Skip to main content
Log in

CRISPR/Cas-mediated knockdown of vacuolar invertase gene expression lowers the cold-induced sweetening in potatoes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

VInv gene editing in potato using CRISPR/Cas9 resulted in knockdown of expression and a lower VInv enzymatic activity resulting in a decrease in post-harvest cold-storage sugars formation and sweetening in potatoes.

Abstract

CRISPR-Cas9-mediated knockdown of vacuolar invertase (VInv) gene was carried out using two sgRNAs in local cultivar of potato plants. The transformation efficiency of potatoes was found to be 11.7%. The primary transformants were screened through PCR, Sanger sequencing, digital PCR, and ELISA. The overall editing efficacy was determined to be 25.6% as per TIDE analysis. The amplicon sequencing data showed maximum indel frequency for potato plant T12 (14.3%) resulting in 6.2% gene knockout and 6% frame shift. While for plant B4, the maximum indel frequency of 2.0% was found which resulted in 4.4% knockout and 4% frameshift as analyzed by Geneious. The qRT-PCR data revealed that mRNA expression of VInv gene was reduced 90–99-fold in edited potato plants when compared to the non-edited control potato plant. Following cold storage, chips analysis of potatoes proved B4 and T12 as best lines. Reducing sugars’ analysis by titration method determined fivefold reduction in percentage of reducing sugars in tubers of B4 transgenic lines as compared to the control. Physiologically genome-edited potatoes behaved like their conventional counterpart. This is first successful report of knockdown of potato VInv gene in Pakistan that addressed cold-induced sweetening resulting in minimum accumulation of reducing sugars in genome edited tubers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X 1:19–25

    Google Scholar 

  • Andersson M, Turesson H, Nicolia A, Falt A, Samuelsson M, Hofvander P (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128

    Article  CAS  PubMed  Google Scholar 

  • Andersson M, Turesson H, Olsson N, Fält AS, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164(4):378–384. https://doi.org/10.1111/ppl.12731 (Epub 2018 Apr 27 PMID: 29572864)

    Article  CAS  PubMed  Google Scholar 

  • Arndell T, Sharma N, Langridge P et al (2019) gRNA validation for wheat genome editing with the CRISPR-Cas9 system. BMC Biotechnol 19:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf NM, Krishnagopal A, Hussain A, Kastner D, Sayed AMM, Mok YK, Zeeshan N (2019) Engineering of serine protease for improved thermostability and catalytic activity using rational design. Int J Biol Macromol 126:229–237

    Article  CAS  PubMed  Google Scholar 

  • Bakhsh A (2020) Development of efficient, reproducible and stable Agrobacterium-mediated genetic transformation of five potato cultivars. Food Technol Biotechnol 58:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaskar PB, Raasch JA, Kramer LC, Neumann P, Wielgus SM, AustinPhillips S, Jiang JM (2008) Sgt1, but not Rar1, is essential for the RBmediated broad-spectrum resistance to potato late blight. BMC Plant Biol 8:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhaskar PB, Wu L, Busse JS, Whitty BR, Hamernik AJ, Jansky SH, Buell CR, Bethke PC, Jiang J (2010) Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiol 154(2):939–948. https://doi.org/10.1104/pp.110.162545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi G, Scalzo RL, Testoni A (2014) Maestrelli A (2014) Nondestructive analysis to monitor potato quality during cold storage. J Food Quality 37(1):9–17

    Article  CAS  Google Scholar 

  • Blecher-Gonen R, Barnett-Itzhaki Z, Jaitin D, Amann-Zalcenstein D, Lara-Astiaso D, Amit I (2013) High-throughput chromatin immunoprecipitation for genome wide mapping of in vivo protein-DNA interactions and epigenomic states. Nat Protocols 8:539–554

  • Buckenhuskes HJ (2005) Chapter 1 Nutritionally relevant aspects of potatoes and potato constituents. In: Haverkort AJ, Struik PC (eds) Potato in Progress: Science Meets Practice. Wageningen Academic Pub, The Netherlands, pp 17–45

    Google Scholar 

  • Burlingame B, Mouille B, Charrondiere R (2009) Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J Food Compos Anal 22(6):494–502

    Article  CAS  Google Scholar 

  • Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS ONE. https://doi.org/10.1371/journal.pone.0144591

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci 7:1045. https://doi.org/10.3389/fpls.2016.01045

    Article  PubMed  PubMed Central  Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhan A (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176

    Article  CAS  PubMed  Google Scholar 

  • Dangol DS, Barakate A, Stephens J et al (2019) Genome editing of potato using CRISPR technologies: current development and future prospective. Plant Cell Tiss Organ Cult 139:403–416. https://doi.org/10.1007/s11240-019-01662-y

    Article  Google Scholar 

  • Day CD, Elsa L, Kobayashi J, Holappa LD, Albert H, Ow DW (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14:2869–2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greiner S, Rausch T, Sonnewald U et al (1999) Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nat Biotechnol 17:708–711. https://doi.org/10.1038/10924

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Chavez A, Tung A, Chan Y, Kaas C, Yin Y, Cecchi R, Garnier SL, Kelsic ED, Schubert M, Dicarlo JE, Collins JJ, Church GM (2018) High-throughput creation and functional profiling of DNA sequence variant 152 libraries using CRISPR–Cas9 in yeast. Nat Biotechnol 36:540–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurusaravanan P, Vinoth S, Jayabalan N (2020) An improved Agrobacterium-mediated transformation method for cotton (Gossypium hirsutum L. ‘KC3’) assisted by microinjection and sonication. In Vitro Cell Dev Biol-Plant 56:111–121

    Article  CAS  Google Scholar 

  • Helliwell C, Waterhouse P (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30(4):289–295. https://doi.org/10.1016/s1046-2023(03)00036-7 (PMID: 12828942)

    Article  CAS  PubMed  Google Scholar 

  • Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Duquenne L (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37(1):D211–D215

    Article  CAS  PubMed  Google Scholar 

  • Jacobs TB, LaFayette PR, Schmitz RJ et al (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105(28):6474–6487

    Article  CAS  Google Scholar 

  • Karlapudi AP, Venkateswarulu TC, Tammineedi J, Srirama K, Kanumuri L, Kodali VP (2018) In silico sgRNA tool design for CRISPR control of quorum sensing in Acinetobacter species. Genes Dis 5(2):123–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khromov AV, Gushchin VA, Timerbaev VI et al (2018) Guide RNA design for CRISPR/Cas9-mediated potato genome editing. Dokl Biochem Biophys 479:90–94. https://doi.org/10.1134/S1607672918020084

    Article  CAS  PubMed  Google Scholar 

  • Klann EM, Hall B, Bennett AB (1996) Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol 112(3):1321–1330. https://doi.org/10.1104/pp.112.3.1321.PMID:8938422;PMCID:PMC158060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Singh BP, Kumar P (2004) An overview of the factors affecting sugar content of potatoes. Ann Appl Biol 145:247–256

    Article  Google Scholar 

  • Matsuura-Endo C, Ohara-Takada A, Chuda Y, Ono H, Yada H, Yoshida M, Kobayashi A, Tsuda S, Takigawa S, Noda T, Yamauchi H, Mori M (2006) Effects of storage temperature on the contents of sugars and free amino acids in tubers from different potato cultivars and acrylamide in chips. Biosci Biotechnol Biochem 70:1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Nakayasu M, Shioya N, Shikata M, Thagun C, Abdelkareem A, Okabe Y, Ariizumi T, Arimura GI, Mizutani M, Ezura H, Hashimoto T, Shoji T (2018) JRE4 is a master transcriptional regulator of defense-related steroidal glycoalkaloids in tomato. Plant J 94(6):975–990. https://doi.org/10.1111/tpj.13911 (Epub 2018 Apr 29 PMID: 29569783)

    Article  CAS  PubMed  Google Scholar 

  • Noureen A, Khan MZ, Amin I, Zainab T, Mansoor S (2022) CRISPR/Cas9- mediated targeting of susceptibility factor eIF4E-enhanced resistance against potato virus Y. Front Genet 13:922019. https://doi.org/10.3389/fgene.2022.922019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan C, Ye L, Qin L et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765. https://doi.org/10.1038/srep24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Lim K, Kim J, Bae S (2017) Cas-analyzer: an online tool for assessing genome editing results using NGS data. Bioinformatics 33(2):286–288

    Article  CAS  PubMed  Google Scholar 

  • Peng C, Zheng M, Ding L, Chen X, Wang X, Feng X, Wang J, Xu J (2020) Accurate detection and evaluation of the gene-editing frequency in plants using droplet digital PCR. Front Plant Sci 11:1919

    Article  Google Scholar 

  • Reece-Hoyes JS, Walhout AJM (2018) Gateway recombinational cloning. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.top094912

    Article  PubMed  PubMed Central  Google Scholar 

  • Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    Article  CAS  PubMed  Google Scholar 

  • Sowokinos JR (2001) Biochemical and molecular control of cold-induced sweetening in potatoes. Am J Potato Res 78(3):221–236

    Article  CAS  Google Scholar 

  • Tang GQ, Luscher M, Sturm A (1999) Antisense repression and vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 11:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veillet F, Kermarrec MP, Chauvin L, Chauvin JE, Nogué F (2020) CRISPR-induced indels and base editing using the Staphylococcus aureus Cas9 in potato. PLoS ONE 15(8):e0235942. https://doi.org/10.1371/journal.pone.0235942 (PMID: 32804931; PMCID: PMC7430721)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • Wiberley-Bradford AE, Busse JS, Jiang J, Bethke PC (2014) Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin. BMC Res Notes 7:801

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu L, Bhaskar PB, Busse JS, Zhang R, Bethke PC, Jiang J (2011) Developing cold-chipping potato varieties by silencing the vacuolar invertase gene. Crop Sci 51:981–990

    Article  Google Scholar 

  • Xu J, Kang B, Naing AH, Bae SJ, Kim JS, Kim H (2020) CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity. Plant Biotechnol J 18:287–297

    Article  CAS  PubMed  Google Scholar 

  • Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14–3-3 protein GF14λ in cotton leads to a “Stay-Green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45(8):1007–1014. https://doi.org/10.1093/pcp/pch115

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12(1):7–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Shakya R, Shrestha P, Rommens CM (2010) Tuber-specific silencing of the acid invertase gene substantially lowers the acrylamide forming potential of potato. J Agric Food Chem 58:12162–12167

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Wang X, Zhang W, Qian T, Tang G, Guo Y, Zheng C (2008) Antisense suppression of an acid invertase gene (MAI1) in muskmelon alters plant growth and fruit development. J Exp Bot 59(11):2969–2977. https://doi.org/10.1093/jxb/ern158

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Xie CH, Song BT, Liu X, Liu J (2008) RNAi effects on regulation of endogenous acid invertase activity in potato (Solanum tuberosum L.) tubers. Chin J Agric Biotechnol 5:107–112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AY: performed all the experiments related to vector confirmation, genetic transformation, compiled data and wrote initial draft of manuscript. AQR: designed study, constructed recombinant plasmids, provided technical support, and supervised the study. SA, NS and AL: helped in genetic transformation experiments and recorded data. AB: helped in mutant screening and phenotypic analysis. SS: helped in morphological and physiological assays, AAS: edited the manuscript and interpreted data, TH: supervised the overall study, read the manuscript critically and presented it in its current form.

Corresponding author

Correspondence to Abdul Qayyum Rao.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1248 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasmeen, A., Shakoor, S., Azam, S. et al. CRISPR/Cas-mediated knockdown of vacuolar invertase gene expression lowers the cold-induced sweetening in potatoes. Planta 256, 107 (2022). https://doi.org/10.1007/s00425-022-04022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-04022-x

Keywords

Navigation