Skip to main content
Log in

Removal of Arsenic, Boron, and Selenium from Excavated Rocks by Consecutive Washing

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This paper describes the leaching behavior and release mechanisms of arsenic (As), boron (B), and selenium (Se) from excavated rocks using sequential extraction for solid-phase fractionation, batch experiments with pH variation, and consecutive batch experiments with changes in the solid–liquid mixing ratios. Arsenic in the excavated rock was mostly found with the sulfides/organic matter fraction while majority of the leachable B and Se were associated with the exchangeable phases. The leaching of As was strongly pH dependent, Se was pH dependent only around the acidic region, and B was pH independent. Consecutive washing technique with deionized water effectively lowered the B and Se concentrations in the leachate below the drinking water standards of Japan, but was inefficient in the removal of As. Arsenic exhibited non-conservative leaching behavior and its movement was affected by processes like dissolution, precipitation, and pyrite oxidation. In contrast, B and Se behaved more conservatively, resulting in their easy removal from the excavated rock by simple washing and dilution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acharyya, S. K., Lahiri, S., Raymahashay, B. C., & Bhowmik, A. (2000). Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh: the role of Quarternary stratigraphy and Holecene sea-level fluctuation. Environmental Geology, 39(10), 1127–1137.

    CAS  Google Scholar 

  • Aiuppa, A., Avino, R., Brusca, L., Caliro, S., Chiodini, G., D’Alessadro, W., Favara, R., Federico, C., Ginevra, W., Inguaggiato, S., Longo, M., Pecoraino, G., & Valenza, M. (2006). Mineral control of arsenic content in thermal waters from volcano-hosted hydrothermal systems: insights from the island of Ischia and Phlegrean Fields. Chemical Geology, 229, 313–330.

    Article  CAS  Google Scholar 

  • Akai, J., Izumi, K., Fukuhara, H., Masuda, H., Nakano, S., Yoshimura, T., Ohfuji, H., Anwar, H. M., & Akai, K. (2004). Mineralogical and geomicrobial investigations on groundwater arsenic enrichment in Bangladesh. Applied Geochemistry, 19, 215–230.

    Article  CAS  Google Scholar 

  • Allen, K. D., & Hahn, G. A. (1994). Geology of Sunbeam and Grouse Creek gold–silver deposits, Yankee Fork mining district, Eocene Challis volcanic field, Idaho: a volcanic dome and volcaniclastic-hosted epithermal system. Economic Geology, 89, 1964–1982.

    Article  CAS  Google Scholar 

  • Brannon, J. M., & Patrick, W. H. (1987). Fixation, transformation and mobilization of arsenic in sediments. Environmental Science and Technology, 21, 450–459.

    Article  CAS  Google Scholar 

  • Clevenger, T. E. (1990). Use of sequential extraction to evaluate the heavy metals in mining wastes. Water, Air, and Soil Pollution, 50, 241–253.

    Article  CAS  Google Scholar 

  • Cornelis, G., Anette-Johnson, C., Van Gerven, T., & Vandecasteele, C. (2008). Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review. Applied Geochemistry, 23, 955–976.

    Article  CAS  Google Scholar 

  • Das, D., Samanta, S., Mandal, B. K., Chowdhury, T. R., Chanda, C. R., Chowdry, P. P., Basu, G. K., & Chakraborti, D. (1996). Arsenic in groundwater in six districts of West Bengal, India. Environmental Geochemistry and Health, 18, 5–15.

    Article  CAS  Google Scholar 

  • Dousova, B., Machovic, V., Kolousek, D., Kovanda, F., & Dornicak, V. (2003). Sorption of As (V) species from aqueous solution. Water, Air, and Soil Pollution, 149, 251–267.

    Article  CAS  Google Scholar 

  • Dowling, C. B., Poreda, R. J., Basu, A. R., Peters, S. L., & Aggarwal, P. K. (2002). Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resources Research, 38(9), 1173.

    Article  Google Scholar 

  • Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling: hydrous ferric oxide. New York: Wiley.

    Google Scholar 

  • Fail, P. A., Chapin, R. E., Price, C. J., & Heindel, J. J. (1998). General, reproductive, developmental, and endocrine toxicity of boronated compounds. Reproductive Toxicology Review, 12(1), 1–18.

    Article  CAS  Google Scholar 

  • Fishbein, L. (1983). Environmental selenium and its significance. Fundamental and Applied Toxicology, 3, 411–419.

    Article  CAS  Google Scholar 

  • Ghosh, M.M., Teoh, R.S. (1985). Adsorption of arsenic on hydrous aluminum oxide. In: Proceedings of the Seventh Mid-Atlantic Industrial Waste Conference, Lancaster, PA, pp. 139–155.

  • Halbach, P., Pracejus, B., & Marten, A. (1993). Geology and mineralogy of massive sulfide ores from Okinawa trough. Japanese Economic Geology, 88, 2210–2225.

    Article  CAS  Google Scholar 

  • Horton, T. W., Becker, J. A., Craw, D., Koons, P. O., & Page Chamberlain, C. (2001). Hydrothermal arsenic enrichment in an active mountain belt: Southern Alps, New Zealand. Chemical Geology, 177, 323–339.

    Article  CAS  Google Scholar 

  • Huston, D. L., Sie, S. H., Sauter, G. F., Cook, D. R., & Both, R. A. (1995). Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: Part 1. Proton microprobe analyses of pyrite, chalcopyrite and sphalerite, and Part 2. Selenium levels in pyrite: comparison with δ34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90, 1167–1196.

    Article  CAS  Google Scholar 

  • Jang, J. H., & Dempsey, B. A. (2008). Coadsorption of arsenic(III) and arsenic(V) onto hydrous ferric oxide: effects of abiotic oxidation of arsenic(III), extraction efficiency, and model accuracy. Environmental Science and Technology, 42, 2893–2898.

    Article  CAS  Google Scholar 

  • Jerz, J. K., & Rimstidt, J. D. (2004). Pyrite oxidation in moist air. Geochimica et Cosmochima Acta, 68, 701–714.

    Article  CAS  Google Scholar 

  • Levinson, A. A., & Ludwick, J. C. (1966). Speculation on the incorporation of boron into argillaceous sediments. Geochimica et Cosmochima Acta, 30, 855–861.

    Article  CAS  Google Scholar 

  • Lin, Z., & Puls, R. W. (2000). Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environmental Geology, 39(7), 753–759.

    CAS  Google Scholar 

  • Marumo, K., Ebashi, T., Ujiie, T. (2003). Heavy metal concentrations, leachabilities and lead isotope ratios of Japanese soils. Shigen–Chishitsu, 53(2), 125–146. (Paper in Japanese with English abstract)

    Google Scholar 

  • O’Day, P. A., Vlassopoulos, D., Root, R., & Rivera, N. (2004). The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proceedings of the National Academy of Sciences, 101(38), 13703–13708.

    Article  Google Scholar 

  • Ostwald, J., & England, B. M. (1977). Notes on framboidal pyrite from Allandale, New South Wales, Australia. Mineral Deposita, 12, 111–116.

    Article  CAS  Google Scholar 

  • Parks, J. L., & Edwards, M. (2009). Boron in the environment. Critical Reviews in Environmental Science and Technology, 35(2), 81–114.

    Article  Google Scholar 

  • Peters, S. C., & Blum, J. D. (2003). The source and transport of arsenic in a bedrock aquifer, New Hampshire, USA. Applied Geochemistry, 18, 1773–1787.

    Article  CAS  Google Scholar 

  • Savage, K. S., Tingle, T. N., O’Day, P. A., Waychunas, G. A., & Bird, D. K. (2000). Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Applied Geochemistry, 15, 1219–1244.

    Article  CAS  Google Scholar 

  • Sengupta, A. K. (2002). Environmental separation of heavy metals—engineering processes. London: Lewis.

    Google Scholar 

  • Smith, A. H., Hopenhayn-Rich, C., Bates, M. N., Goeden, H. M., Hertz-Picciotto, I., Duggan, H. M., Wood, R., Kosnett, M. J., & Smith, M. T. (1992). Cancer risks from arsenic in drinking water. Environmental Health Perspectives, 97, 259–267.

    Article  CAS  Google Scholar 

  • Tabelin, C. B., & Igarashi, T. (2009). Mechanisms of arsenic and lead release from hydrothermally altered rock. Journal of Hazardous Materials, 169, 980–990.

    Article  CAS  Google Scholar 

  • Tabelin, C. B., Igarashi, T., & Tamoto, S. (2010). Factors affecting arsenic mobility from hydrothermally altered rock in impoundment-type in situ experiments. Minerals Engineering, 23, 238–248.

    Article  CAS  Google Scholar 

  • Tabelin, C. B., Igarashi, I., & Takahashi, R. (2012). Mobilization and speciation of arsenic and lead from hydrothermally altered rock in column experiments under ambient conditions. Applied Geochemistry, 27, 326–342.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–850.

    Article  CAS  Google Scholar 

  • Tinggi, U. (2003). Essentiality and toxicity of selenium and its status in Australia: a review. Toxicology Letters, 137, 103–110.

    Article  CAS  Google Scholar 

  • Ure, A., & Berrow, M. (1982). Chapter 3: The elemental constituents of soils. In H. J. M. Bowen (Ed.), Environmental chemistry (pp. 94–203). London: Royal Society of Chemistry.

    Chapter  Google Scholar 

  • Wang, S., & Mulligan, C. (2006). Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. Journal of Hazardous Materials, 138(3), 459–470.

    Article  CAS  Google Scholar 

  • Webster, J. G. (1999). Arsenic. In C. P. Marshall & R. W. Fairbridge (Eds.), Encyclopaedia of geochemistry (pp. 21–22). London: Chapman Hall.

    Google Scholar 

  • Zawislanski, P. T., Benson, S. M., Terberg, R., & Borglin, S. E. (2003). Selenium speciation, solubility and mobility in land-disposed dredge sediments. Environmental Science and Technology, 37, 2415–2420.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A part of this study was financially supported by the Japan Society for the Promotion of Science (JSPS) grant-in-aid for scientific research. The authors also wish to thank the anonymous reviewers for their valuable inputs to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlito Baltazar Tabelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabelin, C.B., Basri, A.H.M., Igarashi, T. et al. Removal of Arsenic, Boron, and Selenium from Excavated Rocks by Consecutive Washing. Water Air Soil Pollut 223, 4153–4167 (2012). https://doi.org/10.1007/s11270-012-1181-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1181-x

Keywords

Navigation