Skip to main content

Purification of Selenium-Contaminated Soils Using the Selenate Reducing Bacterium Stutzerimonas stutzeri NT-I

  • Conference paper
  • First Online:
Sustainable Construction Resources in Geotechnical Engineering (IC-CREST 2023)

Abstract

Selenium (Se) is a rare metal found mainly in volcanic sediments. As Japan has many sulfide deposits, selenium is naturally widely distributed at low concentrations. Selenium exists in soil as soluble seleno-oxyanions, such as selenate [Se (VI)] and selenite [Se (IV)], which are highly toxic. The Japanese government has standards for soluble selenium concentrations in soil that can be achieved by water shielding or the addition of insolubilization agents. However, as these treatments leave selenium in the soil, it cannot be reused because of a risk of selenium re-elution. To solve this problem, we attempted to rapidly insolubilize soluble seleno-oxyanions in the soil by adding a bacterium, Stutzerimonas stutzeri NT-I, which reduces selenate [Se (VI)] through selenite [Se (IV)] to insoluble elemental selenium [Se (0)] and then elemental selenium to volatile dimethyl diselenide (DMDSe). We attempted purification of selenate-contaminated soil using S. stutzeri NT-I. Under optimal culture conditions, 46% of the initial selenate concentration was removed from the selenate-contaminated soil reducing Se elution below the designated standards within 72 h. These results indicate that bioremediation using S. stutzeri NT-I is effective for selenate-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bullock LA, Perez M, Armstrong JG, Parnell J, Still J, Feldmann J (2018) Selenium and tellurium resources in Kisgruva Proterozoic volcanogenic massive sulphide deposit (Norway). Ore Geol Rev 99:411–424

    Article  Google Scholar 

  2. Kilic Y, Kartal G, Timur S (2013) An investigation of copper and selenium recovery from copper anode slimes. Int J Miner Process 124:75–82

    Article  Google Scholar 

  3. Mizutani T, Kanaya K, Osaka T (2001) Map of selenium content in soil in Japan. J Health Sci 47:407–413

    Article  Google Scholar 

  4. Yamada H, Kamada A, Usuki M, Yanai J (2009) Total selenium content of agricultural soils in Japan. Soil Sci Plant Nutr 55:616–622

    Article  Google Scholar 

  5. Kang Y, Yamada H, Kyuma K, Hattori T (1993) Speciation of selenium in soil. Soil Sci Plant Nutr 39:331–337

    Article  Google Scholar 

  6. Lenz M, Janzen N, Lens PNL (2008) Selenium oxyanion inhibition of hydrogenotrophic and acetoclastic methanogenesis. Chemosphere 73:383–388

    Article  Google Scholar 

  7. Yu R, Coffman JP, van Fleet-Stalder V, Chasteen TG (1997) Toxicity of oxyanions of selenium and of a proposed bioremediation intermediate, dimethyl selenone. Environ Toxicol Chem 16:140–145

    Article  Google Scholar 

  8. Somogyi Z, Kiss I, Kádár I, Bakonyi G (2007) Toxicity of selenate and selenite to the potworm Enchytraeus albidus (Annelida: Enchytraeidae): a laboratory test. Ecotoxicology 16:379–384

    Article  Google Scholar 

  9. Gworek B, Dmuchowski W, Koda E, Marecka M, Baczewska A, Brągoszewska P, Sieczka A, Osiński P (2016) Impact of the municipal solid waste Łubna landfill on environmental pollution by heavy metals. Water 8:470

    Article  Google Scholar 

  10. Börsig N, Scheinost AC, Shaw S, Schild D, Neumann T (2018) Retention and multiphase transformation of selenium oxyanions during the formation of magnetite via iron(II) hydroxide and green rust. Dalton Trans 47:11002–11015

    Article  Google Scholar 

  11. Kang Y, Inoue N, Rashid MM, Sakurai K (2002) Fixation of soluble selenium in contaminated soil by amorphous iron (hydr) oxide

    Google Scholar 

  12. Vasarevičius S, Danila V, Paliulis D (2019) Application of stabilized nano zero valent iron particles for immobilization of available Cd2+, Cu2+, Ni2+, and Pb2+ ions in soil. Int J Environ Res 13:465–474

    Article  Google Scholar 

  13. Xie Y, Dong H, Zeng G, Zhang L, Cheng Y, Hou K, Jiang Z, Zhang C, Deng J (2017) The comparison of Se(IV) and Se(VI) sequestration by nanoscale zero-valent iron in aqueous solutions: the roles of solution chemistry. J Hazard Mater 338:306–312

    Article  Google Scholar 

  14. Zambonino MC, Quizhpe EM, Jaramillo FE, Rahman A, Santiago Vispo N, Jeffryes C, Dahoumane SA (2021) Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. Int J Mol Sci 22:989

    Article  Google Scholar 

  15. Schiavon M, Pilon-Smits EAH (2017) Selenium biofortification and phytoremediation phytotechnologies: a review. J Environ Qual 46:10–19

    Article  Google Scholar 

  16. Wadgaonkar SL, Nancharaiah YV, Esposito G, Lens PNL (2018) Environmental impact and bioremediation of seleniferous soils and sediments. Crit Rev Biotechnol 38:941–956

    Article  Google Scholar 

  17. Tan LC, Nancharaiah YV, van Hullebusch ED, Lens PNL (2016) Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol Adv 34:886–907

    Article  Google Scholar 

  18. Kuroda M, Notaguchi E, Sato A, Yoshioka M, Hasegawa A, Kagami T, Narita T, Yamashita M, Sei K, Soda S, Ike M (2011) Characterization of Pseudomonas stutzeri NT-I capable of removing soluble selenium from the aqueous phase under aerobic conditions. J Biosci Bioeng 112:259–264

    Article  Google Scholar 

  19. Kagami T, Narita T, Kuroda M, Notaguchi E, Yamashita M, Sei K, Soda S, Ike M (2013) Effective selenium volatilization under aerobic conditions and recovery from the aqueous phase by Pseudomonas stutzeri NT-I. Water Res 47:1361–1368

    Article  Google Scholar 

  20. Otsuka O, Yamashita M (2020) Selenium recovery from wastewater using the selenate-reducing bacterium Pseudomonas stutzeri NT-I. Hydrometallurgy 197:105470

    Article  Google Scholar 

  21. Brink HG, Wessels CE, Chirwa E (2018) Pseudomonas stutzeri NT-I: optimal conditions for growth and selenate reduction. Chem Eng Trans 70:1651–1656

    Google Scholar 

  22. Job T, Hendrik B (2019) The effect of nitrogen on the reduction of selenate and selenite to elemental selenium. Chem Eng Trans 74:529–534

    Google Scholar 

  23. Ce W, Emn C (2017) Reduction of selenium by Pseudomonas stutzeri NT-I: growth, reduction and kinetics. J Bioremed Biodegrad 8

    Google Scholar 

  24. Ike M, Soda S, Kuroda M (2017) Bioprocess approaches for the removal of selenium from industrial waste and wastewater by Pseudomonas stutzeri NT-I. In: van Hullebusch ED (ed) Bioremediation of selenium contaminated wastewater. Springer, Cham, pp 57–73

    Chapter  Google Scholar 

  25. Tabelin CB, Basri AHM, Igarashi T, Yoneda T (2012) Removal of arsenic, boron, and selenium from excavated rocks by consecutive washing. Water Air Soil Pollut 223:4153–4167

    Article  Google Scholar 

  26. Tabelin CB, Sasaki R, Igarashi T, Park I, Tamoto S, Arima T, Ito M, Hiroyoshi N (2017) Simultaneous leaching of arsenite, arsenate, selenite and selenate, and their migration in tunnel-excavated sedimentary rocks: I. Column experiments under intermittent and unsaturated flow. Chemosphere 186:558–569

    Article  Google Scholar 

  27. Tabelin CB, Igarashi T, Villacorte-Tabelin M, Park I, Opiso EM, Ito M, Hiroyoshi N (2018) Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: a review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci Total Environ 645:1522–1553

    Article  Google Scholar 

  28. Suzuki T, Sue K, Morotomi H, Niinae M, Yokoshima M, Nakata H (2019) Immobilization of selenium(VI) in artificially contaminated kaolinite using ferrous ion salt and magnesium oxide. J Environ Chem Eng 7:102802

    Article  Google Scholar 

  29. Manca PP, Caredda P, Orrù G (2018) The applicability of soil flushing technology in a metallurgical plant. Int J Coal Sci Technol 5:70–77

    Article  Google Scholar 

  30. Kang Y, Nozato N, Kyuma K, Yamada H (1991) Distribution and forms of selenium in paddy soil. Soil Sci Plant Nutr 37:477–485

    Article  Google Scholar 

Download references

Funding

This study was supported in part by the JSPS KAKENHI Grant Number 16K06876. We would like to thank F. Fukuzawa for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Otsuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Otsuka, O., Yamashita, M. (2024). Purification of Selenium-Contaminated Soils Using the Selenate Reducing Bacterium Stutzerimonas stutzeri NT-I. In: Hazarika, H., Haigh, S.K., Chaudhary, B., Murai, M., Manandhar, S. (eds) Sustainable Construction Resources in Geotechnical Engineering. IC-CREST 2023. Lecture Notes in Civil Engineering, vol 448. Springer, Singapore. https://doi.org/10.1007/978-981-99-9227-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9227-0_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9226-3

  • Online ISBN: 978-981-99-9227-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics