Skip to main content

Impact of Curcumin on Aging: Its Manifestations and Limitations

  • Chapter
  • First Online:
Curcumin and Neurodegenerative Diseases

Abstract

Products of molecular and cellular damage accumulate over time and contribute to aging. In the long run, this results in a loss of physical and mental function, increased disease risk, and a higher mortality rate. Deteriorating cognitive function associated with aging reduces the quality of life and increases costs for those affected and their families. Several risk factors and disorders such as high blood pressure, stroke, diabetes, to name a few, contribute to cognitive impairment. Oxidative stress and inflammation contribute to cognitive decline due to homeostatic imbalances. There is a link between inflammation and dementia. Misfolded proteins elicit an immune response that results in neuronal death and cognitive impairment, a characteristic of Alzheimer’s disease (AD). Due to its potential for treating cancer and Alzheimer’s disease, turmeric, which contains curcumin, has gained considerable attention in recent years. The primary reason why curcumin is effective is its anti-inflammatory properties. Age-related redox imbalance results in overexpression of reactive oxygen species levels. Curcumin reduces oxidative stress associated with cellular senescence and can benefit aging individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Rabo MM, Georgy GS, Saied NM, Hassan WA (2019) Involvement of the serotonergic system and neuroplasticity in the antidepressant effect of curcumin in ovariectomized rats: comparison with oestradiol and fluoxetine. Phytother Res 33(2):387–396

    Article  CAS  PubMed  Google Scholar 

  • Afshari AR, Fanoudi S, Rajabian A, Sadeghnia HR, Mollazadeh H, Hosseini A (2020) Potential protective roles of phytochemicals on glutamate-induced neurotoxicity: a review. Iran J Basic Med Sci 23(9):1113–1123

    PubMed  PubMed Central  Google Scholar 

  • Akram M, Afzal A, Khan U, Abdul H, Mohiuddin E, Asif M (2010) Curcuma longa and Curcumin: a review article. Rom J Biol-Plant Biol 55:65–70

    Google Scholar 

  • Alhusaini A, Fadda L, Hasan IH, Zakaria E, Alenazi AM, Mahmoud AM (2019) Curcumin ameliorates lead-induced hepatotoxicity by suppressing oxidative stress and inflammation, and modulating Akt/GSK-3β signaling pathway. Biomolecules 9(11):703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB (2008) Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol 76(11):1590–1611

    Article  CAS  PubMed  Google Scholar 

  • Andreux PA, Houtkooper RH, Auwerx J (2013) Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov 12(6):465–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem 299(2):102838

    Article  CAS  PubMed  Google Scholar 

  • Badria FA, Ibrahim AS, Badria AF, Elmarakby AA (2015) Curcumin attenuates iron accumulation and oxidative stress in the liver and spleen of chronic iron-overloaded rats. PLoS One 10(7):e0134156

    Article  PubMed  PubMed Central  Google Scholar 

  • Bala K, Tripathy BC, Sharma D (2006) Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions. Biogerontology 7(2):81–89

    Article  CAS  PubMed  Google Scholar 

  • Balasa R, Barcutean L, Balasa A, Motataianu A, Roman-Filip C, Manu D (2020) The action of TH17 cells on blood brain barrier in multiple sclerosis and experimental autoimmune encephalomyelitis. Hum Immunol 81(5):237–243

    Article  CAS  PubMed  Google Scholar 

  • Banji D, Banji OJ, Dasaroju S, Kranthi KC (2013) Curcumin and piperine abrogate lipid and protein oxidation induced by D-galactose in rat brain. Brain Res 1515:1–11

    Article  CAS  PubMed  Google Scholar 

  • Banji OJ, Banji D, Ch K (2014) Curcumin and hesperidin improve cognition by suppressing mitochondrial dysfunction and apoptosis induced by D-galactose in rat brain. Food Chem Toxicol 74:51–59

    Article  CAS  PubMed  Google Scholar 

  • Barouki R (2006) Ageing free radicals and cellular stress. Med Sci (Paris) 22(3):266–272

    Article  PubMed  Google Scholar 

  • Basisty N, Dai DF, Gagnidze A, Gitari L, Fredrickson J, Maina Y, Beyer RP, Emond MJ, Hsieh EJ, MacCoss MJ, Martin GM, Rabinovitch PS (2016) Mitochondrial-targeted catalase is good for the old mouse proteome, but not for the young: ‘reverse’ antagonistic pleiotropy? Aging Cell 15(4):634–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183(2):787–791

    Article  CAS  PubMed  Google Scholar 

  • Ben-Zacharia AB (2011) Therapeutics for multiple sclerosis symptoms. Mt Sinai J Med 78(2):176–191

    Article  PubMed  Google Scholar 

  • Bhutani MK, Bishnoi M, Kulkarni SK (2009) Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav 92(1):39–43

    Article  CAS  PubMed  Google Scholar 

  • Bielak-Zmijewska A, Grabowska W, Ciolko A, Bojko A, Mosieniak G, Bijoch L, Sikora E (2019) The role of curcumin in the modulation of ageing. Int J Mol Sci 20(5):1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birch-Machin MA, Bowman A (2016) Oxidative stress and ageing. Br J Dermatol 175(Suppl 2):26–29

    Article  CAS  PubMed  Google Scholar 

  • Björkholm C, Monteggia LM (2016) BDNF—a key transducer of antidepressant effects. Neuropharmacology 102:72–79

    Article  PubMed  Google Scholar 

  • Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF (2001) Increased oxidative damage to DNA in a transgenic mouse model of Huntington’s disease. J Neurochem 79(6):1246–1249

    Article  CAS  PubMed  Google Scholar 

  • Boyle JP, Honeycutt AA, Narayan KM, Hoerger TJ, Geiss LS, Chen H, Thompson TJ (2001) Projection of diabetes burden through 2050: impact of changing demography and disease prevalence in the U.S. Diabetes Care 24(11):1936–1940

    Article  CAS  PubMed  Google Scholar 

  • Brahmkhatri VP, Sharma N, Sunanda P, D’Souza A, Raghothama S, Atreya HS (2018) Curcumin nanoconjugate inhibits aggregation of N-terminal region (Aβ-16) of an amyloid beta peptide. New J Chem 42(24):19881–19892

    Article  CAS  Google Scholar 

  • Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11(4):301–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busillo JM, Azzam KM, Cidlowski JA (2011) Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. J Biol Chem 286(44):38703–38713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calahorra L, Camacho-Toledano C, Serrano-Regal MP, Ortega MC, Clemente D (2022) Regulatory cells in multiple sclerosis: from blood to brain. Biomedicines 10(2):335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti S, Mohanakumar KP (2016) Aging and neurodegeneration: a tangle of models and mechanisms. Aging Dis 7(2):111–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang XR, Wang L, Li J, Wu DS (2016) Analysis of anti-depressant potential of curcumin against depression induced male albino Wistar rats. Brain Res 1642:219–225

    Article  CAS  PubMed  Google Scholar 

  • Chearwae W, Bright JJ (2008) 15-deoxy-Delta(12,14)-prostaglandin J(2) and curcumin modulate the expression of toll-like receptors 4 and 9 in autoimmune T lymphocyte. J Clin Immunol 28(5):558–570

    Article  CAS  PubMed  Google Scholar 

  • Chen CM (2011) Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington’s disease. Chang Gung Med J 34(2):135–152

    PubMed  Google Scholar 

  • Chen J, Buchanan JB, Sparkman NL, Godbout JP, Freund GG, Johnson RW (2008) Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system. Brain Behav Immun 22(3):301–311

    Article  CAS  PubMed  Google Scholar 

  • Choudhary S, Kumar P, Malik J (2013) Plants and phytochemicals for Huntington’s disease. Pharmacogn Rev 7(14):81–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole GM, Morihara T, Lim GP, Yang F, Begum A, Frautschy SA (2004) NSAID and antioxidant prevention of Alzheimer’s disease: lessons from in vitro and animal models. Ann N Y Acad Sci 1035:68–84

    Article  CAS  PubMed  Google Scholar 

  • da Silva Marques JG, Antunes FTT, da Silva Brum LF, Pedron C, de Oliveira IB, de Barros Falcão Ferraz A, Martins MIM, Dallegrave E, de Souza AH (2021) Adaptogenic effects of curcumin on depression induced by moderate and unpredictable chronic stress in mice. Behav Brain Res 399:113002

    Article  PubMed  Google Scholar 

  • Daniel S, Limson JL, Dairam A, Watkins GM, Daya S (2004) Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. J Inorg Biochem 98(2):266–275

    Article  CAS  PubMed  Google Scholar 

  • Daverey A, Agrawal SK (2016) Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes. Neuroscience 333:92–103

    Article  CAS  PubMed  Google Scholar 

  • de Magalhães JP, Passos JF (2018) Stress, cell senescence and organismal ageing. Mech Ageing Dev 170:2–9

    Article  PubMed  Google Scholar 

  • Eghbaliferiz S, Farhadi F, Barreto GE, Majeed M, Sahebkar A (2020) Effects of curcumin on neurological diseases: focus on astrocytes. Pharmacol Rep 72(4):769–782

    Article  CAS  PubMed  Google Scholar 

  • Ewald CY (2018) Redox signaling of NADPH oxidases regulates oxidative stress responses, immunity and aging. Antioxidants (Basel) 7(10):130

    Article  PubMed  Google Scholar 

  • Fahey AJ, Adrian Robins R, Constantinescu CS (2007) Curcumin modulation of IFN-beta and IL-12 signalling and cytokine induction in human T cells. J Cell Mol Med 11(5):1129–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan C, Song Q, Wang P, Li Y, Yang M, Yu SY (2018) Neuroprotective effects of curcumin on IL-1β-induced neuronal apoptosis and depression-like behaviors caused by chronic stress in rats. Front Cell Neurosci 12:516

    Article  CAS  PubMed  Google Scholar 

  • Fatokun AA, Smith RA, Stone TW (2008) Resistance to kynurenic acid of the NMDA receptor-dependent toxicity of 3-nitropropionic acid and cyanide in cerebellar granule neurons. Brain Res 1215:200–207

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Tao T, Yan W, Chen CS, Qin X (2014) Curcumin inhibits mitochondrial injury and apoptosis from the early stage in EAE mice. Oxid Med Cell Longev 2014:728751

    Article  PubMed  PubMed Central  Google Scholar 

  • Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, Rocca MA (2018) Multiple sclerosis. Nat Rev Dis Primers 4(1):43

    Article  PubMed  Google Scholar 

  • Fleenor BS, Sindler AL, Marvi NK, Howell KL, Zigler ML, Yoshizawa M, Seals DR (2013) Curcumin ameliorates arterial dysfunction and oxidative stress with aging. Exp Gerontol 48(2):269–276

    Article  CAS  PubMed  Google Scholar 

  • Fleming A, Bourdenx M, Fujimaki M, Karabiyik C, Krause GJ, Lopez A, Martín-Segura A, Puri C, Scrivo A, Skidmore J, Son SM, Stamatakou E, Wrobel L, Zhu Y, Cuervo AM, Rubinsztein DC (2022) The different autophagy degradation pathways and neurodegeneration. Neuron 110(6):935–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaine MA, Geddes JW, Banks A, Butterfield DA (2000) Effect of exogenous and endogenous antioxidants on 3-nitropionic acid-induced in vivo oxidative stress and striatal lesions: insights into Huntington’s disease. J Neurochem 75(4):1709–1715

    Article  CAS  PubMed  Google Scholar 

  • Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF (2007) Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 21(1):47–59

    Article  CAS  PubMed  Google Scholar 

  • Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, Cole GM (2001) Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging 22(6):993–1005

    Article  CAS  PubMed  Google Scholar 

  • Freedman VA, Martin LG, Schoeni RF (2002) Recent trends in disability and functioning among older adults in the United States: a systematic review. JAMA 288(24):3137–3146

    Article  PubMed  Google Scholar 

  • Fu Y, Gao R, Cao Y, Guo M, Wei Z, Zhou E, Li Y, Yao M, Yang Z, Zhang N (2014) Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol 20(1):54–58

    Article  CAS  PubMed  Google Scholar 

  • Gambetti P, Kong Q, Zou W, Parchi P, Chen SG (2003) Sporadic and familial CJD: classification and characterisation. Br Med Bull 66:213–239

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Duan X, Wang X, Dong D, Liu D, Li X, Sun G, Li B (2013) Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion. Food Chem Toxicol 59:739–747

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ (2007) Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 102(4):1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Ghanaatian N, Lashgari NA, Abdolghaffari AH, Rajaee SM, Panahi Y, Barreto GE, Butler AE, Sahebkar A (2019) Curcumin as a therapeutic candidate for multiple sclerosis: molecular mechanisms and targets. J Cell Physiol 234(8):12237–12248

    Article  CAS  PubMed  Google Scholar 

  • Ghoneim AI, Abdel-Naim AB, Khalifa AE, El-Denshary ES (2002) Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacol Res 46(3):273–279

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124

    Article  CAS  PubMed  Google Scholar 

  • Gines S, Seong IS, Fossale E, Ivanova E, Trettel F, Gusella JF, Wheeler VC, Persichetti F, MacDonald ME (2003) Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington’s disease knock-in mice. Hum Mol Genet 12(5):497–508

    Article  CAS  PubMed  Google Scholar 

  • Goswami A, Dikshit P, Mishra A, Mulherkar S, Nukina N, Jana NR (2006) Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction. Biochem Biophys Res Commun 342(1):184–190

    Article  CAS  PubMed  Google Scholar 

  • Grünz G, Haas K, Soukup S, Klingenspor M, Kulling SE, Daniel H, Spanier B (2012) Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech Ageing Dev 133(1):1–10

    Article  PubMed  Google Scholar 

  • Guerrero BL, Sicotte NL (2020) Microglia in multiple sclerosis: friend or foe? Front Immunol 11:374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafner-Bratkovic I, Gaspersic J, Smid LM, Bresjanac M, Jerala R (2008) Curcumin binds to the alpha-helical intermediate and to the amyloid form of prion protein—a new mechanism for the inhibition of PrP(Sc) accumulation. J Neurochem 104(6):1553–1564

    Article  CAS  PubMed  Google Scholar 

  • Hassan FU, Rehman MS, Khan MS, Ali MA, Javed A, Nawaz A, Yang C (2019) Curcumin as an alternative epigenetic modulator: mechanism of action and potential effects. Front Genet 10:514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He N, Jin WL, Lok KH, Wang Y, Yin M, Wang ZJ (2013) Amyloid-β(1-42) oligomer accelerates senescence in adult hippocampal neural stem/progenitor cells via formylpeptide receptor 2. Cell Death Dis 4(11):e924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewlings SJ, Kalman DS (2017) Curcumin: a review of its effects on human health. Foods 6(10):92

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15(10):565–581

    Article  PubMed  Google Scholar 

  • Huang HC, Xu K, Jiang ZF (2012) Curcumin-mediated neuroprotection against amyloid-β-induced mitochondrial dysfunction involves the inhibition of GSK-3β. J Alzheimers Dis 32(4):981–996

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Chen C, Zhang X, Li X, Chen Z, Yang C, Liang X, Zhu G, Xu Z (2018) Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation. J Mol Neurosci 64(1):129–139

    Article  CAS  PubMed  Google Scholar 

  • Hubert HB, Bloch DA, Oehlert JW, Fries JF (2002) Lifestyle habits and compression of morbidity. J Gerontol A Biol Sci Med Sci 57(6):M347–M351

    Article  PubMed  Google Scholar 

  • Hucklenbroich J, Klein R, Neumaier B, Graf R, Fink GR, Schroeter M, Rueger MA (2014) Aromatic-turmerone induces neural stem cell proliferation in vitro and in vivo. Stem Cell Res Ther 5(4):100

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingolfsson HI, Koeppe RE 2nd, Andersen OS (2007) Curcumin is a modulator of bilayer material properties. Biochemistry 46(36):10384–10391

    Article  CAS  PubMed  Google Scholar 

  • Jabłoński M, Maciejewski R, Januszewski S, Ułamek M, Pluta R (2011) One year follow up in ischemic brain injury and the role of Alzheimer factors. Physiol Res 60(Suppl 1):S113–S119. Academia Scientiarum Bohemoslovaca

    Article  PubMed  Google Scholar 

  • Jankowski M, Vreys I, Wittevrongel C, Boon D, Vermylen J, Hoylaerts MF, Arnout J (2003) Thrombogenicity of beta 2-glycoprotein I-dependent antiphospholipid antibodies in a photochemically induced thrombosis model in the hamster. Blood 101(1):157–162

    Article  CAS  PubMed  Google Scholar 

  • Jha S, Patel R (2004) Some observations on the spectrum of dementia. Neurol India 52(2):213–214

    PubMed  Google Scholar 

  • Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44(2):97–111

    Article  CAS  PubMed  Google Scholar 

  • Jovanovic SV, Boone CW, Steenken S, Trinoga M, Kaskey RB (2001) How curcumin works preferentially with water soluble antioxidants. J Am Chem Soc 123(13):3064–3068

    Article  CAS  PubMed  Google Scholar 

  • Kanakasabai S, Casalini E, Walline CC, Mo C, Chearwae W, Bright JJ (2012) Differential regulation of CD4(+) T helper cell responses by curcumin in experimental autoimmune encephalomyelitis. J Nutr Biochem 23(11):1498–1507

    Article  CAS  PubMed  Google Scholar 

  • Kaskow BJ, Baecher-Allan C (2018) Effector T cells in multiple sclerosis. Cold Spring Harb Perspect Med 8(4):a029025

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM Jr, Schatzberg AF (2017) HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry 22(4):527–536

    Article  CAS  PubMed  Google Scholar 

  • Kent A (2004) Huntington’s disease. Nurs Stand 18(32):45–51; quiz 52–43

    Article  PubMed  Google Scholar 

  • Klein C, Westenberger A (2012) Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2(1):a008888

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhlmann T, Lassmann H, Brück W (2008) Diagnosis of inflammatory demyelination in biopsy specimens: a practical approach. Acta Neuropathol 115(3):275–287

    Article  PubMed  PubMed Central  Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733):481–484

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni SK, Bhutani MK, Bishnoi M (2008) Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl) 201(3):435–442

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Padi SS, Naidu PS, Kumar A (2007) Possible neuroprotective mechanisms of curcumin in attenuating 3-nitropropionic acid-induced neurotoxicity. Methods Find Exp Clin Pharmacol 29(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Kalonia H, Kumar A (2010) Huntington’s disease: pathogenesis to animal models. Pharmacol Rep 62(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H (2018) Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front Immunol 9:3116

    Article  CAS  PubMed  Google Scholar 

  • Levy M, Faas GC, Saggau P, Craigen WJ, Sweatt JD (2003) Mitochondrial regulation of synaptic plasticity in the hippocampus. J Biol Chem 278(20):17727–17734

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chen L, Li G, Chen X, Hu S, Zheng L, Luria V, Lv J, Sun Y, Xu Y, Yu Y (2020) Sub-acute treatment of curcumin derivative J147 ameliorates depression-like behavior through 5-HT(1A)-mediated cAMP signaling. Front Neurosci 14:701

    Article  PubMed  PubMed Central  Google Scholar 

  • Lian L, Xu Y, Zhang J, Yu Y, Zhu N, Guan X, Huang H, Chen R, Chen J, Shi G, Pan J (2018) Antidepressant-like effects of a novel curcumin derivative J147: involvement of 5-HT(1A) receptor. Neuropharmacology 135:506–513

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1(6):361–370

    Article  PubMed  Google Scholar 

  • Linnerbauer M, Wheeler MA, Quintana FJ (2020) Astrocyte crosstalk in CNS inflammation. Neuron 108(4):608–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lønning PE, Eikesdal HP (2013) Aromatase inhibition 2013: clinical state of the art and questions that remain to be solved. Endocr Relat Cancer 20(4):R183–R201

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucassen PJ, Vollmann-Honsdorf GK, Gleisberg M, Czéh B, De Kloet ER, Fuchs E (2001) Chronic psychosocial stress differentially affects apoptosis in hippocampal subregions and cortex of the adult tree shrew. Eur J Neurosci 14(1):161–166

    Article  CAS  PubMed  Google Scholar 

  • Madiha S, Haider S (2019) Curcumin restores rotenone induced depressive-like symptoms in animal model of neurotoxicity: assessment by social interaction test and sucrose preference test. Metab Brain Dis 34(1):297–308

    Article  CAS  PubMed  Google Scholar 

  • Mahad D, Ziabreva I, Lassmann H, Turnbull D (2008) Mitochondrial defects in acute multiple sclerosis lesions. Brain 131(Pt 7):1722–1735

    Article  PubMed  PubMed Central  Google Scholar 

  • Maiti P, Dunbar GL (2018) Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. Int J Mol Sci 19(6):1637

    Article  PubMed  PubMed Central  Google Scholar 

  • Maiti P, Rossignol J, Dunbar G (2017) Curcumin modulates molecular chaperones and autophagy-lysosomal pathways in vitro after exposure to Aβ42. J Alzheimers Dis Parkinson 07:299

    Google Scholar 

  • Martínez-Morúa A, Soto-Urquieta MG, Franco-Robles E, Zúñiga-Trujillo I, Campos-Cervantes A, Pérez-Vázquez V, Ramírez-Emiliano J (2013) Curcumin decreases oxidative stress in mitochondria isolated from liver and kidneys of high-fat diet-induced obese mice. J Asian Nat Prod Res 15(8):905–915

    Article  PubMed  Google Scholar 

  • McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25(1):24–34

    Article  CAS  PubMed  Google Scholar 

  • Mimpen M, Smolders J, Hupperts R, Damoiseaux J (2020) Natural killer cells in multiple sclerosis: a review. Immunol Lett 222:1–11

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Palanivelu K (2008) The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann Indian Acad Neurol 11(1):13–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadi K, Thompson KH, Patrick BO, Storr T, Martins C, Polishchuk E, Yuen VG, McNeill JH, Orvig C (2005) Synthesis and characterization of dual function vanadyl, gallium and indium curcumin complexes for medicinal applications. J Inorg Biochem 99(11):2217–2225

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi A, Hosseinzadeh Colagar A, Khorshidian A, Amini SM (2022) The functional roles of curcumin on astrocytes in neurodegenerative diseases. Neuroimmunomodulation 29(1):4–14

    Article  CAS  PubMed  Google Scholar 

  • Moser T, Akgün K, Proschmann U, Sellner J, Ziemssen T (2020) The role of TH17 cells in multiple sclerosis: therapeutic implications. Autoimmun Rev 19(10):102647

    Article  CAS  PubMed  Google Scholar 

  • Nabiuni M, Nazari Z, Angaji S, Nejad Z (2011) Neuroprotective effects of curcumin. Aust J Basic Appl Sci 5:2224–2240

    CAS  Google Scholar 

  • Nashiro K, Guevara-Aguirre J, Braskie MN, Hafzalla GW, Velasco R, Balasubramanian P, Wei M, Thompson PM, Mather M, Nelson MD, Guevara A, Teran E, Longo VD (2017) Brain structure and function associated with younger adults in growth hormone receptor-deficient humans. J Neurosci 37(7):1696–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natarajan C, Bright JJ (2002) Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T Lymphocytes1. J Immunol 168(12):6506–6513

    Article  CAS  PubMed  Google Scholar 

  • Naylor RM, Baker DJ, van Deursen JM (2013) Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin Pharmacol Ther 93(1):105–116

    Article  CAS  PubMed  Google Scholar 

  • Negrette-Guzmán M, García-Niño WR, Tapia E, Zazueta C, Huerta-Yepez S, León-Contreras JC, Hernández-Pando R, Aparicio-Trejo OE, Madero M, Pedraza-Chaverri J (2015) Curcumin attenuates gentamicin-induced kidney mitochondrial alterations: possible role of a mitochondrial biogenesis mechanism. Evid Based Complement Alternat Med 2015:917435

    Article  PubMed  PubMed Central  Google Scholar 

  • Niccoli T, Partridge L (2012) Ageing as a risk factor for disease. Curr Biol 22(17):R741–R752

    Article  CAS  PubMed  Google Scholar 

  • O’Shea A, Cohen RA, Porges EC, Nissim NR, Woods AJ (2016) Cognitive aging and the hippocampus in older adults. Front Aging Neurosci 8:298

    Article  PubMed  PubMed Central  Google Scholar 

  • Olesen MA, Torres AK, Jara C, Murphy MP, Tapia-Rojas C (2020) Premature synaptic mitochondrial dysfunction in the hippocampus during aging contributes to memory loss. Redox Biol 34:101558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75(6):742–750

    Article  CAS  PubMed  Google Scholar 

  • Pellacani C, Costa LG (2018) Role of autophagy in environmental neurotoxicity. Environ Pollut 235:791–805

    Article  CAS  PubMed  Google Scholar 

  • Perrone L, Squillaro T, Napolitano F, Terracciano C, Sampaolo S, Melone MAB (2019) The autophagy signaling pathway: a potential multifunctional therapeutic target of curcumin in neurological and neuromuscular diseases. Nutrients 11(8):1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picard M, McEwen BS (2014) Mitochondria impact brain function and cognition. Proc Natl Acad Sci U S A 111(1):7–8

    Article  CAS  PubMed  Google Scholar 

  • Pirmoradi S, Fathi E, Farahzadi R, Pilehvar-Soltanahmadi Y, Zarghami N (2018) Curcumin affects adipose tissue-derived mesenchymal stem cell aging through TERT gene expression. Drug Res (Stuttg) 68(4):213–221

    Article  CAS  PubMed  Google Scholar 

  • Pluta R, Ułamek-Kozioł M, Januszewski S, Czuczwar S (2019) Amyloid pathology in the brain after ischemia. Folia Neuropathol 57(3):220–226

    Article  PubMed  Google Scholar 

  • Pluta R, Furmaga-Jabłońska W, Januszewski S, Czuczwar SJ (2022) Post-ischemic brain neurodegeneration in the form of Alzheimer’s disease proteinopathy: possible therapeutic role of curcumin. Nutrients 14(2):248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polidori MC, Griffiths HR, Mariani E, Mecocci P (2007) Hallmarks of protein oxidative damage in neurodegenerative diseases: focus on Alzheimer’s disease. Amino Acids 32(4):553–559

    Article  CAS  PubMed  Google Scholar 

  • Poon HF, Calabrese V, Scapagnini G, Butterfield DA (2004) Free radicals and brain aging. Clin Geriatr Med 20(2):329–359

    Article  PubMed  Google Scholar 

  • Prusiner SB (1998) The prion diseases. Brain Pathol 8(3):499–513

    Article  CAS  PubMed  Google Scholar 

  • Public health and aging: trends in aging—United States and worldwide (2003) JAMA 289(11):1371–1373

    Google Scholar 

  • Purdon SE, Mohr E, Ilivitsky V, Jones BD (1994) Huntington’s disease: pathogenesis, diagnosis and treatment. J Psychiatry Neurosci 19(5):359–367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi JP, Wu H, Yang Y, Wang DD, Chen YX, Gu YH, Liu T (2007) Cerebral ischemia and Alzheimer’s disease: the expression of amyloid-beta and apolipoprotein E in human hippocampus. J Alzheimers Dis 12(4):335–341

    Article  CAS  PubMed  Google Scholar 

  • Qi XJ, Liu XY, Tang LM, Li PF, Qiu F, Yang AH (2020) Anti-depressant effect of curcumin-loaded guanidine-chitosan thermo-sensitive hydrogel by nasal delivery. Pharm Dev Technol 25(3):316–325

    Article  CAS  PubMed  Google Scholar 

  • Qin XY, Cheng Y, Yu LC (2010) Potential protection of curcumin against intracellular amyloid beta-induced toxicity in cultured rat prefrontal cortical neurons. Neurosci Lett 480(1):21–24

    Article  CAS  PubMed  Google Scholar 

  • Rainey NE, Moustapha A, Petit PX (2020) Curcumin, a multifaceted hormetic agent, mediates an intricate crosstalk between mitochondrial turnover, autophagy, and apoptosis. Oxid Med Cell Longev 2020:3656419

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramkumar M, Rajasankar S, Gobi VV, Janakiraman U, Manivasagam T, Thenmozhi AJ, Essa MM, Chidambaram R, Chidambaram SB, Guillemin GJ (2018) Demethoxycurcumin, a natural derivative of curcumin abrogates rotenone-induced dopamine depletion and motor deficits by its antioxidative and anti-inflammatory properties in parkinsonian rats. Pharmacogn Mag 14(53):9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond LA, André VM, Cepeda C, Gladding CM, Milnerwood AJ, Levine MS (2011) Pathophysiology of Huntington’s disease: time-dependent alterations in synaptic and receptor function. Neuroscience 198:252–273

    Article  CAS  PubMed  Google Scholar 

  • Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Kandimalla R, Kuruva CS (2016) Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer’s disease. J Investig Med 64(8):1220–1234

    Article  PubMed  PubMed Central  Google Scholar 

  • Remely M, Lovrecic L, de la Garza AL, Migliore L, Peterlin B, Milagro FI, Martinez AJ, Haslberger AG (2015) Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol 172(11):2756–2768

    Article  CAS  PubMed  Google Scholar 

  • Sala de Oyanguren FJ, Rainey NE, Moustapha A, Saric A, Sureau F, O’Connor JE, Petit PX (2020) Highlighting curcumin-induced crosstalk between autophagy and apoptosis as supported by its specific subcellular localization. Cells 9(2):361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi B, Stojanović-Radić Z, Matejić J, Sharifi-Rad M, Anil Kumar NV, Martins N, Sharifi-Rad J (2019) The therapeutic potential of curcumin: a review of clinical trials. Eur J Med Chem 163:527–545

    Article  CAS  PubMed  Google Scholar 

  • Santos-Parker JR, Strahler TR, Bassett CJ, Bispham NZ, Chonchol MB, Seals DR (2017) Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress. Aging (Albany NY) 9(1):187–208

    Article  CAS  PubMed  Google Scholar 

  • Seyedzadeh MH, Safari Z, Zare A, Gholizadeh Navashenaq J, Razavi SA, Kardar GA, Khorramizadeh MR (2014) Study of curcumin immunomodulatory effects on reactive astrocyte cell function. Int Immunopharmacol 22(1):230–235

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Nehru B (2018) Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’s disease model. Inflammopharmacology 26(2):349–360

    Article  CAS  PubMed  Google Scholar 

  • Small GW, Siddarth P, Li Z, Miller KJ, Ercoli L, Emerson ND, Martinez J, Wong KP, Liu J, Merrill DA, Chen ST, Henning SM, Satyamurthy N, Huang SC, Heber D, Barrio JR (2018) Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial. Am J Geriatr Psychiatry 26(3):266–277

    Article  PubMed  Google Scholar 

  • Song JX, Sun YR, Peluso I, Zeng Y, Yu X, Lu JH, Xu Z, Wang MZ, Liu LF, Huang YY, Chen LL, Durairajan SS, Zhang HJ, Zhou B, Zhang HQ, Lu A, Ballabio A, Medina DL, Guo Z, Li M (2016) A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy 12(8):1372–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparkman NL, Johnson RW (2008) Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. Neuroimmunomodulation 15(4–6):323–330

    Article  CAS  PubMed  Google Scholar 

  • Srivastava KC, Bordia A, Verma SK (1995) Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins Leukot Essent Fatty Acids 52(4):223–227

    Article  CAS  PubMed  Google Scholar 

  • Sturrock A, Leavitt BR (2010) The clinical and genetic features of Huntington disease. J Geriatr Psychiatry Neurol 23(4):243–259

    Article  PubMed  Google Scholar 

  • Sun YM, Zhang HY, Chen DZ, Liu CB (2002) Theoretical elucidation on the antioxidant mechanism of curcumin: a DFT study. Org Lett 4(17):2909–2911

    Article  CAS  PubMed  Google Scholar 

  • Surks MI, Ortiz E, Daniels GH, Sawin CT, Col NF, Cobin RH, Franklyn JA, Hershman JM, Burman KD, Denke MA, Gorman C, Cooper RS, Weissman NJ (2004) Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. JAMA 291(2):228–238

    Article  CAS  PubMed  Google Scholar 

  • Thiyagarajan M, Sharma SS (2004) Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 74(8):969–985

    Article  CAS  PubMed  Google Scholar 

  • Tosato M, Zamboni V, Ferrini A, Cesari M (2007) The aging process and potential interventions to extend life expectancy. Clin Interv Aging 2(3):401–412

    PubMed  PubMed Central  Google Scholar 

  • Túnez I, Tasset I, Pérez-De La Cruz V, Santamaría A (2010) 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: past, present and future. Molecules 15(2):878–916

    Article  PubMed  PubMed Central  Google Scholar 

  • United Nations (2002) Second World Assembly on Ageing. Accessed on 16/5/2023 from https://www.un.org/development/desa/ageing/madrid-plan-of-action-and-its-implementation/second-world-assembly-on-ageing-2002.html

  • van den Beld AW, Kaufman JM, Zillikens MC, Lamberts SWJ, Egan JM, van der Lely AJ (2018) The physiology of endocrine systems with ageing. Lancet Diabetes Endocrinol 6(8):647–658

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Merwe C, van Dyk HC, Engelbrecht L, van der Westhuizen FH, Kinnear C, Loos B, Bardien S (2017) Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson’s disease from mitochondrial dysfunction and cell death. Mol Neurobiol 54(4):2752–2762

    Article  PubMed  Google Scholar 

  • Vijg J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 454(7208):1065–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson N, La Rocca N, Uitdehaag B, van der Mei I, Wallin M, Helme A, Angood Napier C, Rijke N, Baneke P (2020) Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult Scler 26(14):1816–1821

    Article  PubMed  PubMed Central  Google Scholar 

  • Waly MI, Al Moundhri MS, Ali BH (2011) Effect of curcumin on cisplatin- and oxaliplatin-induced oxidative stress in human embryonic kidney (HEK) 293 cells. Ren Fail 33(5):518–523

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Li YB, Li YH, Xu Y, Wu HL, Li XJ (2008) Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res 1210:84–91

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Ren W, Zhao F, Han Y, Liu C, Jia K (2020) Curcumin amends Ca(2+) dysregulation in microglia by suppressing the activation of P2X7 receptor. Mol Cell Biochem 465(1–2):65–73

    Article  CAS  PubMed  Google Scholar 

  • Weaver JD, Huang MH, Albert M, Harris T, Rowe JW, Seeman TE (2002) Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology 59(3):371–378

    Article  CAS  PubMed  Google Scholar 

  • Wigner P, Czarny P, Galecki P, Sliwinski T (2017) Oxidative and nitrosative stress as well as the tryptophan catabolites pathway in depressive disorders. Psychiatr Danub 29(4):394–400

    Article  CAS  PubMed  Google Scholar 

  • Willis R, Pierangeli SS (2013) Anti-β2-glycoprotein I antibodies. Ann N Y Acad Sci 1285:44–58

    Article  CAS  PubMed  Google Scholar 

  • Witkin JM, Leucke S, Thompson LK, Lynch RA, Ding C, Heinz B, Catlow JT, Gleason SD, Li X (2013) Further evaluation of the neuropharmacological determinants of the antidepressant-like effects of curcumin. CNS Neurol Disord Drug Targets 12(4):498–505

    Article  CAS  PubMed  Google Scholar 

  • Wojcik M, Krawczyk M, Wojcik P, Cypryk K, Wozniak LA (2018) Molecular mechanisms underlying curcumin-mediated therapeutic effects in type 2 diabetes and cancer. Oxid Med Cell Longev 2018:9698258

    Article  PubMed  PubMed Central  Google Scholar 

  • Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, Lin JD, Greenberg ME, Spiegelman BM (2013) Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab 18(5):649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Sun F, Guo Y, Zhang Y, Li L, Dang R, Jiang P (2021) Curcumin relieves chronic unpredictable mild stress-induced depression-like behavior through the PGC-1α/FNDC5/BDNF pathway. Behav Neurol 2021:2630445

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia L, Xie H, Yu Y, Zhou H, Wang T, Yan J (2016) The effects of NF-κB and c-Jun/AP-1 on the expression of prothrombotic and proinflammatory molecules induced by Anti-β2GPI in mouse. PLoS One 11(2):e0147958

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Shen Q, Lai Y, Park SY, Ou X, Lin D, Jin M, Zhang W (2018) Anti-inflammatory effects of curcumin in microglial cells. Front Pharmacol 20(9):386. https://doi.org/10.3389/fphar.2018.00386

  • Zafir A, Banu N (2007) Antioxidant potential of fluoxetine in comparison to Curcuma longa in restraint-stressed rats. Eur J Pharmacol 572(1):23–31

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Fang Y, Xu Y, Lian Y, Xie N, Wu T, Zhang H, Sun L, Zhang R, Wang Z (2015) Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One 10(6):e0131525

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang ZB, Luo DD, Xie JH, Xian YF, Lai ZQ, Liu YH, Liu WH, Chen JN, Lai XP, Lin ZX, Su ZR (2018) Curcumin’s metabolites, tetrahydrocurcumin and octahydrocurcumin, possess superior anti-inflammatory effects in vivo through suppression of TAK1-NF-κB pathway. Front Pharmacol 9:1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banji, D., Banji, O.J.F. (2023). Impact of Curcumin on Aging: Its Manifestations and Limitations. In: Rai, M., Feitosa, C.M. (eds) Curcumin and Neurodegenerative Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-7731-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7731-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7730-7

  • Online ISBN: 978-981-99-7731-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics