Skip to main content

Potato Genome Editing: Recent Challenges and a Practical Procedure

  • Chapter
  • First Online:
Gene Editing in Plants

Abstract

Potato (Solanum tuberosum L.) is one of the most important staple crops, accounting for the fourth highest production in the world. To date, many studies on potatoes using genome-editing technologies have been reported. These studies cover a wide range of fields including new trait development, analysis of gene functions, and improvement in genome-editing technology. Trait-related genes are one of the major targets of genome editing, leading to improvement in crop productivity and the properties of storage starch, as well as increased tolerance to abiotic and biotic stresses. Technical advances in potato genome editing facilitate precise nucleotide substitutions, the establishment of mutants of interest with high efficiency, and the elimination of CRISPR/Cas9 and selection marker genes retained in the product genomes. In this chapter, we review recent studies on genome editing in potato and our improved method that achieved high efficiency in targeted mutagenesis for the gene of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acha G, Vergara R, Muñoz M, Mora R, Aguirre C, Muñoz M, Kalazich J, Prieto H (2021) A traceable DNA-replicon derived vector to speed up gene editing in potato: interrupting genes related to undesirable postharvest tuber traits as an example. Plants 10:1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson M, Melander M, Pojmark P, Larsson H, Bülow L, Hofvander P (2006) Targeted gene suppression by RNA interference: and efficient method for production of high-amylose potato lines. J Biotechnol 123:137–148

    Article  CAS  PubMed  Google Scholar 

  • Andersson M, Turesson H, Nicolia A, Fält AS, Samuelsson M, Hofvander P (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128

    Article  CAS  PubMed  Google Scholar 

  • Andersson M, Turesson H, Olsson N, Fält AS, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:378–384

    Article  CAS  PubMed  Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wison C, Newby GA, Raguram A, Liu D (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki H, Teramura H, Schepetilnikov M, Ryabova LA, Kusano H, Shimada H (2014) Enhanced translation of the downstream ORF attributed to a long 5′ untranslated region in the OsMac1 gene family members, OsMac2 and OsMac3. Plant Biotechnol 31:221–228

    Article  CAS  Google Scholar 

  • Asp NG, Björck I, Holm J, Nyman M, Siljeström M (1987) Enzyme resistant starch fractions and dietary fibre. Scand J Gastroenterol Suppl 129:29–32

    Article  CAS  PubMed  Google Scholar 

  • Azad MAK, Khatun Z, El-Jaoual Eaton T, Hossen MI, Haque MK, Soren EB (2020) Generation of virus free potato plantlets through meristem culture and their field evaluation. Am J Plant Sci 11:1827–1846

    Article  Google Scholar 

  • Bánfalvi Z, Csákvári E, Villányi V, Kondrák M (2020) Generation of transgene-free PDS mutants in potato by agrobacterium-mediated transformation. BMC Biotechnol 20:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One 10:e0144591

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci 7:1045

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler NM, Jansky SH, Jiang J (2020) First-generation genome editing in potato using hairy root transformation. Plant Biotechnol J 18:2201–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsen FM, Johansen IE, Yang Z, Liu Y, Westberg IN, Kieu NP, Jørgensen B, Lenman M, Andreasson E, Nielsen KL, Blennow A, Petersen BL (2022) Strategies for efficient gene editing in protoplasts of Solanum tuberosum theme: determining gRNA efficiency design by utilizing protoplast (research). Front Genome Ed 3:795644

    Article  PubMed  PubMed Central  Google Scholar 

  • Čermák T, Curtin SJ, Gil-Humanes J, Čegan R, Kono TJY, Konečná E, Belanto JJ, Starker CG, Mathre JW, Greenstein RL, Voytas DF (2017) A multiple toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Ann Rev Plant Biol 70:667–697

    Article  CAS  Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176

    Article  CAS  PubMed  Google Scholar 

  • D’Amelia V, Staiti A, D’Orso F, Maisto M, Piccolo V, Aversano R, Carputo D (2022) Targeted mutagenesis of StISAC stabilizes the production of anthocyanins in potato cell culture. Plant Direct 6:e433

    Article  PubMed  PubMed Central  Google Scholar 

  • Eggers EJ, van der Burgt A, van Heusden SAW, de Vries ME, Visser RGF, Bachem CWB, Lindhout P (2021) Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato. Nat Commun 12:4141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enciso-Rodriguez F, Manrique-Carpintero NC, Nadakuduti SS, Buell CR, Zarka D, Douches D (2019) Overcoming self-incompatibility in diploid potato using CRISPR-Cas9. Front Plant Sci 10:376

    Article  PubMed  PubMed Central  Google Scholar 

  • Endo M, Osakabe K, Ichikawa H, Toki S (2006) Molecular characterization of true and ectopic gene targeting events at the acetolactate synthase gene in Aradidopsis. Plant Cell Physiol 47:372–379

    Article  CAS  PubMed  Google Scholar 

  • Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–259

    Article  CAS  PubMed  Google Scholar 

  • Forsyth A, Weeks T, Richael C, Duan H (2016) Transcription activator-like effector nucleases (TALEN)-mediated targeted dna insertion in potato plants. Front Plant Sci 7:1572

    Article  PubMed  PubMed Central  Google Scholar 

  • Fossi M, Amundson K, Kuppu S, Britt A, Comai L (2019) Regeneration of Solanum tuberosum plants from protoplasts induces widespread genome instability. Plant Physiol 180:78–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Sirk SJ, Shui SL, Liu J (2016) Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol 8:a023754

    Article  PubMed  PubMed Central  Google Scholar 

  • González MN, Massa GA, Andersson M, Turesson H, Olsson N, Fält A-S, Storani L, Décima Oneto CA, Hofvander P, Feingold SE (2020) Reduced enzymatic browning in potato tubers by specific editing of polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas system. Front Plant Sci 10:1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan H, Kuriki T, Sivak M, Preiss J (1995) Maize branching enzyme catalyzes synthasis of glycogen-like polysaccharide in glgB-deficient Escherichia coli. Proc Natl Acad Sci U S A 92:964–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegde N, Doddamani D, Kushalappa AC (2020) Identification and functional characterisation of late blight resistance polymorphic genes in russet Burbank potato cultivar. Funct Plant Biol 48:88–102

    Article  PubMed  Google Scholar 

  • Heilersig HJB, Loonen A, Bergervoet M, Wolters AMA, Visser RGF (2006) Post-transcriptional gene silencing of GBSSI in potato: effects of size and sequence of the inverted repeats. Plant Mol Biol 60:647–662

    Article  CAS  PubMed  Google Scholar 

  • Irigoyen S, Ramasamy M, Pant S, Niraula P, Bedre R, Gurung M, Rossi D, Laughlin C, Gorman Z, Achor D, Levy A, Kolomiets MV, Sétamou M, Badillo-Vargas IE, Avila CA, Irey MS, Mandadi KK (2020) Plant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp. Nat Commun 11:5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jobling SA, Schwall GP, Westcott RJ, Sidebottom CM, Debet M, Gidley MJ, Jeffcoat R, Safford R (1999) A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterization of multiple forms of SBE A. Plant J 18:163–171

    Article  CAS  PubMed  Google Scholar 

  • Johansen IE, Liu Y, Jørgensen B, Bennett EP, Andreasson E, Nielsen KL, Blennow A, Petersen BL (2019) High efficacy full-allelic CRISPR/Cas9 gene editing in tetraploid potato. Sci Rep 9:17715

    Article  PubMed  PubMed Central  Google Scholar 

  • Khromov AV, Gushchin VA, Timerbaev VI, Kalinina NO, Taliansky ME, Makarov VV (2018) Guide RNA design for CRISPR/Cas9-mediated potato genome editing. Dokl Biochem Biophys 479:90–94

    Article  CAS  PubMed  Google Scholar 

  • Kieu NP, Lenman M, Wang ES, Petersen BL, Andreasson E (2021) Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci Rep 11:4487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochevenko A, Willmitzer L (2003) Chimeric RNA/DNA oligonucleotide-based site-specific modification of the tobacco acetolactate synthase gene. Plant Physiol 132:174–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusano H, Onodera H, Kihira M, Aoki H, Matsuzaki H, Shimada H (2016) A simple gateway-assisted construction system of TALEN genes for plant genome editing. Sci Rep 6:30234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusano H, Ohnuma M, Mutsuro-Aoki H, Asahi T, Ichinosawa D, Onodera H, Asano K, Noda T, Horie T, Fukumoto K, Hihira M, Teramura H, Yazaki K, Umemoto N, Muranaka T, Shimada H (2018) Establishment of modified CRISPR/Cas9 system with increased mutagenesis frequency using the translational enhancer dMac3 and multiple guide RNAs in potato. Sci Rep 8:13753

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32:677–683

    Article  CAS  PubMed  Google Scholar 

  • Kushalappa AC, Hegde NG, Gunnaiah R, Sathe A, Yogendra KN, Ajjamada L (2022) Apoptotic-like PCD inducing HRC gene when silenced enhances multiple disease resistance in plants. Sci Rep 12:20402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson CT, Hofvander P, Khoshnoodi J, Ek B, Rask L, Larsson H (1996) Three isoforms of starch synthase and two isoforms of branching enzyme are present in potato tuber starch. Plant Sci 117:9–16

    Article  CAS  Google Scholar 

  • Lee J, Chung JH, Kim HM, Kim DW, Kim H (2016) Designed nucleases for targeted genome editing. Plant Biotechnol J 14:448–462

    Article  CAS  PubMed  Google Scholar 

  • Li JF, Norville JE, Arch J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucioli A, Tavazza R, Baima S, Fatyol K, Burgyan J, Tavazza M (2022) CRISPR-Cas9 targeting of the eIF4E1 gene extends the potato virus Y resistance spectrum of the Solanum tuberosum L. cv. Desirée. Front Microbiol 13:873930

    Article  PubMed  PubMed Central  Google Scholar 

  • Makhotenko AV, Khromov AV, Snigir EA, Makarova SS, Makarov VV, Suprunova TP, Kalinina NO, Taliansky ME (2019) Functional analysis of coilin in virus resistance and stress tolerance of potato Solanum tuberosum using CRISPR-Cas9 editing. Dokl Biochem Biophys 484:88–91

    Article  CAS  PubMed  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Arch J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon KB, Park SJ, Park JS, Lee HJ, Shin SY, Lee SM, Choi GJ, Kim SG, Cho HS, Jeon JH, Kim YS, Park YI, Kim HS (2022) Editing of StSR4 by Cas9-RNPs confers resistance to Phytophthora infestans in potato. Front Plant Sci 13:997888

    Article  PubMed  PubMed Central  Google Scholar 

  • Mottram DS, Wedzicha BL, Dodson AT (2002) Acrylamide is formed in the Maillard reaction. Nature 419:448–449

    Article  CAS  PubMed  Google Scholar 

  • Nadakuduti SS, Buell CR, Voytas DF, Starker CG, Douches DS (2018) Genome editing for crop improvement—applications in clonally propagated polyploids with a focus on potato (Solanum tuberosum L.). Front Plant Sci 9:1607

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadakuduti SS, Starker CG, Ko DK, Jayakody TB, Buell CR, Voytas DF, Douches DS (2019) Evaluation of methods to access in vivo activity of engineered genome-editing nucleases in protoplasts. Front Plant Sci 10:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakayasu M, Umemoto N, Ohyama K, Fujimoto Y, Lee HJ, Watanabe B, Muranaka T, Saito K, Sugimoto Y, Mizutani M (2017) Dioxygenase catalyzes steroid 16α-hydro-xylation in steroidal glycoalkaloid biosynthesis. Plant Physiol 175:120–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayasu M, Akiyama R, Lee HJ, Osakabe K, Osakabe Y, Watanabe B, Sugimoto Y, Umemoto N, Saito K, Muranaka T, Mizutani M (2018) Generation of a-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol Biochem 131:70–77

    Article  CAS  PubMed  Google Scholar 

  • Nicolia A, Proux-Wéra E, Åhman I, Onkokesung N, Andersson M, Andreasson E, Zhu LH (2015) Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. J Biotechnol 204:17–24

    Article  CAS  PubMed  Google Scholar 

  • Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol 127:459–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perroud PF, Guyon-Debast A, Veillet F, Kermarrec MP, Chauvin L, Chauvin JE, Gallois JL, Nogué F (2022) Prime editing in the model plant Physcomitrium patens and its potential in the tetraploid potato. Plant Sci 316:111162

    Article  CAS  PubMed  Google Scholar 

  • Pocher E, Lande R (2005) Loss of gametophytic self-incompatibility with evolution of inbreeding depression. Evolution 59:46–60

    Google Scholar 

  • Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu L-J (2007) Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res 17:471–482

    Article  CAS  PubMed  Google Scholar 

  • Razzaq HA, Ijaz S, Haq IU, Khan IA (2022) Functional inhibition of the StERF3 gene by dual targeting through CRISPR/Cas9 enhances resistance to the late blight disease in Solanum tuberosum L. Mol Biol Rep 49:11675–11684

    Article  CAS  PubMed  Google Scholar 

  • Salam BB, Barbier F, Danieli R, Teper-Bamnolker P, Ziv C, Spíchal L, Aruchamy K, Shnaider Y, Leibman D, Shaya F, Carmeli-Weissberg M, Gal-On A, Jiang J, Ori N, Beveridge C, Eshel D (2021) Sucrose promotes stem branching through cytokinin. Plant Physiol 185:1708–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, Sakurai A, Fujita N, Nakamura Y (2003) Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol 133:1111–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N (2014) Sterol side chain reductase 2 is key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevestre F, Facon M, Wattebled F, Szydlowski N (2020) Facilitating gene editing in potato: a single-nucleotide polymorphism (SNP) map of the Solanum tuberosum L. cv. Desiree genome. Sci Rep 10:2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, Robert MC, Riediker S (2002) Acrylamide from Maillard reaction products. Nature 419:449–450

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi A, Ohnuma M, Teramura H, Asano K, Noda T, Kusano H, Tamura K, Shimada H (2021) Creation of a potato mutant lacking the starch branching enzme gene StSBE3 that was generated by genome editing using the CRISPR/dMac3-Cas9 system. Plant Biotechnol 38:345–353

    Article  CAS  Google Scholar 

  • Takeuchi A, Akatsu Y, Asahi T, Okubo Y, Ohnuma M, Teramura H, Tamura K, Shimada H (2022) Procedure for the efficient acquisition of progeny seeds from crossed potato plants grafted onto tomato. Plant Biotechnol 39:195–197

    Article  Google Scholar 

  • Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci 61:246–257

    Article  CAS  PubMed  Google Scholar 

  • Teper-Bamnolker P, Roitman M, Katar O, Peleg N, Aruchamy K, Suher S, Doron-Faigenboim A, Leibman D, Omid A, Belausov E, Andersson M, Olsson N, Fält AS, Volpin H, Hofvander P, Gal-On A, Eshel D (2022) An alternative pathway to plant cold tolerance in the absence of vacuolar invertase activity. Plant J 113:327–341

    Article  PubMed  PubMed Central  Google Scholar 

  • Tinello F, Lante A (2018) Recent advances in controlling polyphenol oxidase activity of fruit and vegetative products. Innov Food Sci Emerg Technol 50:73–83

    Article  CAS  Google Scholar 

  • Toinga-Villafuerte S, Vales MI, Awika JM, Rathore KS (2022) CRISPR/Cas9-mediated mutagenesis of the granule-bound starch synthase gene in the potato variety Yukon Gold to obtain amylose-free starch in tubers. Int J Mol Sci 23:4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuncel A, Corbin KR, Ahn-Javis J, Harris S, Hawkins E, Smedley MA, Harwood W, Warren FJ, Patron NJ, Smith AM (2019) Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of tuber starch phenotypes. Plant Biotechnol J 17:2259–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Plank JE, Wasserman JW (1945) Mass production of virus-free potatoes. Nature 155:794–795

    Article  Google Scholar 

  • Van Harsselaar JK, Lorenz J, Senning M, Sonnewald U, Sonnewald S (2017) Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.). BMC Genomics 18:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Veillet F, Chauvin L, Kermarrec MP, Sevestre F, Merrer M, Terret Z, Szydlowski N, Devaux P, Gallois JL, Chauvin JE (2019a) The Solanum tuberosum GBSSI gene: a target for assessing gene and base editing in tetraploid potato. Plant Cell Rep 38:1065–1080

    Article  CAS  PubMed  Google Scholar 

  • Veillet F, Perrot L, Chauvin L, Kermarrec MP, Guyon-Debast A, Chauvin JE, Nogué F, Mazier M (2019b) Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int J Mol Sci 20:402

    Article  PubMed  PubMed Central  Google Scholar 

  • Veillet F, Kermarrec MP, Chauvin L, Chauvin JE, Nogué F (2020a) CRISPR-induced indels and base editing using the Staphylococcus aureus Cas9 in potato. PLoS One 15:e0235942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veillet F, Perrot L, Guyon-Debast A, Kermarrec MP, Chauvin L, Chauvin JE, Gallois JL, Mazier M, Nogué F (2020b) Expanding the CRISPR toolbox in P. Patens using SpCas9-NG variant and application for gene and base editing in Solanaceae crops. Int J Mol Sci 21:1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visser RGF, Somhorst I, Kuipers GJ, Ruys NJ, Feenstra WJ, Jacobsen E (1991) Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol Gen Genet 225:289–296

    Article  CAS  PubMed  Google Scholar 

  • Yasmeen A, Shakoor S, Azam S, Bakhsh A, Shahid N, Latif A, Shahid AA, Husnain T, Rao AQ (2022) CRISPR/Cas-mediated knockdown of vacuolar invertase gene expression lowers the cold-induced sweetening in potatoes. Planta 256:107

    Article  CAS  PubMed  Google Scholar 

  • Yasumoto S, Umemoto N, Lee HJ, Nakayasu M, Sawai S, Sakuma T, Yamamoto T, Mizutani M, Saito K, Muranaka T (2019) Efficient genome engineering using platinum TALEN in potato. Plant Biotechnol 36:167–173

    Article  CAS  Google Scholar 

  • Yasumoto S, Sawai S, Lee HJ, Mizutani M, Saito K, Umemoto N, Muranaka T (2020) Targeted genome editing in tetraploid potato through transient TALEN expression by agrobacterium infection. Plant Biotechnol 37:205–211

    Article  CAS  Google Scholar 

  • Ye M, Peng Z, Tang D, Yang Z, Li D, Xu Y, Zhang C, Huang S (2018) Generation of self-compatible diploid potato by knockout of S-RNase. Nat Plants 4:651–654

    Article  CAS  PubMed  Google Scholar 

  • Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4:e264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Andersson M, Andersson R (2018) Resistant starch and other dietary fiber components in tubers from a high-amylose potato. Food Chem 251:58–63

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Jayarathna S, Turesson H, Fält AS, Nestor G, González MN, Olsson N, Beganovic M, Hofvander P, Andersson R, Andersson M (2021) Amylose starch with no detectable branching developed through DNA-free CRISPR-Cas9 mediated mutagenesis of two starch branching enzymes in potato. Sci Rep 11:4311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Chen P, Wang H, Liu H, Li Y, Zhang Y, Wu Y, Paek C, Sun Z, Lei J, Yin L (2022) Cas12a variants designed for lower genome-wide off-target effect through stringent PAM recognition. Mol Therapy 30:244–255

    Article  CAS  Google Scholar 

  • Zong Y, Song Q, Li C, Jin S, Zhang D, Wang Y, Qiu JL, Gao C (2018) Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol 36:950–953

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kusano, H., Takeuchi, A., Shimada, H. (2024). Potato Genome Editing: Recent Challenges and a Practical Procedure. In: Kumar, A., Arora, S., Ogita, S., Yau, YY., Mukherjee, K. (eds) Gene Editing in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-99-8529-6_16

Download citation

Publish with us

Policies and ethics