Skip to main content

Response and Behavior of Paddy Soil Microbiota Towards Environmental Change

  • Chapter
  • First Online:
Climate Change Impacts on Soil-Plant-Atmosphere Continuum

Part of the book series: Advances in Global Change Research ((AGLO,volume 78))

  • 128 Accesses

Abstract

Climate change as a global issue is characterized by alterations in assessable parameters of climate and other environmental factors, at an alarming rate. These factors are potent enough in modifying the existing dynamics of soil microbiomes in crop fields. Recent studies highlight that the formation of microbial communities associated with roots is selectively influenced by the host plants. Advancements in molecular technologies like high throughput sequencing and ecological network analysis have proved to be revolutionary tools in revealing the microbial diversity, structural community, and their interactions along with determining their habitat affinities with the changed environmental factors. Altered environmental factors like elevated CO2, high temperature, imbalanced fertilizer application, change in moisture regimes, pesticide pollution, etc. have been discussed in this chapter along with their influence on the paddy soil microbiome. A shift in the establishment patterns, diversities, community structure, and functioning is observed significantly owing to these climatic and environmental variations. Crops gradually tend to acclimatize to different adverse external stress conditions generated by environmental change factors using their inbuilt biological mechanisms. The plant and its microbiome interact with each other through different metabolic pathways and form stress tolerance strategies. This chapter, therefore, aims to outline the major environmental change factors and how they have affected the soil microbes, their community composition, and functioning abilities in paddy fields, along with addressing some of the mitigation strategies mediated by microbes in soil nutrient cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AL-Ani, M. A., Hmoshi, R. M., Kanaan, I. A., & Thanoon, A. A. (2019). Effect of pesticides on soil microorganisms. Journal of Physics: Conference Series,1294(7), 072007.

    Google Scholar 

  • Banik, A., Dash, G. K., Swain, P., Kumar, U., Mukhopadhyay, S. K., & Dangar, T. K. (2019). Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 (MCC 3432) can increase rice yield under green house and field condition. Microbiological Research, 219, 56–65.

    Article  CAS  Google Scholar 

  • Bates, B. C., Kundzewicz, Z. W., Wu, S., & Palutik, J. P. (2008). Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change IPCC Secretariat Geneva.

    Google Scholar 

  • Bhattacharyya, P., Roy, K. S., Dash, P. K., Neogi, S., Shahid, M., Nayak, A. K., Raja, R., Karthikeyan, S., Balachandar, D., & Rao, K. S. (2014). Effect of elevated carbon dioxide and temperature on phosphorus uptake in tropical flooded rice (Oryza sativa L.). European Journal of Agronomy, 53, 28–37.

    Article  CAS  Google Scholar 

  • Bontti, E. A., Decant, J. P., Munson, S. M., Gathany, M. A., Przeszlowska, A., Haddix, M. L., Owens, S., Burke, I. C., Parton, W. J., & Harmon, M. E. (2009). Litter decomposition in grasslands of Central North America (US Great Plains). Global Change Biology, 15, 1356–1363.

    Article  Google Scholar 

  • Butenschoen, O., Scheu, S., & Eisenhauer, N. (2011). Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity. Soil Biology and Biochemistry, 43, 1902–1907.

    Article  CAS  Google Scholar 

  • Cassia, R., Nocioni, M., Correa-Aragunde, N., & Lamattina, L. (2018). Climate change and the impact of greenhouse gasses: CO2 and NO, friends and foes of plant oxidative stress. Frontiers in Plant Science, 9, 273.

    Article  Google Scholar 

  • Castro, H. F., Classen, A. T., Austin, E. E., Norby, R. J., & Schadt, C. W. (2010). Soil microbial community responses to multiple experimental climate change drivers. Applied Environmental Microbiology, 76, 999–1007.

    Article  CAS  Google Scholar 

  • Chatterjee, D., & Saha, S. (2018). Response of soil properties and soil microbial communities to the projected climate change. In Advances in Crop Environment Interaction (eds Bal, S. et al.) Springer Singapore: 87–136.

    Google Scholar 

  • Chatterjee, D., Kuotsu, R., Ao, M., Saha, S., Ray, S. K., & Ngachan, S. V. (2019). Does rise in temperature adversely affect soil fertility, carbon fractions, microbial biomass and enzyme activities under different land uses? Current Science, 116(12), 2044–2054.

    Article  CAS  Google Scholar 

  • Dalal, R. C., Wang, W., Robertson, G. P., & Parton, W. J. (2003). Nitrous oxide emission from Australian agricultural lands and mitigation options: A review. Australian Journal of Soil Research, 41(2), 165–195.

    Article  CAS  Google Scholar 

  • DaMatta, F. M., Grandis, A., Arenque, B. C., & Buckeridge, M. S. (2010). Impacts of climate changes on crop physiology and food quality. Food Research International, 43(7), 1814–1823.

    Article  Google Scholar 

  • Darby, B. J., Neher, D. A., Housman, D. C., & Belnap, J. (2011). Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna. Soil Biology and Biochemistry, 43, 1474–1481.

    Article  CAS  Google Scholar 

  • De Vries, F. T., & Bardgett, R. D. (2014). Climate change effects on soil biota in the UK. Biodiversity Report Card 2014–15, The University of Manchester, Manchester, UK.

    Google Scholar 

  • DeLorenzo, M. E., Scott, G. I., & Ross, P. E. (2001). Toxicity of pesticides to aquatic microorganisms: A review. Environmental Toxicology and Chemistry, 20, 84–98.

    Article  CAS  Google Scholar 

  • Drigo, B., Kowalchuk, G. A., & van Veen, J. A. (2008). Climate change goes underground: Effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biology and Fertility of Soils, 44, 667–679.

    Article  Google Scholar 

  • Dunbar, J., Eichorst, S. A., Gallegos-Graves, L., Silva, S., Xie, G., Hengartner, N. W., Evans, R. D., Hungate, B. A., Jackson, R. B., Megonigal, J. P., Schadt, C. W., Vilgalys, R., Zak, D. R., & Kuske, C. R. (2012). Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environmental Microbiology, 14, 1145–1158.

    Article  CAS  Google Scholar 

  • Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., Salinger, M. J., Razuvayev, V., Plummer, N., Jamason, P., & Folland, C. K. (1997). Maximum and minimum temperature trends for the globe. Science, 277(5324), 364–367.

    Article  CAS  Google Scholar 

  • Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J. A., & Sundaresan, V. (2015). Structure, variation and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 112(8), E911–E920.

    Article  CAS  Google Scholar 

  • Etesami, H. (2021). Potential advantage of rhizosheath microbiome, in contrast to rhizosphere microbiome, to improve drought tolerance in crops. Rhizosphere, 20, 100439.

    Article  Google Scholar 

  • Feng, J., Xua, Y., Maa, B., Tanga, C., Brookesa, P. C., Yan Hea, Y., & Xua, J. (2019). Assembly of root-associated microbiomes of typical rice cultivars in response to lindane pollution. Environment International, 131, 104975.

    Article  CAS  Google Scholar 

  • Focht, D. D., & Verstraete, W. (1977). Biochemical ecology of nitrification and denitrification. In M. Alexander (ed). Advances in Microbial Ecology Plenum Press, New York: 135–214.

    Google Scholar 

  • Geisseler, D., Linquist, B. A., & Lazicki, P. A. (2017). Effect of fertilization on soil microorganisms in paddy rice systems: A meta-analysis. Soil Biology and Biochemistry, 115, 452–460.

    Article  CAS  Google Scholar 

  • Gilbert, N. (2012). One-third of our greenhouse gas emissions come from agriculture. Nature News.

    Google Scholar 

  • Guenet, B., Lenhart, K., Leloup, J., Giusti-Miller, S., Pouteau, V., Mora, P., Nunan, N., & Abbadie, L. (2012). The impact of long-term CO2 enrichment and moisture levels on soil microbial community structure and enzyme activities. Geoderma, 170, 331–336.

    Article  CAS  Google Scholar 

  • Gupta, R. P., Singh, J., Sultan, M. S., Hujan, R. K., Gosal, S. K., Sahota, H., & Sharma, S. (2000). Impact of pesticides on soil biota and non-target organisms in rice wheat cropping system (Abstract). 41st annual conference of AMI, Birla Research Institute, Jaipur. India.

    Google Scholar 

  • Houghton, J. T., Ding, Y. D. J. G., Griggs, D., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., & Johnson, C. A. (2001). Climate change 2001: The scientific basis. The Press Syndicate of the University of Cambridge.

    Google Scholar 

  • Hu, S., Chapin, F. S., Firestone, M. K., Field, C. B., & Chiariello, N. R. (2001). Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature, 409, 188–191.

    Article  CAS  Google Scholar 

  • Hu, Z., Zhu, C., Chen, X., Bonkowski, M., Griffiths, B., Chen, F., Zhu, J., Hu, S., Hu, F., & Liu, M. (2017). Responses of rice paddy micro-food webs to elevated CO2 are modulated by nitrogen fertilization and crop cultivars. Soil Biology and Biochemistry, 114, 104–113.

    Article  CAS  Google Scholar 

  • Ikeda1, S., Sasaki, K., Okubo, T., Yamashita, A., Terasawa, K., Bao, Z., Liu, D., Watanabe, T., Murase, J., Asakawa, S., Eda, S., Mitsui, H., Sato, T., & Minamisawa, K. (2014). Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Microbes and Environments, 29(1), 50–59.

    Google Scholar 

  • Ilieve, I., Marhova, M., Kostadinova, S., Gochev, V., Tsankova, M., Ivanova, A., Yahubyan, G., & Baev, V. (2019). Metagenomic analysis of the microbial community structure in protected wetlands in the Maritza River Basin. Biotechnology and Biotechnological Equipment, 33(1), 1721–1732.

    Article  Google Scholar 

  • Inubushi, K., Hoque, M. M., Cheng, W., Kobayashi, K., Yagi, K., Sakai, H., Kim, Y., & Okada, M. (2002). Elevated carbon dioxide effects on microbial processes in submerged soil. In Proceedings on the 17th World Conferences of Soil Sciences.

    Google Scholar 

  • Jalil, S. U., & Ansari, M. I. (2018). Plant microbiome and its functional mechanism in response to environmental stress. International Journal of Green Pharmacy, 12(1), S81–S92.

    CAS  Google Scholar 

  • Kalia, A., & Gosal, S. K. (2011). Effect of pesticide application on soil microorganisms. Archives of Agronomy and Soil Science, 57(6), 569–596.

    Article  CAS  Google Scholar 

  • Kumar, A., Padhy, S. R., Das, R. R., Shahid, M., Dash, P. K., Senapati, A., Panneerselvam, P., Kumar, U., Chatterjee, D., Adak, T., Tripathi, R., Nayak, P. K., & Nayak, A. K. (2021a). Elucidating relationship between nitrous oxide emission and functional soil microbes from tropical lowland rice soil exposed to elevated CO2: A path modelling approach. Agriculture, Ecosystems & Environment, 308, 107268.

    Article  CAS  Google Scholar 

  • Kumar, U., Shahid, M., Tripathi, R., Mohanty, S., Kumar, A., Bhattacharyya, P., Lal, B., Gautam, P., Raja, R., Panda, B. B., Jambhulakar, N. N., Shukla, A. K., & Nayak, A. (2017a). Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization. Ecological Indicators, 73, 536–543.

    Article  CAS  Google Scholar 

  • Kumar, U., Panneerselvam, P., Govindasamy, V., Vithalkumar, L., Senthilkumar, M., Banik, A., & Annapurna, K. (2017b). Long-term aromatic rice cultivation effect on frequency and diversity of diazotrophs in its rhizosphere. Ecological Engineering, 101, 227–236.

    Article  Google Scholar 

  • Kumar, U., Berliner, J., Adak, T., Rath, P. C., Dey, A., Pokhare, S. S., Jambhulkar, N. N., Panneerselvam, P., Kumar, A., & Mohapatra, S. D. (2017c). Non-target effect of continuous application of chlorpyrifos on soil microbes, nematodes and its persistence under sub-humid tropical rice-rice cropping system. Ecotoxicology and Environmental Safety, 135, 225–235.

