Skip to main content

Turmeric and Alzheimer’s Disease: Therapeutic Effects of Curcuminoids, Curcumin, and Turmerone

  • Chapter
  • First Online:
Curcumin and Neurodegenerative Diseases

Abstract

Alzheimer’s disease (AD) is the most common form of dementia, with a significant prevalence over the age of 60. The progressive degeneration of brain tissue and memory loss are challenges to finding drugs efficiently. Curcuma longa (turmeric) has shown encouraging results in both rhizome extracts and essential oils for the presence of curcuminoids and turmerone, respectively, which showed in several studies efficient actions such as acetylcholinesterase inhibition, anti-inflammatory processes, suppression of amyloid β activity, and improvement of brain cells. In this context, the aim of this chapter is to focus on the chemical analysis and therapeutic effects of curcuminoids, curcumin, and turmerone of turmeric plant in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarthi S, Suresh J, Leela NK, Prasath D (2020) Multi-environment testing reveals genotype-environment interaction for curcuminoids in turmeric (Curcuma longa L.). Ind Crop Prod 145:112090. https://doi.org/10.1016/j.indcrop.2020.112090

    Article  CAS  Google Scholar 

  • Abdel-Lateef E, Mahmoud F, Hammam O, El-Ahwany E, El-Wakil E, Kandil S, Taleb HA, El-Sayed M, Hassenein H (2016) Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2). Acta Pharma 66:387–398

    Article  CAS  Google Scholar 

  • Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75. https://doi.org/10.1007/978-0-387-46401-5_1

    Article  PubMed  Google Scholar 

  • Ahmed T, Gilani AH (2014) Therapeutic potential of turmeric in Alzheimer’s disease: curcumin or curcuminoids? Phytother Res 28(4):517–525. https://doi.org/10.1002/ptr.5030

    Article  CAS  PubMed  Google Scholar 

  • Akaberi M, Sahebkar A, Emami SA (2021) Turmeric and curcumin: from traditional to modern medicine. Adv Exp Med Biol 1291:15–39. https://doi.org/10.1007/978-3-030-56153-6_2

    Article  CAS  PubMed  Google Scholar 

  • Almeida LP (2006) Caracterização de pigmentos da Curcuma longa L., avaliação da atividade antimicrobiana e morfogênese in vitro na produção de pigmentos curcuminóides e óleos essenciais. Tese de Doutorado, Universidade Federal de Minas Gerais

    Google Scholar 

  • Arya A, Chahal R, Rao R, Rahman MH, Kaushik D, Akhtar MF, Saleem A, Khalifa SMA, El-Seedi HR, Kamel M et al (2021) Acetylcholinesterase inhibitory potential of various sesquiterpene analogues for Alzheimer’s disease therapy. Biomolecules 11:350. https://doi.org/10.3390/biom11030350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhuket PRN, Wichitnithad W, Sudtanon O, Rojsitthisak P (2020) A stability-indicating UPLC method for the determination of curcumin diethyl disuccinate, an ester prodrug of curcumin, in raw materials. Heliyon 6(8):e04561. https://doi.org/10.1016/j.heliyon.2020.e04561

    Article  Google Scholar 

  • Boroumand N, Samarghandian S, Hashemy SI (2018) Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. J Herbmed Pharmacol 7(4):211–219. https://doi.org/10.15171/jhp.2018.33

    Article  CAS  Google Scholar 

  • Bredesen DE, Amos EC, Canick J, Ackerley M, Raji C, Fiala M, Ahdidan J (2016) Reversal of cognitive decline in Alzheimer’s disease. Aging 8(6):1250–1258

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho PDP, Magalhães CMC, Pedroso JS (2016) Tratamentos não farmacológicos que melhoram a qualidade de vida de idosos com doença de Alzheimer: uma revisão sistemática. J Bras Psiquiatr 65(4):334–339

    Article  Google Scholar 

  • Cassel E, Vargas RMF (2006) Experiments and modeling of the Cymbopogon winterianus essential oil extraction by steam distillation. J Mex Chem Soc 55:57–60

    Google Scholar 

  • Castro HG, Perini VBM, Santos GR, Leal TCAB (2010) Avaliação do teor e composição do óleo essencial de Cymbopogon nardus (L.) em diferentes épocas de colheita. Rev Ciên Agron 41(2):308–314

    Article  Google Scholar 

  • Cecilio Filho AB (1996) Época e densidade de plantio sobre a fenologia e o rendimento da cúrcuma (Curcuma longa L.). 100 f. Tese (Doutorado em Fitotecnia) – Universidade Federal de Lavras, Lavras

    Google Scholar 

  • Chatterjee B, Modi K, Patel T (2015) Curcumin-health promise for the future. Int J Clin Biomed Res 1(4):45–49

    Google Scholar 

  • Chen M, Chang Y, Huang S, Xiao L, Zhou W, Zhang L, Li C, Zhou R, Tang J, Lin L, Du Z, Zhang K (2017) Aromatic-turmerone attenuates LPS-induced neuroinflammation and consequent memory impairment by targeting TLR4-dependent signaling pathway. Mol Nutr Food Res 62:1–9. https://doi.org/10.1002/mnfr.201700281

    Article  CAS  Google Scholar 

  • Das TK, Jana P, Chakrabarti SK, Abdul Hamid MRW (2019) Curcumin downregulates GSK3 and Cdk5 in scopolamine-induced Alzheimer’s disease rats abrogating Aβ40/42 and Tau hyperphosphorylation. J Alzheimer’s Dis Rep 3(1):257–267. https://doi.org/10.3233/ADR-190135

    Article  Google Scholar 

  • De Paula RL (2016) Filmes e coberturas a base do resíduo da extração de corante de cúrcuma. Dissertação de Mestrado, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/USP

    Google Scholar 

  • Dohi S, Terasaki M, Makino M (2009) Acetylcholinesterase inhibitory activity and chemical composition of commercial essential oils. J Agric Food Chem 57:4313–4318

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Yang B, Wang L, Li B, Guo X, Zhang M, Jiang Z, Fu J, Pi J, Guan D, Zhao R (2018) Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling. Toxicol Appl Pharmacol 346:28–36. https://doi.org/10.1016/j.taap.2018.03.020

    Article  CAS  PubMed  Google Scholar 

  • Espinosa J et al (1994) Tecnologia de la conservación de productos hortícolas. Acribia, Madri, p 432

    Google Scholar 

  • Falco AD, Cukierman DS, Hauser-Davis RA, Rey NA (2016) Doença de alzheimer: hipóteses etiológicas e perspectivas de tratamento. Quím Nova 39(1):63–80

    Google Scholar 

  • Farhadian S, Shareghi B, Asgharzadeh S, Rajabi M, Asadi H (2019) Structural characterization of α chymotrypsin after binding to curcumin: spectroscopic and computational analysis of their binding mechanism. J Mol Liq 289:1–10. https://doi.org/10.1016/j.molliq.2019.111111

    Article  CAS  Google Scholar 

  • Fernandes F, Barroso MF, Simone A, Emriková E, Dias-Teixeira M, Pereira JP, Chlebek J, Fernandes VC, Rodrigues F, Andrisano V, Delerue-Matos C, Grosso C (2022) Multi-target neuroprotective effects of herbal medicines for Alzheimer’s disease. J Ethnopharmacol 290:115107. https://doi.org/10.1016/j.jep.2022.115107

    Article  CAS  PubMed  Google Scholar 

  • Fontes SMS (2018) Cúrcuma longa L.: caracterização química e estudo da capacidade antioxidante. 64f. Dissertação – Unicamp. https://doi.org/10.47749/T/UNICAMP.2018.1060293

  • Fujiwara T, Yasufuku K, Nakajima T, Chiyo M, Yoshida S, Suzuki M, Shibuya K, Hiroshima K, Nakatani Y, Yoshino I (2010) The utility of sonographic features during endobronchial ultrasound-guided transbronchial needle aspiration for lymph node staging in patients with lung cancer: a standard endobronchial ultrasound image classification system. Chest 138(3):641–647

    Article  PubMed  Google Scholar 

  • Galli GM, Gerbet RR, Griss LG, Fortuoso BF, Petrolli TG, Boiago MM, Souza CF, Baldissera MD, Mesadri J, Wagner R, Rosa G, Mendes RE, Gris A, Silva AS (2020) Combination of herbal components (curcumin, carvacrol, thymol, cinnamaldehyde) in broiler chicken feed: impacts on response parameters, performance, fatty acid profiles, meat quality and control of coccidia and bacteria. Microb Pathog 139:103916. https://doi.org/10.1016/j.micpath.2019.103916

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Geahlen RL (2015) Stress granules modulate SYK to cause microglial cell dysfunction in Alzheimer’s disease. EBioMedicine 2(11):1785–1798. https://doi.org/10.1016/j.ebiom.2015.09.053

    Article  PubMed  PubMed Central  Google Scholar 

  • Guimarães AF, Vinhas ACA, Gomes AF, Souza LH, Krepsky PB (2020) Essential oil of Curcuma longa l. rhizomes chemical composition, yield variation and stability. Quím Nova 43(7):909–913

    Google Scholar 

  • Gumireddy A, Christman R, Kumari D, Tiwari A, North EJ, Chauhan H (2019) Preparation, characterization, and in vitro evaluation of curcumin-and resveratrol-loaded solid lipid nanoparticles. AAPS PharmSciTech 20:145. https://doi.org/10.1208/s12249-019-1349-4

    Article  CAS  PubMed  Google Scholar 

  • He SH, Jiang H (2022) Qualitative and quantitative analysis of some co-existing colorants in some hard candies. J Food Compos Anal 109:104475. https://doi.org/10.1016/j.jfca.2022.104475

    Article  CAS  Google Scholar 

  • Huang Z, Yuan Y, Tan Z, Zheng J, Zhang W, Huang S, Wang Y, Chen M, Zhang L, Li H (2023) Metabolomics in combination with network pharmacology reveals the potential anti-neuroinflammatory mechanism of essential oils from four Curcuma species. Ind Crop Prod 195:116411. https://doi.org/10.1016/j.indcrop.2023.116411

    Article  CAS  Google Scholar 

  • Innamorato NG, Rojo AI, García-Yagüe AJ, Yamamoto M, Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181(1):680–689. https://doi.org/10.4049/jimmunol.181.1.680

    Article  CAS  PubMed  Google Scholar 

  • Jahed V, Zarrabi A, Bordbar AK, Hafezi MS (2014) NMR (1H, ROESY) spectroscopic and molecular modelling investigations of supramolecular complex of b-cyclodextrin and curcumin. Food Chem 165:241–246. https://doi.org/10.1016/j.foodchem.2014.05.094

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Ghosh R, Charcosset C (2021) Extraction, purification and applications of curcumin from plant materials - a comprehensive review. Trends Food Sci Technol 112:419–430. https://doi.org/10.1016/j.tifs.2021.04.015

    Article  CAS  Google Scholar 

  • Kazia M, Shariare MH, Al-bgomi M, Hussain MD, Alanazi FK (2018) Simultaneous determination of curcumin (Cur) and thymoquinone (THQ) in lipid based self-nanoemulsifying systems and its application to the commercial product using UHPLC-UV-Vis spectrophotometer. Curr Pharm Anal 14:277–285. https://doi.org/10.2174/1573412913666170331114232

    Article  CAS  Google Scholar 

  • Khorshidi N, Rahimi M, Salimikia I (2020) Application of aeration-assisted homogeneous liquid–liquid microextraction procedure using Box–Behnken design for determination of curcumin by HPLC. J Sep Sci 43:2513–2520. https://doi.org/10.1002/jssc.202000001

    Article  CAS  PubMed  Google Scholar 

  • Kita T, Imai S, Sawada H, Kumagai H, Seto H (2008) The biosynthetic pathway of curcuminoid in turmeric (Curcuma longa) as revealed by 13C-labeled precursors. Biosci Biotechnol Biochem 72(7):1789–1798. https://doi.org/10.1271/bbb.80075

    Article  CAS  PubMed  Google Scholar 

  • Kongpol K, Sermkaew N, Makkliang F, Khongphan S, Chuaboon L, Sakdamas A, Sakamoto S, Putalun W, Yusakul G (2022) Extraction of curcuminoids and ar-turmerone from turmeric (Curcuma longa L.) using hydrophobic deep eutectic solvents (HDESs) and application as HDES-based microemulsions. Food Chem 396:133728. https://doi.org/10.1016/j.foodchem.2022.133728

    Article  CAS  PubMed  Google Scholar 

  • Kroon MAGM, Van Laarhoven HWM, Swart EL, Kemper EM, Van Tellingen O (2023) A validated HPLC-MS/MS method for simultaneously analyzing curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetra-hydrocurcumin and piperine in human plasma, urine or feces. Heliyon 9:e15540. https://doi.org/10.1016/j.heliyon.2023.e15540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Sidhu J, Goyal A et al (2023) Alzheimer disease. In: StatPearls. StatPearls Publishing, Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK499922/

    Google Scholar 

  • Leonel M, Sarmento SBS, Cereda MP (2003) New starches for the food industry: Curcuma longa and Curcuma zedoaria. Carbohydr Polym 54(3):385–388

    Article  CAS  Google Scholar 

  • Liu Y, Lia J, Fu R, Zhang L, Wang D, Wang S (2019) Enhanced extraction of natural pigments from Curcuma longa L. using natural deep eutectic solvents. Ind Crop Prod 140:111620. https://doi.org/10.1016/j.indcrop.2019.111620

    Article  CAS  Google Scholar 

  • Marchi JP, Tedesco L, Melo AC, Frasson AC, França VF, Sato SW, Lovato ECW (2016) Curcuma longa L., o açafrão da terra, e seus benefícios medicinais. Arquivos Ciên Saúde UNIPAR 20(3):189–194

    Google Scholar 

  • Matlinska MA, Wasylishen RE, Bernard GM, Terskikh VV, Brinkmann A, Michaelis VK (2018) Capturing elusive polymorphs of curcumin: a structural characterization and computational study. Cryst Grow Des 18:5556–5563. https://doi.org/10.1021/acs.cgd.8b00859

    Article  CAS  Google Scholar 

  • More S, Pawar A (2023) Brain targeted curcumin loaded turmeric oil microemulsion protects against trimethyltin induced neurodegeneration in adult zebrafish: a pharmacokinetic and pharmacodynamic insight. Pharm Res 40:675–687. https://doi.org/10.1007/s11095-022-03467-9

    Article  CAS  PubMed  Google Scholar 

  • Moretes DN, Geron VLMG (2019) Os benefícios medicinais da Curcuma longa L. (açafrão da terra). Rev Cien Fac Educ Meio Ambiente 10(1):106–114

    Article  Google Scholar 

  • Oliveira TFV (2017) Características químicas e microbiológicas do açafrão-da-terra (Curcuma longa). 62f. Trabalho de Conclusão de Curso (Licenciatura em Química), Universidade Tecnológica Federal do Paraná.

    Google Scholar 

  • Panahi Y, Hosseini MS, Khalili N, Naimi E, Simental-Mendía LE, Majeed M, Sahebkar A (2016) Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: a post-hoc analysis of a randomized controlled trial. Biomed Pharmacother 82:578–582

    Article  CAS  PubMed  Google Scholar 

  • Paramasivam K (2016) The aid of ephedrine HCL, curcumin and turmerone in neurogenesis and inhibition of beta-amyloid plaques in transgenic mouse models. Conference Abstract: 14th Meeting of the Asian-Pacific Society for Neurochemistry. https://doi.org/10.3389/conf.fncel.2016.36.00099

  • Park SY, Jin ML, Kim YH, Kim Y, Lee SJ (2012) Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. Int Immunopharmacol 14(1):13–20. https://doi.org/10.1016/j.intimp.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  • Perera KDC, Weragoda GK, Haputhanthri R, Rodrigo SK (2021) Study of concentration dependent curcumin interaction with serum biomolecules using ATR-FTIR spectroscopy combined with principal component analysis (PCA) and partial least square regression (PLS-R). Vib Spectrosc 116:103288. https://doi.org/10.1016/j.vibspec.2021.103288

    Article  CAS  Google Scholar 

  • Péret-Almeida L, Cherubino APF, Alves RJ, Dufosse L, Glória MBA (2005) Separation and determination of the physico-chemical characteristics of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Res Int 38:1039–1044. https://doi.org/10.1016/j.foodres.2005.02.021

    Article  CAS  Google Scholar 

  • Perry NS, Houghton PJ, Theobald A, Jenner P, Perry EK (2000) In-vitro inhibition of human erythrocyte acetylcholinesterase by salvia lavandulaefolia essential oil and constituent terpenes. J Pharm Pharmacol 52:895–902

    Article  CAS  PubMed  Google Scholar 

  • Picollo MI, Toloza AC, Mougabure CG, Zygadlo J, Zerba E (2008) Anticholinesterase and pediculicidal activities of monoterpenoids. Fitoterapia 79:271–278

    Article  CAS  PubMed  Google Scholar 

  • Poudel A, Pandey J, Lee HK (2019) Geographical discrimination in curcuminoids content of turmeric assessed by rapid UPLC-DAD validated analytical method. Molecules 24:1805. https://doi.org/10.3390/molecules24091805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roughley PJ, Whiting DA (1973) Experiments in the biosynthesis of curcumin. J Chem Soc Perkin Trans 1:2379–2388. https://doi.org/10.1039/P19730002379

    Article  Google Scholar 

  • Singh R, Tønnesen HH, Vogensen SB, Loftsson T, Másson M (2010) Studies of curcumin and curcuminoids. XXXVI: The stoichiometry and complexation constants of cyclodextrin complexes as determined by the phase-solubility method and UV–Vis titration. J Incl Phenom Macrocycl Chem 66:335–348. https://doi.org/10.1007/s10847-009-9651-5

    Article  CAS  Google Scholar 

  • Singh DV, Bharti SK, Agarwal S, Roy R, Misra K (2014) Study of interaction of human serum albumin with curcumin by NMR and docking. J Mol Model 20:2365. https://doi.org/10.1007/s00894-014-2365-7

    Article  CAS  PubMed  Google Scholar 

  • Steffens AH (2010) Estudo da composição química dos óleos essenciais obtidos por destilação por arraste a vapor em escala laboratorial e industrial. 68 f. Dissertação (Mestrado em Engenharia e Tecnologia de Materiais) - Pontifícia Universidade Católica do Rio Grande do Sul

    Google Scholar 

  • Sueth-Santiago V, Mendes-Silva GP, Decoté-Ricardo D, Lima MEF (2015) Curcumina, o pó dourado do açafrão-da-terra: introspecções sobre química e atividades biológicas. Quím Nova 38(4):538–552. https://doi.org/10.5935/0100-4042.20150035

    Article  CAS  Google Scholar 

  • Surwase VS, Laddha K, Kale R, Hashmi S, Lokhande S (2013) Extraction and isolation of turmerone from turmeric. Agric Food Chem 10(5):2173–2179

    Google Scholar 

  • Ti H, Mai Z, Wang Z, Zhang W, Xiao M, Yang Z, Shaw P (2021) Bisabolane-type sesquiterpenoids from Curcuma longa L. exert anti-influenza and anti-inflammatory activities through NF-κB/MAPK and RIG-1/STAT1/2 signaling pathways. Food Funct 15:6697–6711. https://doi.org/10.1039/D1FO01212F

    Article  Google Scholar 

  • Tobon JFO (2015) Extração e precipitação de curcuminóides de cúrcuma (Curcuma longa L.) utilizando líquidos pressurizados e fluidos supercríticos. Tese de doutorado, Universidade Estadual de Campinas

    Google Scholar 

  • Veloso RA, Castro HG, Barbosa LCA, Cardoso DP, Chagas Júnior AF, Scheidt GN (2014) Teor e composição do óleo essencial de quatro acessos e duas cultivares de manjericão (Ocimum basilicum L.). Rev Bras Plantas Med 16(2):364–371

    Article  Google Scholar 

  • Venancio AM (2006) Toxicidade aguda e atividade antinociceptiva do óleo essencial do Ocimum basilicum L. (manjericão), em Mus musculus (camundongos). 110 f. Dissertação (Mestrado em ciências da saúde) – Universidade Federal de Sergipe

    Google Scholar 

  • Voulgaropoulou SD, van Amelsvoort TAMJ, Prickaerts J, Vingerhoets C (2019) The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: a systematic review of pre-clinical and clinical studies. Brain Res 15:1–14. https://doi.org/10.1016/j.brainres.2019.146476

    Article  CAS  Google Scholar 

  • Wan Y, Liang Y, Liang F, Shen N, Shinozuka K, Yu JT, Ran C, Quan Q, Tanzi RE, Zhang C (2019) A curcumin analog reduces levels of the Alzheimer’s disease-associated amyloid-β protein by modulating AβPP processing and autophagy. J Alzheimers Dis 72(3):761–771. https://doi.org/10.3233/JAD-190562

    Article  CAS  PubMed  Google Scholar 

  • Wu JN, Tu QK, Xiang XL, Shi QX, Chen GY, Dai MX, Zhang LJ, Yang M, Song CW, Huang RZ, Jin SN (2022) Changes in curcuminoids between crude and processed turmeric based on UPLC-QTOF-MS/MS combining with multivariate statistical analysis. Chin J Anal Chem 50:100108. https://doi.org/10.1016/j.cjac.2022.100108

    Article  Google Scholar 

  • Xu LL, Shang Z, Lu YY, Li P, Sun L, Guo QL, Bo T, Le ZY, Bai ZL, Zhang XL, Qiao X, Ye M (2020) Analysis of curcuminoids and volatile components in 160 batches of turmeric samples in China by high-performance liquid chromatography and gas chromatography mass spectrometry. J Pharm Biomed Anal 188:113465. https://doi.org/10.1016/j.jpba.2020.113465

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Browne A, Child D, Tanzi RE (2010) Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein. J Biol Chem 285(37):28472–28480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveira Barbosa, C., Neto, J.F.C. (2023). Turmeric and Alzheimer’s Disease: Therapeutic Effects of Curcuminoids, Curcumin, and Turmerone. In: Rai, M., Feitosa, C.M. (eds) Curcumin and Neurodegenerative Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-7731-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7731-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7730-7

  • Online ISBN: 978-981-99-7731-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics