Skip to main content

Plausible Role of Microbiome as Biofertilizers, Biopesticides or Biostimulants for Improving the Crop Health

  • Chapter
  • First Online:
Plant Holobiome Engineering for Climate-Smart Agriculture

Part of the book series: Sustainable Plant Nutrition in a Changing World ((SPNCW))

  • 23 Accesses

Abstract

Many bacterial strains in the rhizosphere have processes that aid in the growth of plants. Crop yields can be increased by using these bacteria as biofertilizers not only in forestry but also in agriculture. Bacterial biofertilizers can boost plant development in many ways. Plant biostimulants are significant in integrated crop management (ICM) systems because they promote different beneficial activities in plants and their surroundings. They are intended to improve crop output, quality, and sustainability by utilizing plants’ natural capabilities. Plant biostimulants have gained significant attention as an eco-friendly alternative for promoting sustainable agricultural practices. These products are used to enhance plant growth, improve crop productivity, and increase resistance to various environmental stresses. Among the different types of biostimulants, microbial biostimulants, including bacterial plant biostimulants (BPBs), have attracted particular interest from both the industry and researchers. The plant growth-promoting rhizobacteria (PGPR) that the BPBs are based on play plausible roles in promoting/stimulating agricultural plant growth in a variety of ways. The increasing use of pesticides and synthetic fertilizers is damaging to biodiversity of soil microbes and environmental pollution. The practice of using microorganisms as biofertilizers has been suggested as an alternate agricultural technique in response to this growing problem. Although a lot of research has been done on bacteria, in recent years, there has been more focus on the little that is known about yeasts and their potential to safely stimulate plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamir M, Rai KK, Zehra A, Dubey MK, Kumar S, Shukla V, Upadhyay RS (2020) Microbial bioformulation-based plant biostimulants: a plausible approach toward next generation of sustainable agriculture. In: Microbial endophytes. Woodhead Publishing, pp 195–225

    Chapter  Google Scholar 

  • Abbas R, Rasul S, Aslam K, Baber M, Shahid M, Mubeen F, Naqqash T (2019) Halotolerant PGPR: a hope for cultivation of saline soils. J King Saud Univ Sci 31(4):1195–1201

    Article  Google Scholar 

  • Agliassa C, Mannino G, Molino D, Cavalletto S, Contartese V, Bertea CM, Secchi F (2021) A new protein hydrolysate-based biostimulant applied by fertigation promotes relief from drought stress in Capsicum annuum L. Plant Physiol Biochem 166:1076–1086

    Article  CAS  PubMed  Google Scholar 

  • Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain Z, Elsayed EA, Enshasy HA (2021) Role of Bacillus cereus in improving the growth and phytoextractability of Brassica nigra (L.) K. Koch in chromium contaminated soil. Molecules 26:1569. https://www.mdpi.com/1420-3049/26/6/1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asaf S, Hamayun M, Khan AL, Waqas M, Khan MA, Jan R et al (2018) Salt tolerance of Glycine max. L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol Biochem 128:13–23. https://doi.org/10.1016/j.plaphy.2018.05.007

    Article  CAS  PubMed  Google Scholar 

  • Baba ZA, Hamid B, Sheikh TA, Alotaibi S, Enshasy HE, Ansari MJ, Zuan ATK, Sayyed RZ (2021) Psychrotolerant Mesorhizobium sp. isolated from temperate and cold desert regions solubilize potassium and produces multiple plant growth promoting metabolites. Molecules 26:5758. https://www.mdpi.com/1420-3049/26/19/5758/htm

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakhshandeh E, Pirdashti H, Lendeh KS (2017) Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecol Eng 103:164–169

    Article  Google Scholar 

  • Basu A, Prasad P, Das SN, Kalam S, Sayyed RZ, Reddy MS, El Enshasy H (2021) Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13:1140. https://www.mdpi.com/2071-1050/13/3/1140

    Article  CAS  Google Scholar 

  • Bellini A, Gilardi G, Idbella M, Zotti M, Pugliese M, Bonanomi G, Gullino ML (2023) Trichoderma enriched compost, BCAs and potassium phosphite control Fusarium wilt of lettuce without affecting soil microbiome at genus level. Appl Soil Ecol 182:104678

    Article  Google Scholar 

  • Bhat BA, Tariq L, Nissar S, Islam ST, Islam SU, Mangral Z, Ilyas N, Sayyed RZ, Muthusamy G, Kim W, Dar TH*. (2022) Plant-associated rhizobacteria in plant growth and metabolism as a tool for sustainable agriculture. J Appl Microbiol:1–25. https://doi.org/10.1111/jam.157962022

  • Bhat MA, Mishra AK, Jan S, Kamal MA, Rahman S et al (2023) Plant growth promoting rhizobacteria in plant health: a perspective study of the underground interaction. Plan Theory 12(3):629

    CAS  Google Scholar 

  • Bibi F, Ilyas N (2020) Effect of agricultural pollution on crops. In: Hasanuzzaman M (ed) Agronomic crops: Volume 3: Stress responses and tolerance. Springer, Singapore, pp 593–601

    Chapter  Google Scholar 

  • Bibi F, Ilyas N, Arshad M, Khalid A, Saeed M, Ansar S, Batley J (2022) Formulation and efficacy testing of bio-organic fertilizer produced through solid-state fermentation of agro-waste by Burkholderia cenocepacia. Chemosphere 291:132762

    Article  CAS  PubMed  Google Scholar 

  • Boekhout T, Amend AS, El Baidouri F, GabaldĂłn T, Geml J, Mittelbach M et al (2022) Trends in yeast diversity discovery. Fungal Divers 114(1):491–537

    Article  Google Scholar 

  • Brown P, Saa S (2015) Biostimulants in agriculture. Front Plant Sci 6:671

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulgari R, Franzoni G, Ferrante A (2019) Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9(6):306

    Article  CAS  Google Scholar 

  • Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakdar H, Dastager SG, Khire JM, Rane D, Dharne MS (2018) Characterization of mineral phosphate solubilizing and plant growth promoting bacteria from termite soilv of arid region. 3 Biotech 8:1–11

    Article  Google Scholar 

  • Chandrasekaran M, Chun SC, Oh JW, Paramasivan M, Saini RK, Sahayarayan JJ (2019) Bacillus subtilis CBR05 for tomato (Solanum lycopersicum) fruits in South Korea as a novel plant probiotic bacterium (PPB): implications from total phenolics, flavonoids, and carotenoids content for fruit quality. Agronomy 9(12):838

    Article  CAS  Google Scholar 

  • Cheng XF, Wu HH, Zou YN, Wu QS, KuÄŤa K (2021) Mycorrhizal response strategies of trifoliate orange under well-watered, salt stress, and waterlogging stress by regulating leaf aquaporin expression. Plant Physiol Biochem 162:27–35. https://doi.org/10.1016/j.plaphy.2021.02.026

    Article  CAS  PubMed  Google Scholar 

  • Chiaiese P, Corrado G, Colla G, Kyriacou MC, Rouphael Y (2018) Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Front Plant Sci 9:1782

    Article  PubMed  PubMed Central  Google Scholar 

  • De Paula GF, DemĂ©trio GB, Matsumoto LS (2021) Biotechnological potential of soybean plant growth-promoting rhizobacteria. Rev Caatinga 34(2):328–338. https://doi.org/10.1590/1983-21252021V34N209RC

    Article  Google Scholar 

  • Del Buono D (2021) Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci Total Environ 751:141763

    Article  PubMed  Google Scholar 

  • Dellagi A, Quillere I, Hirel B (2020) Beneficial soil-borne bacteria and fungi: a promising way to improve plant nitrogen acquisition. J Exp Bot 71(15):4469–4479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • du Jardin P, Xu L, Geelen D (2020) Agricultural functions and action mechanisms of plant biostimulants (PBs) an introduction. In: Geelen D, Xu L (eds) The chemical biology of plant biostimulants. John Wiley & Sons, London, UK, pp 1–30

    Google Scholar 

  • Elnahal ASM, El-saadony MT, Saad AM, Desoky EM, El-tahan AM, Rady MM, Abuqamar SF, El-tarabily KA (2022) The use of microbial inoculants for biological control, plant growth promotion , and sustainable agriculture: a review. Eur J Plant Pathol 162(4):759–792. https://doi.org/10.1007/s10658-021-02393-7. Springer Netherlands

    Article  Google Scholar 

  • Fahad S, Ullah A, Ali U, Ali E, Saud S, Hakeem KR et al (2019) Drought tolerance in plants role of phytohormones and scavenging system of ROS. In: Plant tolerance to environmental stress. CRC Press, pp 103–114

    Chapter  Google Scholar 

  • GarcĂ­a-Fraile P, MenĂ©ndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205. https://doi.org/10.3934/bioeng.2015.3.183

    Article  CAS  Google Scholar 

  • González-PĂ©rez E, Ortega-Amaro MA, Salazar-Badillo FB, Bautista E, Douterlungne D, JimĂ©nez-Bremont JF (2018) The Arabidopsis-Trichoderma interaction reveals that the fungal growth medium is an important factor in plant growth induction. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-34500-w

    Article  CAS  Google Scholar 

  • Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Nataraj K, Udayashankar AC, Amruthesh KN, Murali M, Poczai P, Gafur A, Almalki WH, Sayyed RZ (2022) Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress: a review. Antioxidants (Basel) 11(9):1763. https://doi.org/10.3390/antiox11091763

    Article  CAS  PubMed  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7(2):96–102

    CAS  Google Scholar 

  • Hamid B, Zaman M, Farooq S, Fatima S, Sayyed RZ, Baba ZA et al (2021) Bacterial plant biostimulants: a sustainable way towards improving growth, productivity, and health of crops. Sustainability 13(5):2856

    Article  CAS  Google Scholar 

  • Hassan EA, Yasser S, Mostafa A, Mohamed H, Nivien AN (2021) Biosafe management of Botrytis grey mold of strawberry fruit by novel bioagents. Plan Theory 12:2737. https://doi.org/10.3390/plants10122737

    Article  CAS  Google Scholar 

  • Hata EM, Yusof MT, Zulperi D (2021) Induction of systemic resistance against bacterial leaf streak disease and growth promotion in rice plant by Streptomyces shenzhenesis TKSC3 and Streptomyces sp. SS8. Plant Pathol J 37:173–181. https://doi.org/10.5423/PPJ.OA.05.2020.0083

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-Fernández M, Cordero-Bueso G, Ruiz-Muñoz M, Cantoral JM (2021) Culturable yeasts as biofertilizers and biopesticides for a sustainable agriculture: a comprehensive review. Plan Theory 10(5):822

    Google Scholar 

  • Hoque MN, Hannan A, Imran S, Paul NC, Mondal MF, Sadhin MMR et al (2023) Plant growth-promoting rhizobacteria-mediated adaptive responses of plants under salinity stress. J Plant Growth Regul 42(3):1307–1326

    Article  CAS  Google Scholar 

  • Huang W, Sun D, Lu Y, Dai S, Chen L, An Y (2021) Effects of pesticide–fertilizer combinations on the rhizosphere microbiome of sugarcane: a preliminary study. Sugar Tech 23:571–579

    Article  CAS  Google Scholar 

  • Ilyas N, Mumtaz K, Akhtar N, Yasmin H, Sayyed RZ, Khan W, Enshasy HE, Dailin DJ, Elsayed EA, Ali Z (2020) Exo-polysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability 12:8876. https://www.mdpi.com/2071-1050/12/21/8876

    Article  CAS  Google Scholar 

  • Ilyas N, Akhtar N, Naseem A, Qureshi R, Majeed A, Sayyed RZ (2022) The potential of Bacillus subtilis and phosphorus in improving the growth of wheat under chromium stress. J Appl Microbiol 133(6):3307–3321. https://doi.org/10.1111/jam.15676

    Article  CAS  PubMed  Google Scholar 

  • Jabborova D, Kannepalli A, Davranov K, Narimanov A, Enakiev Y, Syed A, Elgorban AM, Bahkali AH, Wirth S, Sayyed RZ, Gafur A (2021) Co-inoculation of rhizobacteria promotes growth, yield, and nutrient contents in soybean and improves soil enzymes and nutrients under drought conditions. Sci Rep 11:22081. https://doi.org/10.1038/s41598-021-01337-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabborova D, Annapurna K, Azimov A, Tyagi S, Pengani KR, Sharma S, Vikram K, Poczai P, Nasif O, Ansari MJ, Sayyed RZ (2022) Co-inoculation of biochar and arbuscular mycorrhizae for growth promotion and nutrient fortification in soybean under drought conditions. Front Plant Sci 13:947547. https://doi.org/10.3389/fpls.2022.947547

    Article  PubMed  PubMed Central  Google Scholar 

  • JimĂ©nez-GĂłmez A, Flores-FĂ©lix JD, GarcĂ­a-Fraile P, Mateos PF, MenĂ©ndez E, Velázquez E, Rivas R (2018) Probiotic activities of Rhizobium laguerreae on growth and quality of spinach. Sci Rep 8(1):1–10

    Article  Google Scholar 

  • Jochum MD Jr (2019) Enhanced drought tolerance through plant growth promoting rhizobacteria and microbiome engineering applications. (Doctoral dissertation). Texas A&M University

    Google Scholar 

  • Jochum MD, McWilliams KL, Borrego EJ, Kolomiets MV, Niu G, Pierson EA, Jo YK (2019) Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Front Microbiol 10:2106

    Article  PubMed  PubMed Central  Google Scholar 

  • Kabiraj A, Majhi K, Halder U, Let M, Bandopadhyay R (2020) Role of Plant Growth-Promoting Rhizobacteria (PGPR) for crop stress management. In: Sustainable agriculture in the era of climate change, pp 367–389. https://doi.org/10.1007/978-3-030-45669-6_17

    Chapter  Google Scholar 

  • Kalam S, Basu A, Ahmad I, Sayyed RZ, Enshasy HE, Dailin DJ, Suriani NL (2020) Recent understanding of soil acidobacteria and their ecological significance: a critical review. Front Microbiol 11:580024. https://doi.org/10.3389/fmicb.2020.580024

    Article  PubMed  PubMed Central  Google Scholar 

  • Karimian MA, Nasab BF, Sayyed RZ, Ilyas N, Almalki WH, Vats S, Munir S, Said H, Rahi AM (2023) Salicylic acid foliar spray promotes yield, yield components, and physiological characteristics in foxtail millet under drought stress. Pak J Bot 55(SI). https://doi.org/10.30848/PJB2023-SI(11)

  • Kaushal P, Ali N, Saini S, Pati PK, Pati AM (2023) Physiological and molecular insight of microbial biostimulants for sustainable agriculture. Front Plant Sci 14:1041413

    Article  PubMed  PubMed Central  Google Scholar 

  • Keswani C, Singh SP, Cueto L, GarcĂ­a-Estrada C, Mezaache-Aichour S, Glare TR et al (2020) Auxins of microbial origin and their use in agriculture. Appl Microbiol Biotechnology 104:8549–8565

    Article  Google Scholar 

  • Khan A, Sayyed RZ (2019) Seifi S. Rhizobacteria: legendary soil guards in abiotic stress management. In: Sayyed A, Reddy (eds) Plant growth promoting rhizobacteria for sustainable stress management: Volume 1: Abiotic stress management. Springer, Singapore, pp 327–343

    Google Scholar 

  • Khan N, Ali S, Tariq H, Latif S, Yasmin H, Mehmood A, Shahid MA (2020) Water conservation and plant survival strategies of rhizobacteria under drought stress. Agronomy 10(11):1683

    Article  Google Scholar 

  • Khan N, Ali A, Shahi MA, Mustafa A, Sayyed RZ, Curaá JA (2021) Insights into the interactions among roots, rhizosphere and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cell 10(6):1551. https://doi.org/10.3390/cells10061551

    Article  CAS  Google Scholar 

  • Khan M, Ali S, Al Azzawi TNI, Saqib S, Ullah F, Ayaz A, Zaman W (2023) The key roles of ROS and RNS as a signaling molecule in plant–microbe interactions. Antioxidants 12(2):268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna K, Ohri P, Bhardwaj R, Ahmad P (2022) Unsnarling plausible role of plant growth-promoting rhizobacteria for mitigating Cd-toxicity from plants: an environmental safety aspect. J Plant Growth Regul 41(6):2514–2542

    Article  CAS  Google Scholar 

  • Kusale SP, Attar YC, Sayyed RZ, Malek RA, Ilyas N, Suriani NL, Khan N, Enshasy HE (2021) Production of plant beneficial and antioxidants metabolites by Klebsiella variicola under salinity stress. Molecules 26:1894. https://doi.org/10.3390/molecules26071894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Tong L, Lv Y (2023) Influence of bio-fertilizer type and amount jointly on microbial community composition, crop production and soil health. Agronomy 13(7):1775

    Article  CAS  Google Scholar 

  • Malhotra SK (2017) Horticultural crops and climate change: a review. Indian J Agric Sci 87(1):12–22

    Google Scholar 

  • MalusĂ  E, Vassilev N, Neri D, Xu X (2023) Editorial: Plant root interaction with associated microbiomes to improve plant resiliency and crop biodiversity, volume II. Front Plant Sci 14:1–3. https://doi.org/10.3389/fpls.2023.1143657

    Article  Google Scholar 

  • Mawar R, Ranawat M, Ram L, Sayyed RZ (2023) Harnessing drought tolerant PGPM in arid agro ecosystem for plant disease management and soil amelioration. In: Ritu Mawar R, Sayyed Z, Sharma SK, Sattiraju KS (eds) Plant growth promoting microorganisms of arid region: status and prospects. Springer, Singapore, pp 27–43

    Chapter  Google Scholar 

  • Mishra P, Mishra J, Arora NK (2021) Plant growth promoting bacteria for combating salinity stress in plants–recent developments and prospects: a review. Microbiol Res 252:126861

    Article  CAS  PubMed  Google Scholar 

  • Mohanty P, Singh PK, Chakraborty D, Mishra S, Pattnaik R (2021) Insight into the role of PGPR in sustainable agriculture and environment. Front Sustain Food Syst 5:667150

    Article  Google Scholar 

  • Naz H, Sayyed RZ, Khan RU, Wani OA, Maqsood A, Maqsood S, Fahad A, Lim HR, Show PL (2023) Mesorhizobium improves chickpea growth under chromium stress and alleviates chromium contamination of soil. J Environ Manag 2023(338):117779. https://doi.org/10.1016/j.jenvman.2023.117779

    Article  CAS  Google Scholar 

  • Niu C, Wang G, Sui J, Liu G, Ma F, Bao Z (2022) Biostimulants alleviate temperature stress in tomato seedlings. Sci Hortic 293:110712

    Article  CAS  Google Scholar 

  • Panicker S, Sayyed RZ (2022) Hydrolytic enzymes from PGPR against plant fungal pathogens. In: Sayyed R, Singh A, Ilyas N (eds) Antifungal metabolites of rhizobacteria for sustainable agriculture. Fungal biology. Springer, Cham, pp 211–238

    Chapter  Google Scholar 

  • Pereira SIA, Abreu D, Moreira H, Vega A, Castro PML (2020) Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon 6(10):e05106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pylak M, Oszust K, FrÄ…c M (2019) Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev Environ Sci Biotechnol 18(3):597–616

    Article  CAS  Google Scholar 

  • Rai S, Omar AF, Rehan M, Al-Turki A, Sagar A, Ilyas N et al (2023) Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture. Planta 257(2):27

    Article  CAS  Google Scholar 

  • Raza A, Ashraf F, Zou X, Zhang X, Tosif H (2020) Plant adaptation and tolerance to environmental stresses: mechanisms and perspectives. In: Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I: General consequences and plant responses, pp 117–145. https://doi.org/10.1007/978-981-15-2156-0_5

    Chapter  Google Scholar 

  • Reddy EG, Reddy GS, Goudar V, Sriramula A, Swarnalatha GV, Tawaha ARAM (2022) Sayyed RZ. Hydrolytic enzyme producing Plant Growth-Promoting Rhizobacteria (PGPR) in plant growth promotion and biocontrol. In: Sayyed RZ, Uarrota VG (eds) Secondary metabolites and volatiles of PGPR in plant-growth promotion. Springer, Cham, pp 303–312. https://doi.org/10.1007/978-3-031-07559-9_15

    Chapter  Google Scholar 

  • Reshma P, Naik MK, Aiyaz M, Niranjana SR, Chennappa G, Shaikh SS, Sayyed RZ (2018) Induced systemic resistance by 2,4diacetylphloroglucinol positive fluorescent Pseudomonas strains against rice sheath blight. Indian J Exp Biol 56(3):207–212

    CAS  Google Scholar 

  • Riaz U, Mehdi SM, Iqbal S, Khalid HI, Qadir AA, Anum W et al (2020) Bio-fertilizers: eco-friendly approach for plant and soil environment. In: Hakeem KR, Bhat RA, Qadri H (eds) Bioremediation and biotechnology: sustainable approaches to pollution degradation. Springer, Cham, pp 189–213

    Chapter  Google Scholar 

  • Rouphael Y, Colla G (2018) Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front Plant Sci 9:1655

    Article  PubMed  PubMed Central  Google Scholar 

  • Saeed M, Ilyas N, Jayachandran K, Gaffar S, Arshad M, Ahmad MS et al (2021) Biostimulation potential of biochar for remediating the crude oil contaminated soil and plant growth. Saudi J Biol Sci 28(5):2667–2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeed M, Ilyas N, Bibi F, Shabir S, Jayachandran K, Sayyed RZ et al (2023) Development of novel kinetic model based on microbiome and biochar for in-situ remediation of total petroleum hydrocarbons (TPHs) contaminated soil. Chemosphere 324:138311

    Article  CAS  PubMed  Google Scholar 

  • Sagar A, Sayyed RZ, Ramteke PW, Sharma S, Marraiki N, Elgorban AM, Syed A (2020) ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. PR14 promotes the growth of rice and millets under salinity stress. Physiol Mol Biol Plants 26:1847–1854. https://doi.org/10.1007/s12298-020-00852-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagar A, Rai S, Ilyas N, Sayyed RZ, Al-Turki AI, Enshasy HAE, Simarmata T (2022) Halotolerant rhizobacteria for salinity stress mitigation: diversity, mechanism and molecular approaches. Sustainability 14:490. https://www.mdpi.com/2071-1050/14/1/490/htm

    Article  CAS  Google Scholar 

  • Savelli E, Rusca M, Cloke H, Di Baldassarre G (2022) Drought and society: scientific progress, blind spots, and future prospects. Wiley Interdiscip Rev Clim Chang 13(3):e761

    Article  Google Scholar 

  • Sayyed RZ, Ilyas N, Tabassum B, Hashem A, Abd-Allah EF, Jadhav HP (2019a) Plausible role of plant growth-promoting rhizobacteria in future climatic scenario. In: Environmental biotechnology: for sustainable future. Springer, Singapore, pp 175–197. https://doi.org/10.1007/978-981-10-7284-0_7

    Chapter  Google Scholar 

  • Sayyed RZ, Reddy MS, Antonius S (eds) (2019b) Plant growth promoting rhizobacteria (PGPR): prospects for sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Sethi SK, Sahu JK, Adhikary SP (2018) Microbial biofertilizers and their pilot-scale production. In: Microbial biotechnology. CRC Press, pp 312–1331

    Google Scholar 

  • Sharma B, Tiwari S, Kumawat KC, Cardinale M (2023) Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: potentiality and their limitations. Sci Total Environ 860:160476

    Article  CAS  PubMed  Google Scholar 

  • Shiraz M, Sami F, Siddiqui H, Yusuf M, Hayat S (2021) Interaction of auxin and nitric oxide improved photosynthetic efficiency and antioxidant system of Brassica juncea plants under salt stress. J Plant Growth Regul 40:2379–2389

    Article  CAS  Google Scholar 

  • Silambarasan S, Logeswari P, Sivaramakrishnan R, Incharoensakdi A, Cornejo P, Kamaraj B, Chi NTL (2021) Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation. Chemosphere 268:129323

    Article  CAS  PubMed  Google Scholar 

  • Singh I, Solomon S, Gopalakrishnan VAK, Ghosh A (2023) Environmental benefits of an alternative practice for sugarcane cultivation using Gracilaria-based seaweed biostimulant. Sugar Tech 25(2):440–452

    Article  CAS  Google Scholar 

  • Sorokan A, Cherepanova E, Burkhanova G, Veselova S, Rumyantsev S, Alekseev V et al (2020) Endophytic Bacillus spp as a prospective biological tool for control of viral diseases and non-vector Leptinotarsa decemlineata Say in Solanum tuberosum L. Front Microbiol 11:569457

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanvere S, Akhtar N, Ilyas N, Sayyed RZ, Fitriatin BN, Parveen K, Bukhari NA (2023) Interactive effects of Pseudomonas putida and salicylic acid for mitigating drought tolerance in Canola (Brassica napus L.). Heliyon 9(3):e14193. https://doi.org/10.1016/j.heliyon.2023.e14193

    Article  CAS  Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 243–282

    Chapter  Google Scholar 

  • Trinchera A, Raffa DW (2023) Weeds: an insidious enemy or a tool to boost mycorrhization in cropping systems? Microorganisms 11(2):334

    Article  PubMed  PubMed Central  Google Scholar 

  • Vassileva M, Mocali S, Canfora L, Malusá E, GarcĂ­a del Moral LF, Martos V, Flor-Peregrin E, Vassilev N (2022) Safety level of microorganism-bearing products applied in soil-plant systems. Front Plant Sci 13:1–11. https://doi.org/10.3389/fpls.2022.862875

    Article  Google Scholar 

  • Verma S, Kumar M, Kumar A, Das S, Chakdar H, Varma A, Saxena AK (2022) Diversity of bacterial endophytes of maize (Zea mays) and their functional potential for micronutrient biofortification. Curr Microbiol 79:1–14

    Article  Google Scholar 

  • Vurukonda SS, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Wozniak E, Blaszczak A, Wiatrak P, Canady M (2020) Biostimulant mode of action: impact of biostimulant on whole-plant level. Chem Biol Plant Biostimulants:205–227

    Google Scholar 

  • Xu S, Shen F, Song J, Wang Y, Yu S, Zhang L et al (2022) Enantioselectivity of new chiral triazole fungicide mefentrifluconazole: bioactivity against phytopathogen, and acute toxicity and bioaccumulation in earthworm (Eisenia fetida). Sci Total Environ 815:152937

    Article  CAS  PubMed  Google Scholar 

  • You JM, Xiong K, Mu S, Guo J, Guo XL, Duan YY et al (2018) Identification of endophytic bacteria Bzjn1 and research on biological control of root rot of Atractylodes Macrocephala. Zhongguo Zhong Yao Za Zhi 3:478–483. https://doi.org/10.19540/j.cnki.cjcmm.20180105.008

    Article  Google Scholar 

  • Zain M, Yasmin S, Hafeez FY (2019) Isolation and characterization of plant growth promoting antagonistic bacteria from cotton and sugarcane plants for suppression of phytopathogenic Fusarium species. Iran J Biotechnol 17:e1974. https://doi.org/10.21859/ijb.1974

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bibi, F., Ilyas, N., Saeed, M., Sohail (2024). Plausible Role of Microbiome as Biofertilizers, Biopesticides or Biostimulants for Improving the Crop Health. In: Sayyed, R.Z., Ilyas, N. (eds) Plant Holobiome Engineering for Climate-Smart Agriculture. Sustainable Plant Nutrition in a Changing World. Springer, Singapore. https://doi.org/10.1007/978-981-99-9388-8_5

Download citation

Publish with us

Policies and ethics