    Article  CAS  Google Scholar 

  • Kumar, U., Nayak, A. K., Shahid, M., Gupta, V. V. S. R., Panneerselvam, P., Mohanty, S., Kaviraj, M., KumarA, C. D., Lal, B., Gautam, P., & TripathiR, P. B. B. (2018a). Continuous application of inorganic and organic fertilizers over 47 years in paddy soil alters the bacterial community structure and its influence on rice production. Agriculture, Ecosystems and Environment, 262, 65–75.

    Article  Google Scholar 

  • Kumar, U., Panneerselvam, P., Dangar, T. K., Kumar, A., Chatterjee, D., Parmeswaran, C., Mohapatra, S. D., Prasanthi, G., Chakraborty, K., Swain, P., & Nayak, A. K. (2018b). Microbial Resources for Alleviating Abiotic and Biotic Stresses and Improving Soil Health in Rice Ecology. In Rice research for enhancing productivity, profitability and climate resilience.

    Google Scholar 

  • Kumar, U., Kaviraj, M., Panneerselvam, P., Priya, H., Chakraborty, K., Swain, P., Chatterjee, S. N., Sharma, S. G., Nayak, P. K., & Nayak, A. K. (2019). Ascorbic acid formulation for survivability and diazotrophic efficacy of Azotobacter chroococcumAvi2 (MCC 3432) under hydrogen peroxide stress and its role in plant-growth promotion in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 139, 419–427.

    Article  CAS  Google Scholar 

  • Kumar, U., Nayak, A. K., Sahoo, S., Kumar, A., Kaviraj, M., & Shahid, M. (2020a). Combined effects of elevated CO2, N fertilizer and water deficit stress on diazotrophic community in sub-humid tropical paddy soil. Applied Soil Ecology, 155, 103682.

    Article  Google Scholar 

  • Kumar, U., Behera, S., Saha, S., Das, D., Guru, P. K., Kaviraj, M., Munda, S., Adak, T., & Nayak, A. K. (2020b). Non-target effect of bispyribac sodium on soil microbial community in paddy soil. Ecotoxicology and Environmental Safety, 189, 110019.

    Article  CAS  Google Scholar 

  • Kumar, U., Kaviraj, M., Rout, S., Chakraborty, K., Swain, P., Nayak, P. K., & Nayak, A. K. (2021b). Combined application of ascorbic acid and endophytic N-fixing Azotobacter chroococcum Avi2 modulates photosynthetic efficacy, antioxidants and growth-promotion in rice under moisture deficit stress. Microbiological Research, 250, 126808.

    Article  CAS  Google Scholar 

  • Kutsch, W. L., Bahn, M., & Heinemeyer, A. (eds.) (2009). Soil carbon dynamics: an integrated methodology. Cambridge University Press.

    Google Scholar 

  • Lacis, A. A., Schmidt, G. A., Rind, D., & Ruedy, R. A. (2010). Atmospheric CO2: Principal control knob governing Earth’s temperature. Science, 330(6002), 356–359.

    Article  CAS  Google Scholar 

  • Lesschen, J. P., Velthof, G. L., de Vries, W., & Kros, J. (2011). Differentiation of nitrous oxide emission factors for agricultural soils. Environmental Pollution, 159(11), 3215–3222.

    Article  CAS  Google Scholar 

  • Li, P., Ye, S., Liu, H., Pan, A., Ming, F., & Tang, X. (2018). Cultivation of drought-tolerant and insect-resistant rice affects soil bacterial, but not fungal, abundances and community structures. Frontiers in Microbiology, 9(1390).

    Google Scholar 

  • Lin, H., Sun, W., Zhang, Z., Chapman, S. J., Freitag, T. E., Fu, J., Zhang, X., & Ma, J. (2016). Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy upland rotation system. Environmental Pollution, 211, 332–337.

    Article  CAS  Google Scholar 

  • Lipson, D. A., Kuske, C. R., Gallegos-Graves, L. V., & Oechel, W. C. (2014). Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrub land ecosystem. Global Change Biology, 20, 2555–2565.

    Article  Google Scholar 

  • Lu, T., Ke, M., Peijnenburg, W., Zhu, Y., Zhang, M., Sun, L., Fu, Z., & Qian, H. (2018). Investigation of rhizospheric microbial communities in wheat, barley and two rice varieties at the seedling stage. Journal of Agriculture and Food Chemistry, 66, 2645–2653.

    Article  CAS  Google Scholar 

  • Luo, J., Guo, X., Liang, J., Song, Y., Liu, Y., Li, J., Dua, Y., Mua, Q., Jiang, Y., Zhaoa, H., & Li, T. (2021). The influence of elevated CO2 on bacterial community structure and its co-occurrence network in soils polluted with Cr2O3 nanoparticles. Science of the Total Environment, 779, 146430.

    Article  CAS  Google Scholar 

  • Marilley, L., Hartwig, U. A., & Aragno, M. (1999). Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microbial Ecology, 38, 39–49.

    Article  CAS  Google Scholar 

  • Medellín, C. S., Edwards, J., Liechty, Z., Nguyen, B., & Sundaresana, V. (2017). Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. American Society for Microbiology, 8(4), e00764-e817.

    Google Scholar 

  • Mendes, R., Garbeva, P., & Raaijmakars, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663.

    Article  CAS  Google Scholar 

  • Mohanty, S., Nayak, A. K., Swain, C. K., Dhal, B. R., Kumar, A., Kumar, U., Tripathi, R., Shahid, M., & Behera, K. K. (2020). Impact of integrated nutrient management options on GHG emission, N loss and N use efficiency of low land rice. Soil and Tillage Research, 200, 104616.

    Google Scholar 

  • Mohanty, S., Swain, S. K., Sethi, S. K., Dalai, P. C., Bhattachrayya, P., Kumar, A., Tripathi, R., Shahid, M., Panda, M. M., Kumar, U., Lal, B., Gautam, P., Munda, S., & Nayak, A. K. (2017). Crop establishment and nitrogen management affect greenhouse gas emission and biological activity in tropical rice production. Ecological Engineering, 104, 80–98.

    Article  Google Scholar 

  • Montealegre, C. M., Van Kessel, C., Blumenthal, J. M., Hur, H. G., Hartwig, U. A., & Sadowsky, M. J. (2000). Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem. Global Change Biology, 6, 475–482.

    Article  Google Scholar 

  • Nieder, R., & Benbi, D. K. (2008). Carbon and nitrogen in the terrestrial environment. Springer Science & Business Media.

    Google Scholar 

  • NOAA. (2020). Climate Change Indicators: Climate Forcing. https://www.epa.gov/climate-indicators/climate-change-indicators-climate-forcing.

  • Padbhushan, R., Kumar, U., Sharma, S., Rana, D. S., Kohli, A., Kaviraj, M., Kumari, P., Parmar, B., Kumar, R., Annapurna, K., Sinha, A. K., & Gupta, V. V. S. R. (2022). Impact of land-use changes on soil properties and carbon pools in India: A meta-analysis. Frontiers in Environmental Science, 9, 794866.

    Article  Google Scholar 

  • Padbhushan, R., Sharma, S., Kumar, U., Rana, D. S., Kohli, A., Kaviraj, M., Parmar, B., Kumar, R., Annapurna, K., Sinha, A. K., & Gupta, V. V. S. R. (2021). Meta-analysis approach to measure effect of integrated nutrient management on crop performance, microbial activity and carbon stocks in Indian soils. Frontiers in Environmental Science, 9, 724702.

    Article  Google Scholar 

  • Panneerselvam, P., Sahoo, S., Senapati, A., Kumar, U., Mitra, D., Parameswaran, C., Anandan, A., Kumar, A., Jahan, A., & Nayak, A. K. (2019). Understanding interaction effect of arbuscular mycorrhizal fungi in rice under elevated carbon dioxide conditions. Journal of Basic Microbiology, 59, 1217–1228.

    Article  CAS  Google Scholar 

  • Procter, A. C., Ellis, J. C., Fay, P. A., Polley, H. W., & Jackson, R. B. (2014). Fungal community responses to past and future atmospheric CO2 differ by soil type. Applied Environmental Microbiology, 80, 7364–7377.

    Article  Google Scholar 

  • Ray, K., Attri, S. D., Pathak, H., Kumar, A., & Chaterjee, D. (2020). Climate. In Mishra, B.B. (Ed.), In The Soils of India. Springer Nature Switzerland AG 2020, 41–55.

    Google Scholar 

  • Rodriguez, R. J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y. O., & Redman, R. S. (2008). Stress tolerance in plants via habitat-adapted symbiosis. International Society for Microial Ecology Journal, 2, 404–416.

    Google Scholar 

  • Sadowsky, M. J., & Schortemeyer, M. (1997). Soil microbial responses to increased concentration of atmospheric CO2. Global Change Biology, 3, 217–224.

    Article  Google Scholar 

  • Sahoo, S., Bagchi, T. B., Kumar, U., Berliner, J., Mishra, B. B., Saha, S., Munda, S., & Adak, T. (2016). Non-target effects of pretilachlor on microbial properties in tropical rice soil. Environmental Science and Pollution Research, 23, 7595.

    Article  Google Scholar 

  • Sahoo, S., Panneerselvam, P., Chowdhury, T., Kumar, A., Kumar, U., Jahan, A., Senapati, A., & Anandan, A. (2017). Understanding the AM fungal association in flooded rice under elevated CO2 condition. ORYZA-an International Journal of Rice, 54(3), 290–297.

    Article  Google Scholar 

  • Santos-Medellín, C., Edwards, J., Liechty, Z., Bao, N., & Sundaresan, V. (2017). Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio, 8(4).

    Google Scholar 

  • Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M. A., & Zechmeister-Boltenstern, S. (2010). Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. European Journal of Soil Science, 61, 683–696.

    Article  CAS  Google Scholar 

  • Shibahara, F., & Inuushi, K. (1997). Effects of organic matter application on microbial biomass and available nutrients in various types of paddy soils. Soil Science and Plant Nutrition, 43(1), 191–203.

    Article  Google Scholar 

  • Singurindy, O., Molodovskaya, M., Richards, B. K., & Steenhuis, T. S. (2009). Nitrous oxide emission at low temperatures from manure-amended soils under corn (Zea mays L.). Agriculture, Ecosystems & Environment, 132(1–2), 74–81.

    Google Scholar 

  • Slaughter, L. C. (2012). Soil microbial community response to climate change: Results from a temperate kentucky pasture. Theses and dissertations-Plant soil sciences.

    Google Scholar 

  • Smith, P., Martino, Z., & Cai, D. (2007). Agriculture. In Climate change 2007: mitigation.

    Google Scholar 

  • Steinweg, J. M., Dukes, J. S., & Wallenstein, M. D. (2012). Modelling the effects of temperature and moisture on soil enzyme activity: Linking laboratory assays to continuous field data. Soil Biology and Biochemistry, 55, 85–92.

    Article  CAS  Google Scholar 

  • Subbarao, G. V., Ito, O., Sahrawat, K. L., Berry, W. L., Nakahara, K., Ishikawa, T., Watanabe, T., Suenaga, K., Rondon, M., & Rao, I. M. (2006). Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Critical Review in Plant Sciences, 25, 303–335.

    Article  CAS  Google Scholar 

  • Subhani, A., Min, L., Yong, H. C., & Miao, X. Z. (2002). Alteration of certain soil microbiological indices of a paddy soil under anthropogenic stress. J Zhejiang Univ. Science Advances, 3(4), 467–474.

    Article  CAS  Google Scholar 

  • Tarnawski, S., & Aragno, M. (2006). The influence of elevated CO2 on diversity, activity and biogeochemical function of rhizosphere and soil bacterial communities. In: Nösberger, J, Long SP, Norby RJ, et al. (eds) Managed ecosystems and CO2-case studies, processes and perspectives. Ecological studies series Springer 187, 393–409.

    Google Scholar 

  • Tisdale, S. L., & Nelson, W. L. (1970). Soil fertility and fertilizers (2nd ed.). Macmillan.

    Google Scholar 

  • Ussiri, D., & Lal, R. (2013). Formation and release of nitrous oxide from terrestrial and aquatic ecosystems, soil emission of nitrous oxide and its mitigation (pp. 63–96). Springer.

    Google Scholar 

  • van den Heuvel, R. N., Bakker, S. E., Jetten, M. S. M., & Hefting, M. M. (2011). Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem. Geobiology, 9(3), 294–300.

    Article  Google Scholar 

  • Vetter, S. H., Sapkota, T. B., Hillier, J., Stirling, C. M., Macdiarmid, J. I., Aleksandrowicz, L., Green, R., Joy, E. J., Dangour, A. D. & Smith, P. (2017). Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agriculture, Ecosystems and Environment, 237, 234–241.

    Google Scholar 

  • Wagner, M. R., Lundberg, D. S., Del Rio, T. G., Tringe, S. G., Dangl, J. L., & Mitchell-Olds, T. (2016). Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nature Communications, 7(1), 1–15.

    Article  CAS  Google Scholar 

  • Wang, J., Song, Y., Ma, T., Raza, W., Li, J., Howland, J. G., Huang, O., & Shen, Q. (2017). Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Applied Soil Ecology, 112, 42–50.

    Article  Google Scholar 

  • Waqas, M. A., Li, Y., Ashraf, M. N., Ahmed, W., Wang, B., Sardar, M. F., Ma, P., Li, R., Wan, Y., & Kuzyakov, Y. (2021). Long-term warming and elevated CO2 increase ammonia-oxidizing microbial communities and accelerate nitrification in paddy soil. Applied Soil Ecology, 166, 104063.

    Article  Google Scholar 

  • Willey, J. M., Sherwood, L. M., & Woolverton, C. J. (2009). Prescott’s principles of microbiology. McGraw-Hill.

    Google Scholar 

  • Williams, M. A. (2007). Response of microbial communities to water stress in irrigated and drought prone tall grass prairie soils. Soil Biology and Biochemistry, 39, 2750–2757.

    Article  CAS  Google Scholar 

  • Wlodarczyk, T. (2000). N2O emission and absorption against a background of CO2 in Eutric Cambisol under different oxidation- reduction conditions. Acta Agrophysica, 28, 39–89.

    Google Scholar 

  • Xu, C., Zhang, K., Zhu, W., Xiao, J., Zhu, C., Zhang, N., Yu, F., Li, S., Zhu, C., Tu, Q., Chen, X., Zhu, J., Hu, S., Koide, R. T., Firestone, M. K., & Cheng, L. (2020) Large losses of ammonium-nitrogen from a rice ecosystem under elevated CO2. Science Advances, 6, eabb7433.

    Google Scholar 

  • Yu, Y., Zhang, J., Petropoulos, E., Baluja, M. Q., Zhu, C., Zhu, J., Lin, X., & Feng, Y. (2018). Divergent responses of diazotrophic microbiome to elevated CO2 in two rice cultivars. Frontiers in Microbiology, 9, 1139.

    Article  Google Scholar 

  • Zhang, M., Zhang, X., Zhang, L., Zeng, L., Liu, Y., Wang, X., He, P., Li, S., Liang, G., Zhou, W., & Ai, C. (2021). The stronger impact of inorganic nitrogen fertilization on soil bacterial community than organic fertilization in short-term condition. Geoderma, 382, 114752.

    Article  CAS  Google Scholar 

  • Ziska, L. H., Moya, T. B., Wassmann, R., Namuco, O. S., Lantin, R. S., Aduna, J. B., Abao, E., Bronson, K. F., Neue, H. U., & Olszyk, D. (1998). Long-term growth at elevated carbon dioxide stimulates methane emission in tropical paddy rice. Global Change Biology, 4(6), 657–665.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upendra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, U., Parija, S., Kaviraj, M. (2024). Response and Behavior of Paddy Soil Microbiota Towards Environmental Change. In: Pathak, H., Chatterjee, D., Saha, S., Das, B. (eds) Climate Change Impacts on Soil-Plant-Atmosphere Continuum. Advances in Global Change Research, vol 78. Springer, Singapore. https://doi.org/10.1007/978-981-99-7935-6_6

Download citation

Publish with us

Policies and ethics