disease whose morbidity and mortality rates have decreased over the past few decades in some developed countries due to the widespread use of cervical cancer screening and HPV vaccination with the introduction of HPV testing, no significant progress has been made in terms of treatment options. Chemotherapy, represented by platinum-based drugs such as cisplatin, is still the mainstay of treatment, but its efficiency is low, and new drugs, such as molecularly targeted therapies, are urgently needed. With the development of molecular biology and genomic medicine, molecular-targeted therapeutics have made groundbreaking progress in many cancer tumors. Effective therapies such as angiogenesis inhibitors and immune checkpoint inhibitors have been developed for cervical cancer. This review summarizes new targeted therapeutics in clinical trials to treat cervical cancer. Furthermore, it aims to summarize novel agents with a focus on their therapeutic efficacy in preclinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaufmann SH. Paul Ehrlich: founder of chemotherapy. Nat Rev Drug Discov. 2008;7(5):373.

    Article  CAS  PubMed  Google Scholar 

  2. Obermair A, et al. Tumor angiogenesis in stage IB cervical cancer: correlation of microvessel density with survival. Am J Obstet Gynecol. 1998;178(2):314–9.

    Article  CAS  PubMed  Google Scholar 

  3. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002;2:795–803.

    Article  CAS  PubMed  Google Scholar 

  4. Cheng WF, Chen CA, Lee CN, et al. Vascular endothelial growth factor and prognosis of cervical carcinoma. Obstet Gynecol. 2000;96:721–6.

    CAS  PubMed  Google Scholar 

  5. Bremer GL, Tiebosch AT, van der Putten HW, et al. Tumor angiogenesis: an independent prognostic parameter in cervical cancer. Am J Obstet Gynecol. 1996;174:126–31.

    Article  CAS  PubMed  Google Scholar 

  6. López-Ocejo O, et al. Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene. 2000;19(40):4611–20.

    Article  PubMed  Google Scholar 

  7. Tewari KS, et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med. 2014;370(8):734–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schefter TE, et al. A phase II study of bevacizumab in combination with definitive radiotherapy and cisplatin chemotherapy in untreated patients with locally advanced cervical carcinoma: preliminary results of RTOG 0417. Int J Radiat Oncol Biol Phys. 2012;83(4):1179–84.

    Article  CAS  PubMed  Google Scholar 

  9. Chuai Y, et al. Vascular endothelial growth factor (VEGF) targeting therapy for persistent, recurrent, or metastatic cervical cancer. Cochrane Database Syst Rev. 2021;3(3):CD013348.

    PubMed  Google Scholar 

  10. Tewari KS, et al. Circulating tumor cells in advanced cervical cancer: NRG oncology-gynecologic oncology group study 240 (NCT 00803062). Mol Cancer Ther. 2020;19(11):2363–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krishnamurthy S, et al. Targeting the mutant PIK3CA gene by DNA-alkylating pyrrole-imidazole polyamide in cervical cancer. Cancer Sci. 2021;112(3):1141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ji J, et al. Activation of mTOR signaling pathway contributes to survival of cervical cancer cells. Gynecol Oncol. 2010;117(1):103–8.

    Article  CAS  PubMed  Google Scholar 

  13. Bahrami A, et al. The potential value of the PI3K/Akt/mTOR signaling pathway for assessing prognosis in cervical cancer and as a target for therapy. J Cell Biochem. 2017;118(12):4163–9.

    Article  CAS  PubMed  Google Scholar 

  14. Enwere EK, et al. Expression of PD-L1 and presence of CD8-positive T cells in pre-treatment specimens of locally advanced cervical cancer. Mod Pathol. 2017;30(4):577–86.

    Article  CAS  PubMed  Google Scholar 

  15. Mezache L, et al. Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod Pathol. 2015;28(12):1594–602.

    Article  CAS  PubMed  Google Scholar 

  16. Qin S, et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. 2019;18(1):155.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang W, et al. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia. Immunology. 2013;139(4):513–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chung HC, et al. Efficacy and safety of Pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2019;37(17):1470–8.

    Article  CAS  PubMed  Google Scholar 

  19. Colombo N, et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer. N Engl J Med. 2021;385(20):1856–67.

    Article  CAS  PubMed  Google Scholar 

  20. Tewari KS, et al. Survival with Cemiplimab in recurrent cervical cancer. N Engl J Med. 2022;386(6):544–55.

    Article  CAS  PubMed  Google Scholar 

  21. Grau JF, et al. A randomized phase III trial of platinum chemotherapy plus paclitaxel with bevacizumab and atezolizumab versus platinum chemotherapy plus paclitaxel and bevacizumab in metastatic (stage IVB), persistent, or recurrent carcinoma of the cervix: the BEATcc study (ENGOT-Cx10/GEICO 68-C/JGOG1084/GOG-3030). Int J Gynecol Cancer. 2020;30(1):139–43.

    Article  PubMed  Google Scholar 

  22. Hollebecque A, et al. An open-label, multicohort, phase I/II study of nivolumab in patients with virus-associated tumors (CheckMate 358): efficacy and safety in recurrent or metastatic (R/M) cervical, vaginal, and vulvar cancers. J Clin Oncol. 2017;35:5504.

    Article  Google Scholar 

  23. O'Malley DM, et al. Phase II study of the safety and efficacy of the anti-PD-1 antibody balstilimab in patients with recurrent and/or metastatic cervical cancer. Gynecol Oncol. 2021;163(2):274–80.

    Article  CAS  PubMed  Google Scholar 

  24. Mayadev J, et al. CALLA: efficacy and safety of concurrent and adjuvant durvalumab with chemoradiotherapy versus chemoradiotherapy alone in women with locally advanced cervical cancer: a phase III, randomized, double-blind, multicenter study. Int J Gynecol Cancer. 2020;30(7):1065–70.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lorusso D, et al. 164 ENGOT-cx11/GOG 3047/KEYNOTE-A18: a phase 3, randomized, double-blind study of pembrolizumab with chemoradiotherapy in patients with high-risk locally advanced cervical cancer. Int J Gynecol Cancer. 2020;30:A71 LP–A71.

    Google Scholar 

  26. Mayadev JS, et al. Sequential Ipilimumab after Chemoradiotherapy in curative-intent treatment of patients with node-positive cervical cancer. JAMA Oncol. 2020;6(1):92–9.

    Article  PubMed  Google Scholar 

  27. Vinayak S, et al. Open-label clinical trial of Niraparib combined with Pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. JAMA Oncol. 2019;5(8):1132–40.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Konstantinopoulos PA, et al. Single-arm phases 1 and 2 trial of Niraparib in combination with Pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. JAMA Oncol. 2019;5(8):1141–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bianchi A, et al. PARP-1 activity (PAR) determines the sensitivity of cervical cancer to olaparib. Gynecol Oncol. 2019;155(1):144–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thaker PH, et al. A phase I trial of paclitaxel, cisplatin, and veliparib in the treatment of persistent or recurrent carcinoma of the cervix: an NRG oncology study (NCT#01281852). Ann Oncol. 2017;28(3):505–11.

    Article  CAS  PubMed  Google Scholar 

  31. Kunos C, et al. A phase I-II evaluation of veliparib (NSC #737664), topotecan, and filgrastim or pegfilgrastim in the treatment of persistent or recurrent carcinoma of the uterine cervix: an NRG oncology/gynecologic oncology group study. Int J Gynecol Cancer. 2015;25(3):484–92.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jackson CC, et al. A phase II trial of bevacizumab and rucaparib in recurrent carcinoma of the cervix or endometrium. J Clin Oncol. 2021;39:5527.

    Article  Google Scholar 

  33. Coleman RL, et al. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021;22(5):609–19.

    Article  CAS  PubMed  Google Scholar 

  34. van der Burg SH, et al. Therapeutic vaccination against human papillomavirus induced malignancies. Curr Opin Immunol. 2011;23(2):252–7.

    Article  PubMed  Google Scholar 

  35. Kim TJ, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun. 2014;5:5317.

    Article  CAS  PubMed  Google Scholar 

  36. Park JS, et al. Efficacy and safety results of GX-188E, a therapeutic DNA vaccine, combined with pembrolizumab administration in patients with HPV 16- and/or 18- positive advanced cervical cancer: phase II interim analysis results (KEYNOTE-567). J Clin Oncol. 2021;39:5511.

    Article  Google Scholar 

  37. Kris MG, Johnson BE, Berry LD, Kwiatkowski DJ, Iafrate AJ, Wistuba II, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. 2014;311:1998–2006.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mosele F, Remon J, Mateo J, Westphalen CB, Barlesi F, Lolkema MP, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO precision medicine working group. Ann Oncol. 2020;31:1491–505.

    Article  CAS  PubMed  Google Scholar 

  39. Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, et al. Landscape of genomic alterations in cervical carcinomas. Nature. 2014;506:371–5.

    Article  CAS  PubMed  Google Scholar 

  40. Jhaveri K, Chang MT, Juric D, Saura C, Gambardella V, Melnyk A, et al. Phase I basket study of Taselisib, an isoform-selective PI3K inhibitor, in patients with PIK3CA-mutant cancers. Clin Cancer Res. 2021;27:447–59.

    Article  CAS  PubMed  Google Scholar 

  41. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020;21:1353–65.

    Article  CAS  PubMed  Google Scholar 

  43. Luchini C, Bibeau F, Ligtenberg MJL, Singh N, Nottegar A, Bosse T, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol. 2019;30:1232–43.

    Article  CAS  PubMed  Google Scholar 

  44. Vanderwalde A, Spetzler D, Xiao N, Gatalica Z, Marshall J. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med. 2018;7:746–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Haslem DS, Van Norman SB, Fulde G, Knighton AJ, Belnap T, Butler AM, et al. A retrospective analysis of precision medicine outcomes in patients with advanced cancer reveals improved progression-free survival without increased health care costs. J Oncol Pract. 2017;13:e108–19.

    Article  PubMed  Google Scholar 

  46. Sunami K, Ichikawa H, Kubo T, Kato M, Fujiwara Y, Shimomura A, et al. Feasibility and utility of a panel testing for 114 cancer-associated genes in a clinical setting: a hospital-based study. Cancer Sci. 2019;110:1480–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rodrigues M, et al. Combination of nivolumab with chemoradiotherapy for locally advanced cervical cancer: NiCOL phase I trial. J Clin Oncol. 2022;40:5534.

    Article  Google Scholar 

  48. Mayadev J, Zamarin D, Deng W, Lankes H, O'Cearbhaill R, Aghajanian CA, et al. Anti-PD-L1 (atezolizumab) as an immune primer and concurrently with extended-field chemoradiotherapy for node-positive locally advanced cervical cancer. Int J Gynecol Cancer. 2020;30(5):701–4.

    Article  PubMed  Google Scholar 

  49. Lee L, Konstantinopoulos P, Matulonis U, Liu J, Horowitz N, Lee E, et al. 563 a phase I clinical trial of radiation therapy, durvalumab and tremelimumab in recurrent gynecologic cancer. J Immunother Cancer. 2022;10:A590 LP-A590.

    Google Scholar 

  50. Stereotactic body radiation therapy, tremelimumab and durvalumab in treating participants with recurrent or metastatic cervical, vaginal, or vulvar cancers. https://www.mdanderson.org/patients-family/diagnosis-treatment/clinical-trials/clinical-trials-index/clinical-trials-detail.ID2017-0548.html

  51. HPV-16/18 E6/E7-specific T lymphocytes, relapsed HPV-associated cancers, HESTIA (HESTIA). https://clinicaltrials.gov/ct2/show/NCT02379520

  52. HPV-E6-specific anti-PD1 TCR-T cells in the treatment of HPV-positive NHSCC or cervical cancer. https://clinicaltrials.gov/ct2/show/NCT03578406

  53. A study of INO-3112 DNA vaccine with electroporation in participants with cervical cancer. https://clinicaltrials.gov/ct2/show/NCT02172911

  54. Pembrolizumab and chemoradiation treatment for advanced cervical cancer. https://clinicaltrials.gov/ct2/show/NCT02635360

  55. Trial assessing the inhibitor of programmed cell death ligand 1 (PD-L1) immune checkpoint atezolizumab (ATEZOLACC). https://clinicaltrials.gov/ct2/history/NCT03612791

  56. Garcia-Duran C, Grau F, Villacampa G, Oaknin A. ATOMICC trial: a randomized, open-label, phase II trial of anti-PD1, dostarlimab, as maintenance therapy for patients with high-risk locally advanced cervical cancer after chemoradiation. Int J Gynecol Cancer. 2022;32:1196.

    Article  Google Scholar 

  57. Lheureux S, Butler MO, Clarke B, Cristea MC, Martin LP, Tonkin K, et al. Association of ipilimumab with safety and antitumor activity in women with metastatic or recurrent human papillomavirus-related cervical carcinoma. JAMA Oncol. 2018;4(7):e173776.

    Article  PubMed  Google Scholar 

  58. Ahmed KA, Quick AM, Bixel K, Kim Y, Lemerond E, Chon HS, et al. Atezolizumab and stereotactic body radiation therapy in metastatic, recurrent or persistent cervical cancer: interim results from a non-randomized, open-label phase II multi-institutional study. Int J Radiat Oncol. 2022;114:S89–90.

    Article  Google Scholar 

  59. De Jaeghere EA, Tuyaerts S, Van Nuffel AMT, Belmans A, Bogaerts K, Baiden-Amissah R, et al. Pembrolizumab, radiotherapy, and an immunomodulatory five-drug cocktail in pretreated patients with persistent, recurrent, or metastatic cervical or endometrial carcinoma: results of the phase II PRIMMO study. Cancer Immunol Immunother. 2023;72(2):475–91.

    Article  PubMed  Google Scholar 

  60. Le Tourneau C, Delord J-P, Cassier P, Loirat D, Tavernaro A, Bastien B, et al. Phase Ib/II trial of TG4001 (Tipapkinogene sovacivec), a therapeutic HPV-vaccine, and Avelumab in patients with recurrent/metastatic (R/M) HPV-16+ cancers. Ann Oncol. 2019;30:v494–5.

    Article  Google Scholar 

  61. Hillemanns P, Baurain J-F, Blecharz P, Lindemann K, Nicolaisen B, Schetne K, et al. 881TiP a multi-centre, open-label phase II trial of the combination of VB10.16 and atezolizumab in patients with advanced or recurrent, non-resectable HPV16 positive cervical cancer. Ann Oncol. 2020;31:S645–6.

    Article  Google Scholar 

  62. Cemiplimab and ISA101b vaccine in adult participants with recurrent/metastatic human. https://clinicaltrials.gov/ct2/show/NCT04646005.

  63. Mayadev J, Nunes AT, Li M, Marcovitz M, Lanasa MC, Monk BJ. CALLA: efficacy and safety of concurrent and adjuvant durvalumab with chemoradiotherapy versus chemoradiotherapy alone in women with locally advanced cervical cancer: a phase III, randomized, double-blind, multicenter study. Int J Gynecol Cancer. 2020;30(7):1065–70.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lorusso D, Colombo N, Coleman R, Randall L, Duska L, Xiang Y, et al. 164 ENGOT-cx11/GOG 3047/KEYNOTE-A18: a phase 3, randomized, double-blind study of pembrolizumab with chemoradiotherapy in patients with high-risk locally advanced cervical cancer. Int J Gynecol Cancer. 2020;30:A71 LP-A71.

    Google Scholar 

  65. Efficacy and safety of BCD-100 (Anti-PD-1) in combination with platinum-based chemotherapy with and without bevacizumab as first-line treatment of subjects with advanced cervical cancer (FERMATA). https://clinicaltrials.gov/ct2/show/NCT03912415.

  66. Vergote IB, Randall L, Kalbacher E, Madsen K, Van Nieuwenhuysen E, Gonzalez-Martin A, et al. 40 InnovaTV 301/ENGOT-cx12/GOG-3057: tisotumab vedotin vs investigator{\textquoteright}s choice chemo in second- or third-line recurrent or metastatic cervical cancer. Int J Gynecol Cancer. 2021;31:A1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Nagasaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagasaka, K. (2024). Molecular Target Drug for Cervical Cancer. In: Aoki, D. (eds) Recent Topics on Prevention, Diagnosis, and Clinical Management of Cervical Cancer. Comprehensive Gynecology and Obstetrics. Springer, Singapore. https://doi.org/10.1007/978-981-99-9396-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9396-3_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9395-6

  • Online ISBN: 978-981-99-9396-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics