Skip to main content

Secondary Metabolites of Turmeric Extract and Essential Oils

  • Chapter
  • First Online:
Curcumin and Neurodegenerative Diseases

Abstract

Drugs are mostly derived from plants in both traditional and modern medical systems around the world. Secondary metabolites are sources of drugs from plants, and secondary metabolites are an essential source for discovering novel pharmacological molecules for medication development. Plant secondary metabolites are frequently excellent sources of medicinal development leads. However, modifications to these drugs’ molecular structures are enhancing their biological activity, selectivity, and capacity for absorption, distribution, metabolism, and excretion while lowering their toxicity and adverse effects. Since ancient times, turmeric (Curcuma longa L.) has been esteemed for its therapeutic benefits as a root crop. Therapeutically, C. longa has been used to treat various diseases such as asthma, cough, chronic bronchitis, fever, anemia, eye disease, diabetes, hysteria, indigestion, peptic ulcer, dysentery, itching, leprosy, liver disorder, hepatitis, menstrual disorder, diarrhea, smallpox, chicken pox, tonsillitis, urinary infection, etc. Turmeric contains a wide variety of phytoconstituents, including curcumin, bisdemethoxycurcumin, demethoxycurcumin, triethylcurcumin, tetrahydrocurcumin, curcumol, curcumenol, zingiberene, eugenol, turmerin, turmerones, and turmeronols. Among these, the most active component of turmeric is curcumin, which gives turmeric its yellow color and is responsible for most of its therapeutic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Lateef E, Mahmoud F, Hammam O, El-Ahwany E, El-Wakil E, Kandil SA, Taleb H, El-Sayed M, Hassenein H (2016) Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2). Acta Pharma 66:387–398

    Article  CAS  Google Scholar 

  • Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1):40–59

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB, Bhatt ID, Ichikawa H, Ahn KS, Sethi G, Sandur SK, Sundaram C, Seeram N, Shishodia S (2007) Curcumin - biological and medicinal properties. In: Ravindran PN, Nirmal Babu K, Sivaraman K (eds) Turmeric: the genus curcuma. CRC Press, Boca Raton, pp 297–368

    Google Scholar 

  • Akbik D, Ghadiri M, Chrzanowski W, Rohanizadeh R (2014) Curcumin as a wound healing agent. Life Sci 116(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Akter J, Islam MZ, Takara K, Hossain MA, Sano A (2019) Isolation and structural elucidation of antifungal compounds from Ryudai gold (Curcuma longa) against Fusarium solani sensu lato isolated from American manatee. Comp Biochem Physiol Part C Toxicol Pharmacol 219(2019):87–94

    Article  CAS  Google Scholar 

  • Awasthi PK, Dixit SC (2009) Chemical composition of Curcuma longa leaves and rhizome oil from the plains of Northern India. Pharmacognosy 1:312–316

    CAS  Google Scholar 

  • Bhagat M, Purohit A (2001) Antifertility effect of various extract of Curcuma longa Linn in male albino rats. Indian Drugs 38(2):78–81

    Google Scholar 

  • Braga MEM, Leal PF, Carvalho JE, Meireles MAA (2003) Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques. J Agric Food Chem 51:6604–6611

    Article  CAS  PubMed  Google Scholar 

  • Chassagnez-Me’ndez AL, Machado NT, Araujo ME, Maia JG, Meireles MAA (2000) Supercritical CO2 extraction of curcumins and essential oil from the rhizomes of turmeric (Curcuma longa L.). Ind Eng Chem Res 39:4729–4733

    Article  Google Scholar 

  • Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin: biological action medical applications. Curr Sci 87(1):44–50

    CAS  Google Scholar 

  • Chempakam B, Parthasarathy VA (2008) Turmeric. In: Parthasarathy VA, Chempakam B, Zachariah TJ (eds) Chemistry of spice. CABI, Cambridge, pp 97–123

    Chapter  Google Scholar 

  • Chen JJ, Tsai CS, Hwang TL, Shieh PC, Chen JF, Sung PJ (2010) Sesquiterpenes from the rhizome of Curcuma longa with inhibitory activity on superoxide generation and elastase release by neutrophils. Food Chem 119:974–980

    Article  CAS  Google Scholar 

  • Chowdhury JU, Nandi NC, Bhuiyan MNI, Mobarok MH (2008) Essential oil constituents of the rhizomes of two types of Curcuma longa of Bangladesh. Bangladesh J Sci Ind Res 43:259–266

    Article  CAS  Google Scholar 

  • Chumroenphat T, Somboonwatthanakul I, Saensouk S, Siriamornpun S (2021) Changes in curcuminoids and chemical components of Turmeric (Curcuma longa L.) under freeze-drying and low-temperature drying methods. Food Chem 339:128121

    Article  CAS  PubMed  Google Scholar 

  • Cooray NF, Jansz ER, Ranatunga J, Wimalasena S (1988) Effect of maturity on some chemical constituents of tumeric (Curcuma longa L.). J Natl Sci Country Sri Lanka 16:39–51

    CAS  Google Scholar 

  • Czernicka L, Grzegorczyk A, Marzec Z, Antosiewicz B, Malm A, Kukula-Koch W (2019) Antimicrobial potential of single metabolites of Curcuma longa assessed in the total extract by thin-layer chromatography-based bioautography and image analysis. Int J Mol Sci 20:898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Auria M, Racioppi R (2019) Solid phase microextraction and gas chromatography mass spectrometry analysis of Zingiber officinale and Curcuma longa. Nat Prod Res 333:2125–2127

    Article  Google Scholar 

  • El Demerdash A, Dawidar AM, Keshk EM, Abdel-Mogib M (2012) Gingerdione from the rhizomes of Curcuma longa. Chem Nat Compd 48(4):646–648

    Article  Google Scholar 

  • Essien EE, Newby SJ, Walker MT, Setzer NW, Ekundayo O (2015) Chemotaxonomic characterization and in-vitro antimicrobial and cytotoxic activities of the leaf essential oil of curcuma longa grown in Southern Nigeria. Medicines 2(4):340–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk JL, Frye JB, Oyarzo JN, Kuscuoglu N, Wilson J, McCaffrey G, Stafford G, Chen G, Lantz RC, Jolad SD, Sólyom AM, Kiela PR, Timmermann BN (2006) Efficacy and mechanism of action of turmeric supplements in the treatment of experimental arthritis. Arthritis Rheum 54:3452–3464

    Article  CAS  PubMed  Google Scholar 

  • Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “curecumin”: from kitchen to clinic. Biochem Pharmacol 75(4):787–809

    Article  CAS  PubMed  Google Scholar 

  • Golding BT, Pombo E, Christopher JS (1982) Turmerones: isolation from turmeric and their structure determination. J Chem Soc Chem Commun 6:363–364

    Article  Google Scholar 

  • Gopalan B, Goto M, Kodama A, Hirose T (2000) Supercritical carbon dioxide extraction of turmeric (Curcuma longa). J Agric Food Chem 48:2189–2192

    Article  CAS  PubMed  Google Scholar 

  • Guddadarangavvanahally KJ, Rao LJM, Sakariah KK (2002) Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J Agric Food Chem 50(13):3668–3672

    Article  Google Scholar 

  • Guerriero G, Berni R, Muñoz-Sanchez JA, Apone F, Abdel-Salam EM, Qahtan AA et al (2018) Production of plant secondary metabolites: examples, tips and suggestions for biotechnologists. Gene 9(6):309

    Article  Google Scholar 

  • IUCN (2011) Selected medicinal plants of Chittagong hill tracts. International Union for Conservation of Nature, Bangladesh Country Office, Dhaka

    Google Scholar 

  • Iweala EJ, Uche ME, Dike ED, Etumnu LR, Dokunmu TM, Oluwapelumi AE, Okoro BC, Dania OE, Adebayo AH, Ugbogu EA (2023) Curcuma longa (turmeric): ethnomedicinal uses, phytochemistry, pharmacological activities and toxicity profiles-a review. Pharmacol Res 6:100222

    Google Scholar 

  • Jain S, Shrivastava S, Nayak S, Sumbhate S (2007) Recent trends in Curcuma longa Linn. Pharmacogn Rev 1(1):119–128

    CAS  Google Scholar 

  • Katsuyama Y, Kita T, Funa N, Horinouchi S (2009) Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa. Biol Chem 284(17):11160–11170

    Article  CAS  Google Scholar 

  • Küpeli Akkol E, Bardakcı H, Yücel Ç, Şeker Karatoprak G, Karpuz B, Khan H (2022) A new perspective on the treatment of Alzheimer’s disease and sleep deprivation-related consequences: can curcumin help? Oxidative Med Cell Longev 2022(2022):6168199. https://doi.org/10.1155/2022/6168199. PMID: 35069976; PMCID: PMC8769857.

    Article  CAS  Google Scholar 

  • Lee H (2006) Antiplatelet property of Curcuma longa L. rhizome-derived ar-turmerone. Bioresour Technol 97:1372–1376

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Chang KS, Su MS, Hung YS, Jang HD (2007) Effect of some Chinese medicinal plant extracts on five different fungi. Food Control 18:1547–1554

    Article  Google Scholar 

  • Leela NK, Tava A, Shafi PM, John SP, Chempakam B (2002) Chemical composition of essential oils of turmeric (Curcuma longa L.). Acta Pharma 52:137–141

    CAS  Google Scholar 

  • Lu Y, Wang J, Shen G, Liu J, Zhu H, Zhao J, He S (2021) Rapid determination and quality control of pharmacological volatiles of turmeric (Curcuma longa L.) by fast gas chromatography–surface acoustic wave sensor. Molecules 26:5797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Gang DR (2006) Metabolic profiling of turmeric (Curcuma longa L.) plants derived from in vitro micropropagation and conventional greenhouse cultivation. J Agric Food Chem 54:9573–9583

    Article  CAS  PubMed  Google Scholar 

  • Manzan ACCM, Toniolo FS, Bredow E, Povh NP (2003) Extraction of essential oil and pigments from Curcuma longa [L.] by steam distillation and extraction with volatile solvents. J Agric Food Chem 51:6802–6807

    Article  CAS  PubMed  Google Scholar 

  • Mohamed SM, El-Gengaihi SE, Motawe HM (2003) Terpenoid from Curcuma longa. Egypt J Pharm Sci 43:139–151

    Google Scholar 

  • Negi DS, Jayprakash GK, Rao LM, Sakarian KK (1999) Antimicrobial action of turmeric oil. J Agric Food Chem 47(10):297–300

    Google Scholar 

  • Nigam MC, Ahmed A (1991) Curcuma longa: terpenoid composition of its essential oil. Indian Perfumer 3:201–205

    Google Scholar 

  • Nishiyama T, Mae T, Kishida H, Tsukagawa M, Mimaki Y, Kuroda M, Sashida Y, Takahashi K, Kawada T, Nakagawa K, Kitahara M (2005) Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice. J Agric Food Chem 53:959–963

    Article  CAS  PubMed  Google Scholar 

  • Oguntimein BO, Weyerstahl P, Marshall H (1990) Essential oil of Curcuma longa L. leaves. Flavour Fragr J 5:89–90

    Article  CAS  Google Scholar 

  • Ohshiro M, Kuroyanagi M, Ueno A (1990) Structures of sesquiterpenes from Curcuma longa. Phytochemistry 29:2201–2205

    Article  CAS  Google Scholar 

  • Puteri AIS, Sandhika W, Hasanatuludhhiyah N (2020) Effect of Javanese turmeric (Curcuma Xanthorrhiza) extract on hepatitis model of alcohol induced mice. JKB 31(1):39–42

    Article  Google Scholar 

  • Rajkumari S, Sanatombi K (2017) Nutritional value, phytochemical composition, and biological activities of edible curcuma species: a review. Int J Food Prop 20(3):S2668–S2687

    Article  CAS  Google Scholar 

  • Ruby AJ, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R (1995) Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett 94:79–83

    Article  CAS  PubMed  Google Scholar 

  • Sabir S, Zeb A, Mahmood M, Abbas S, Ahmad Z, Iqbal N (2020) Phytochemical analysis and biological activities of ethanolic extract of Curcuma longa rhizome. Braz J Biol 81:737–740

    Article  Google Scholar 

  • Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, Limtrakul P, Badmaev V, Aggarwal BB (2007) Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and antiproliferative responses through a ROS-independent mechanism. Carcinogenesis 28:1765–1773

    Article  CAS  PubMed  Google Scholar 

  • Schnee C, Kollner TG, Gershenzon J, Degenhardt J (2002) The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-beta-farnesene, (E)-nerolidol, and (E,E)-farnesol after herbivore damage. Plant Physiol 130(4):2049–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Gescher A, Steward W (2005) Curcumin: the story so far. Eur J Cancer 41:1955–1968

    Article  CAS  PubMed  Google Scholar 

  • Singh R (2015) Medicinal plants: a review. J Plant Sci 3(1):50–55

    Google Scholar 

  • Singh R, Chandra R, Bose M, Luthra M, M. (2002) Antimicrobial activity of Curcuma longa rhizome extract on pathogenic bacteria. Curr Sci 83(6):737–742

    Google Scholar 

  • Singh G, Kapoor I, Singh P, de Heluani CS, de Lampasona MP, Catalan CA (2010) Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of Turmeric (Curcuma longa Linn). Food Chem Toxicol 48:1026–1031

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Wang S, Zhao W, Wu C, Guo S, Tao HG, Lu H, Wang J, Chen X (2017) Chemical constituents and biological research on plants in the genus Curcuma. Crit Rev Food Sci Nutr 57(7):1451–1523

    Article  CAS  PubMed  Google Scholar 

  • Tiwari R, Rana C (2015) Plant secondary metabolites: a review. Int J Eng Res Gen Sci 3(5):661–670

    Google Scholar 

  • Usman LA, Hamid AA, George OC, Ameen OM, Muhammad NO, Zubair MF (2009) Chemical composition of rhizome essential oil of Curcuma longa L. growing in North Central Nigeria. World J Chem 4:178–181

    CAS  Google Scholar 

  • Wang L, Zhang M, Zhang C, Wang Z (2008) Alkaloid and sesquiterpenes from the root tuber of Curcuma longa. Acta Pharm Sin 43:724–727

    CAS  Google Scholar 

  • WHO (2002) Legal status of traditional medicine and complementary/alternative medicine: a worldwide review. World Health Organization, Geneva

    Google Scholar 

  • Widowati W, Wargasetia TL, Afifah E, Mozef T, Kusuma HSW, Nufus H, Arumwardana S, Amalia A, Rizal R (2018) Antioxidant and antidiabetic potential of Curcuma longa and its compounds. Asian J Agric Biol 6:149–161

    Google Scholar 

  • Xu Y, Ku B, Kao S, Lin HY, Ma YH, Zhang X, Li X (2002) The effect of curcumin on depressive like behaviors in mice. Eur J Pharmacol 518(1):40–46

    Article  Google Scholar 

  • Xu J, Ji F, Kang J, Wang H, Li S, Jin D-Q, Zhang Q, Sun H, Guo Y (2015) Absolute configurations and NO inhibitory activities of terpenoids from Curcuma longa. J Agric Food Chem 63:5805–5812

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Utsumi R (2009) Diversity, regulation, and genetic manipulation of plant mono- and sesquiterpenoid biosynthesis. Cell Mol Life Sci 66(18):3043–3052

    Article  CAS  PubMed  Google Scholar 

  • Yuan T, Zhang C, Qiu C, Xia G, Wang F, Lin B, Li H, Chen L (2018) Chemical constituents from Curcuma longa L. and their inhibitory effects of nitric oxide production. Nat Prod Res 32:1887–1892

    Article  CAS  PubMed  Google Scholar 

  • Zeng YC, Liang JM, Qu GX, Qiu F (2007a) Chemical constituents of Curcuma longa I: bisabolane sesquiterpenes. Acta Pharm Sin 17:738–741

    Google Scholar 

  • Zeng YC, Qiu F, Takahashi K, Liang JM, Qu GX, Yao XS (2007b) New sesquiterpenes and calebin derivatives from Curcuma longa. Chem Pharm Bull 55:940–943

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Küpeli Akkol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karpuz Ağören, B., Akkol, E.K. (2023). Secondary Metabolites of Turmeric Extract and Essential Oils. In: Rai, M., Feitosa, C.M. (eds) Curcumin and Neurodegenerative Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-7731-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7731-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7730-7

  • Online ISBN: 978-981-99-7731-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics