Skip to main content

Climate Change Impact on Soil Erosion and Land Degradation

  • Chapter
  • First Online:
Climate Change Impacts on Soil-Plant-Atmosphere Continuum

Part of the book series: Advances in Global Change Research ((AGLO,volume 78))

  • 144 Accesses

Abstract

The climate change process is intricately linked with soil erosion which is a major land degradation issue, decreasing soil productivity and causing soil carbon losses, which in turn accelerates various climate change processes. Climate change will give rise to extreme climatic events and rainfall erosivity which is a major driving force of soil erosion by water is likely to increase manifolds across different regions in the globe. This increase in rainfall erosivity will increase soil loss through erosion. Soil erosion from cropland is also going to increase if intensive agricultural practices are being followed without the adoption of proper soil conservation measures. Soil carbon loss due to the displacement of eroded soil and its subsequent mineralization is another phenomenon of concern that is going to increase under climate change scenario. Almost 30% of the displaced C is likely to be mineralized depleting the soils of C, paralyzing their capacity to provide various ecosystem services, and also increasing the atmospheric C concentration. The present chapter summarizes the various impacts of climate change on soil erosion with a concluding note of how the present world is striving to achieve sustainable soil management through various programs, designed at international and national levels. The need of the hour is to formulate soil legislation at the country and state levels to better address the problem and protect our soils from further degradation and achieve land degradation neutrality by 2030.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almagro, A., Oliveira, P. T. S., Nearing, M. A., & Hagemann, S. (2017). Projected climate change impacts in rainfall erosivity over Brazil. Scientific Reports, 7(1), 1–12.

    Article  CAS  Google Scholar 

  • Arnoldus, H. M. J. (1977). Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco. https://agris.fao.org/agris-search/search.do?recordID=XF8001961.

  • Bal, P. K., Ramachandran, A., Palanivelu, K., et al. (2016). Climate change projections over India by a downscaling approach using PRECIS. Asia-Pacific Journal of Atmospheric Sciences, 52(4), 353–369.

    Article  Google Scholar 

  • Berc, J. et al. (2003). Conservation implications of climate change: Soil erosion and runoff from croplands: A report from the soil and water conservation society. Ankeny (IA), Soil and Water Conservation Society.

    Google Scholar 

  • Boer and Hannam. (2019). B. Boer, I. Hannam Land degradation E Lees, J. Viñuales (Eds.), The Oxford Handbook of Comparative Environmental Law, Oxford University Press, pp. 438–459.

    Google Scholar 

  • Boer and Hannam. (2021). B. Boer, I. Hannam Restoration of ecosystems and land degradation neutrality N. Kakar, N. Robinson, V. Popovski (Eds.), Fulfilling the Sustainable Development Goals, Routledge, Abingdon, pp. 392–404.

    Google Scholar 

  • Bond-Lamberty, B., Bailey, V. L., Chen, M., et al. (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560(7716), 80–83.

    Article  CAS  Google Scholar 

  • Borrelli, P., Robinson, D. A., Panagos, P., et al. (2020). Land use and climate change impacts on global soil erosion by water (2015–2070). Proceedings of the National Academy of Sciences, 117(36), 21994–22001.

    Article  CAS  Google Scholar 

  • Bridges, E. M., & Oldeman, L. R. (1999). Global assessment of human-induced soil degradation. Arid Soil Research and Rehabilitation, 13(4), 319–325.

    Article  Google Scholar 

  • Cerda, A. (2000). Aggregate stability against water forces under different climates on agriculture land and scrubland in southern Bolivia. Soil and Tillage Research, 36, 1–8.

    Google Scholar 

  • FAO, Healthy Soils Are the Basis for Healthy Food Production (Food and Agriculture Organization of the United Nations [FAO], 2015), pp. 1–4. http://www.fao.org/documents/card/en/c/645883cd-ba28-4b16-a7b8-34babbb3c505/.

  • FAO, ITPS. (2015). The Status of the World’s Soil Resources (Main Report).

    Google Scholar 

  • Feng, S., & Fu, Q. (2013). Expansion of global drylands under a warming climate. Atmospheric Chemistry and Physics, 13(19), 10081–10094.

    Article  CAS  Google Scholar 

  • Foley, J. A., Ramankutty, N., Brauman, K. A., et al. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342.

    Article  CAS  Google Scholar 

  • Fournier, F. (1960). Climat et érosion (p. 201). Presses universitaires de France.

    Google Scholar 

  • Fu, C., & Mao, H. (2017). Aridity Trend in Northern China, World Sci., Singapore.

    Google Scholar 

  • Gafforov, K. S., Bao, A., Rakhimov, S., et al. (2020). The assessment of climate change on rainfall-runoff erosivity in the Chirchik-Akhangaran Basin. Uzbekistan. Sustainability, 12(8), 3369.

    Article  Google Scholar 

  • García-Ruiz, J. M., Beguería, S., Nadal-Romero, E., et al. (2015). A meta-analysis of soil erosion rates across the world. Geomorphology, 239, 160–173.

    Article  Google Scholar 

  • Gosain, A. K., Rao, S., & Basuray, D. (2006). Climate change impact assessment on hydrology of Indian river basins. Current Science, 346–353.

    Google Scholar 

  • Goswami, B. N., Venugopal, V., Sengupta, D., et al. (2006). Increasing trend of extreme rain events over India in a warming environment. Science, 314(5804), 1442–1445.

    Article  CAS  Google Scholar 

  • Guerra, C. A., Rosa, I. M., Valentini, E., et al. (2020). Global vulnerability of soil ecosystems to erosion. Landscape Ecology, 35, 823.

    Article  Google Scholar 

  • Guhathakurta, P. (2006). Long-range monsoon rainfall prediction of 2005 for the districts and sub-division Kerala with artificial neural network. Current Science, 90(6), 773–779.

    Google Scholar 

  • Guhathakurta, P., Rajeevan, M., Sikka, D. R., & Tyagi, A. (2015). Observed changes in southwest monsoon rainfall over India during 1901–2011. International Journal of Climatology, 35(8), 1881–1898.

    Google Scholar 

  • Harden, J. W., Sharpe, J. M., Parton, W. J., et al. (1999). Dynamic replacement and loss of soil carbon on eroding cropland. Global Biogeochemical Cycles, 13(4), 885–901.

    Article  CAS  Google Scholar 

  • https://pib.gov.in/Pressreleaseshare.aspx?PRID=1530019. Accessed 27 January, 2021.

  • https://www.iucn.org/resources/issues-briefs/conserving-healthy-soils. Accessed 5 February, 2021.

  • https://www.unep.org/news-and-stories/story/environmental-moments-un75-timeline. Accessed 2 February, 2021.

  • Huang, J., Xie, Y., Guan, X., et al. (2017). The dynamics of the warming hiatus over the Northern Hemisphere. Climate Dynamics, 48(1–2), 429–446.

    Article  Google Scholar 

  • IPBES. (2018). The IPBES assessment report on land degradation and restoration. L. Montanarella, R. Scholes, & A. Brainich (eds.). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany. 744 pp. https://doi.org/10.5281/zenodo.3237392.

  • IPCC CWT. (2007). Climate change 2007: synthesis report (p. 104). Geneva, Switzerland: IPCC.

    Google Scholar 

  • Jacinthe, P. A., & Lal, R. (2001). A mass balance approach to assess carbon dioxide evolution during erosional events. Land Degradation & Development, 12(4), 329–339.

    Article  Google Scholar 

  • Lal, R. (1995). Erosion-crop productivity relationships for soils of Africa. Soil Science Society of America Journal, 59(3), 661–667.

    Article  CAS  Google Scholar 

  • Lal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29, 437–450.

    Article  CAS  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627.

    Article  CAS  Google Scholar 

  • Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220(1–3), 242–258.

    Article  Google Scholar 

  • Lal, R. (2013). Soil carbon management and climate change. Carbon Management, 4(4), 439–462.

    Article  CAS  Google Scholar 

  • Lal, R. (2018). Accelerated soil erosion as a source of atmospheric CO2. Soil Tillage Research. https://doi.org/10.1016/j.still.2018.02.001

    Article  Google Scholar 

  • Lal, R. (2020). Soil erosion and gaseous emissions. Applied Sciences, 10(8), 2784.

    Article  CAS  Google Scholar 

  • Lal, R., & Pimentel, D. (2008). Soil erosion: A carbon sink or source? Science, 319(5866), 1040–1042.

    Article  CAS  Google Scholar 

  • Li, J., Liu, Z., He, C., et al. (2016a). Are the drylands in northern China sustainable? A perspective from ecological footprint dynamics from 1990 to 2010. Science of the Total Environment, 553, 223–231.

    Article  CAS  Google Scholar 

  • Li, Y., Zhou, G., Huang, W., et al. (2016b). Potential effects of warming on soil respiration and carbon sequestration in a subtropical forest. Plant and Soil, 409, 247–257. https://doi.org/10.1007/s11104-016-2966-2

    Article  CAS  Google Scholar 

  • Li, Z., & Fang, H. (2016). Impacts of climate change on water erosion: A review. Earth-Science Reviews, 163, 94–117.

    Article  Google Scholar 

  • Lugato, E., Smith, P., Borrelli, P., et al. (2018). Soil erosion is unlikely to drive a future carbon sink in Europe. Science Advances, 4(11), 3523.

    Article  Google Scholar 

  • Mandal, D., Giri, N., & Srivastava, P. (2020). The magnitude of erosion-induced carbon (C) flux and C-sequestration potential of eroded lands in India. European Journal of Soil Science, 71(2), 151–168.

    Article  CAS  Google Scholar 

  • Mandal, D., & Sharda, V. N. (2011). Assessment of permissible soil loss in India employing a quantitative bio-physical model. Current Science, 100(3), 383–390.

    Google Scholar 

  • Mandal, D., & Sharda, V. N. (2013). Appraisal of soil erosion risk in the eastern Himalayan region of India for soil conservation planning. Land Degradation and Development, 24, 430–437.

    Article  Google Scholar 

  • Mandal, D., Chandrakala, M., Alam, N. M., et al. (2021). Assessment of soil quality and productivity in different phases of soil erosion with the focus on land degradation neutrality in tropical humid region of India. CATENA, 204, 105440. https://doi.org/10.1016/j.catena.2021.105440

    Article  CAS  Google Scholar 

  • Mandal, D., Sharda, V. N., & Tripathi, K. P. (2010). Relative efficacy of two biophysical approaches to assess soil loss tolerance for Doon Valley soils of India. Journal of Soil and Water Conservation, 65, 42–49.

    Article  Google Scholar 

  • Melillo, J. M., Frey, S. D., DeAngelis, K. M., et al. (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358(6359), 101–105.

    Article  CAS  Google Scholar 

  • Mondal, A., Khare, D., & Kundu, S. (2016). Impact assessment of climate change on future soil erosion and SOC loss. Natural Hazards, 82(3), 1515–1539.

    Article  Google Scholar 

  • Morton, D. C., Noojipady, P., Macedo, M. M., et al. (2016). Reevaluating suitability estimates based on dynamics of cropland expansion in the Brazilian Amazon. Global Environmental Change, 37, 92–101.

    Article  Google Scholar 

  • Nearing, M. A. (2001). Potential changes in rainfall erosivity in the US with climate change during the 21st century. Journal of Soil and Water Conservation 56(3), 229–232.

    Google Scholar 

  • Nearing, M. A., Pruski, F. F., & O’neal, M. R. (2004). Expected climate change impacts on soil erosion rates: a review. Journal of Soil and Water Conservation, 59(1), 43–50.

    Google Scholar 

  • Nielsen, U. N., Wall, D. H., & Six, J. (2015). Soil biodiversity and the environment. Annual Review of Environmental Resources, 40, 63–90.

    Article  Google Scholar 

  • O’Neal, M. R., Nearing, M. A., Vining, R. C., et al. (2005). Climate change impacts on soil erosion in Midwest United States with changes in crop management. CATENA, 61, 165–184.

    Article  Google Scholar 

  • Ojasvi, P. R., Sharda, V. N., & Prakash, O. (2006). Evaluation of interrill erodibility parameter for soil erosion estimation in a sub-humid climate, Part I. Development of model using simulated rainfall data. Indian Journal of Soil Conservation, 34(3), 178–182.

    Google Scholar 

  • Oliveira, P. T. S., Nearing, M. A., Moran, M. S., et al. (2014). Trends in water balance components across the Brazilian Cerrado. Water Resources Research, 50(9), 7100–7114.

    Article  Google Scholar 

  • Van Oost, K., Quine, T. A., Govers, G., et al. (2007). The impact of agricultural soil erosion on the global carbon cycle. Science, 318(5850), 626–629.

    Article  Google Scholar 

  • Orgiazzi, A., & Panagos, P. (2018). Soil biodiversity and soil erosion: It is time to get married: Adding an earthworm factor to soil erosion modelling. Global Ecology and Biogeography, 27(10), 1155–1167.

    Article  Google Scholar 

  • Pheerawat, P., & Udmale, P. (2017). Impacts of Climate change on Rainfall Erosivity in the Huai Luang Watershed. Thailand. Atmosphere, 8(8), 143.

    Google Scholar 

  • Pimentel, D., Harvey, C., Resosudarmo, P., et al. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123.

    Article  CAS  Google Scholar 

  • Polyakov, V. O., & Lal, R. (2008). Soil organic matter and CO2 emission as affected by water erosion on field runoff plots. Geoderma, 143(1–2), 216–222.

    Article  CAS  Google Scholar 

  • Pruski, F. F., & Nearing, M. A. (2002). Climate-induced changes in erosion during the 21st century for eight US locations. Water Resources Research, 38(12), 34–41.

    Article  Google Scholar 

  • Rao, A. R., Hamed, K. H., & Chen, H. L. (2003). Nonstationarities in hydrologic and environmental time series (Vol. 45). Springer Science & Business Media.

    Google Scholar 

  • Renard, K. G., & Freimund, J. R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology, 157(1–4), 287–306.

    Article  Google Scholar 

  • Rosenzweig, C., & Hillel, D. (1998). Climate change and the global harvest: Potential impacts of the greenhouse effect on agriculture. Oxford University Press.

    Google Scholar 

  • Rupa Kumar, K., Pant, G. B., Parthasarathy, B., & Sontakke, N. A. (1992). Spatial and sub-seasonal patterns of the long-term trends of Indian summer monsoon rainfall. International Journal of Climatology, 12, 257–268.

    Article  Google Scholar 

  • SAC. (2021). Desertification and Land Degradation Atlas of India. Space Applications Centre Indian Space Research Organisation Department of Space, Government of India, Ahmedabad.

    Google Scholar 

  • Salles, C., Poesen, J., & Sempere-Torres, D. (2002). Kinetic energy of rain and its functional relationship with intensity. Journal of Hydrology, 257, 256–270.

    Article  Google Scholar 

  • Sanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences, 114(36), 9575–9580.

    Article  CAS  Google Scholar 

  • Schlesinger, W. H. (1995). Soil respiration and changes in soil carbonstocks. In G. M. Woodwell & F. T. Mackenzie (Eds.), Biotic Feedbacks in the Global Climate System: Will the Warming Feed the Warming? (pp. 159–168). Press, New York.

    Chapter  Google Scholar 

  • Sharda, V. N., & Ojasvi, P. R. (2016). A revised soil erosion budget for India: Role of reservoir sedimentation and land-use protection measures. Earth Surface Processes and Landforms, 41(14), 2007–2023.

    Article  Google Scholar 

  • Smith, S. V., Renwick, W. H., Buddenmeier, R. W., & Crossland, C. J. (2001). Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochemical Cycles, 15, 697–707.

    Article  CAS  Google Scholar 

  • Starr, G. C., Lal, R., Malone, R., et al. (2000). Modeling soil carbon transported by water erosion processes. Land Degradation & Development, 11(1), 83–91.

    Article  Google Scholar 

  • Talchabhadel, R., Nakagawa, H., Kawaike, K., & Prajapati, R. (2020). Evaluating the rainfall erosivity (R-factor) from daily rainfall data: An application for assessing climate change impact on soil loss in Westrapti River basin. Nepal. Modeling Earth Systems and Environment, 6(3), 1741–1762.

    Article  Google Scholar 

  • UNCCD. (2017). Global Land Outlook. First. UNCCD, Bonn, Germany, 336 pp. United Nations, Geneva, Switzerland.

    Google Scholar 

  • UNEP. (1992). World Atlas of Desertification [Middleton, N. and D.S.G. Thomas (eds.)]. UNEP.Edward Arnold, London, UK, 69 pp.

    Google Scholar 

  • United Nations Development Programme (UNDP). (2014a). Environment and energy, drylands development centre, where we work. Accessed 19 Jan 2014.

    Google Scholar 

  • United Nations Development Programme (UNDP). (2014b). Environment and energy, drylands development centre, where we work, Accessed 19 Jan 2014.

    Google Scholar 

  • Wallemacq, P., Below, R., & McLean, D. (2018). UNISDR and CRED report: Economic Losses, Poverty & Disasters (1998–2017); Published in: CRED.

    Google Scholar 

  • Wang, L., D’Odorico, P. J. P., Evans, D. J., et al. (2012). Dryland ecohydrology and climate change: Critical issues and technical advances. Hydrology and Earth System Sciences, 16(8), 2585–2603.

    Article  Google Scholar 

  • Wang, Z., Hoffmann, T., Six, J., et al. (2017). Human induced erosion has offset one-third of carbon emissions from land cover change. Nature Climate Change, 7, 345–349.

    Article  CAS  Google Scholar 

  • White, R. P., & Nackoney, J. (2003). Drylands, People and Ecosystem Goods and Services, World Resources Institute, Washington.

    Google Scholar 

  • Xu, J. (2003). Sedimentation rates in the lower Yellow River over the past 2300 years as influenced by human activities and climate change. Hydrological Processes, 17(16), 3359–3371.

    Article  Google Scholar 

  • Yang, D., Kanae, S., Koike, T., & Musiake, K. (2003). Global potential soil erosion with reference to land use and climate changes. Hydrological Processes, 17, 2913–2928.

    Article  Google Scholar 

  • Zhang, G. H., Nearing, M. A., & Liu, B. Y. (2005). Potential effects of climate change on rainfall erosivity in the Yellow River basin of China. Transactions of the ASAE, 48(2), 511–517.

    Article  Google Scholar 

  • Zhou, L., Chen, H., Hua, W., et al. (2016). Mechanisms for stronger warming over drier ecoregions observed since 1979. Climate Dynamics, 47(9), 2955–2974.

    Article  Google Scholar 

  • Ziadat, F. M., & Taimeh, A. Y. (2013). Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation & Development, 24(6), 582–590.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandal, D., Roy, T. (2024). Climate Change Impact on Soil Erosion and Land Degradation. In: Pathak, H., Chatterjee, D., Saha, S., Das, B. (eds) Climate Change Impacts on Soil-Plant-Atmosphere Continuum. Advances in Global Change Research, vol 78. Springer, Singapore. https://doi.org/10.1007/978-981-99-7935-6_5

Download citation

Publish with us

Policies and ethics