Skip to main content

Herbs for Autoimmune Diseases

  • Chapter
  • First Online:
Role of Herbal Medicines
  • 170 Accesses

Abstract

The incidence of autoimmune diseases worldwide is on the rise, with extensive impact on lifestyle of individuals and spiralling healthcare costs. Phytotherapies are increasingly being deployed in management and treatment of various autoimmune diseases, primarily due to the restricted therapeutic benefit and serious side effects and toxicities associated with the long-term use of biologicals and other immunosuppressant drugs that currently form the mainstay of autoimmune disease management. This chapter focuses on providing an update on herbs reported in management and treatment of autoimmune diseases, with detailed, in-depth understanding of their molecular-level mechanism of action and modulation of various cell signalling pathways including NF-κB, STAT/JAK, MAPK and iNOS. Insights into the aetiology and pathogenesis of some of the major autoimmune diseases help in figuring out the arsenal of herbs that can be developed as effective therapeutic agents against these difficult-to-manage disease conditions. We take a look at phytotherapies reported for treatment and management of organ-specific and systemic autoimmune conditions including systemic lupus erythematosus, skin-related autoimmune conditions (atopic dermatitis, vitiligo and psoriasis), Addison’s disease and neurodegenerative diseases (multiple sclerosis, Alzheimer’s disease and Parkinson’s disease).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(NF-κB):

Nuclear factor kappa light of activation B cell

11-HSD:

11 beta-hydroxysteroid dehydrogenase

4-TBC:

4-tert-Butylcatechol

4-TBP:

4-tert-Butylphenol

6-OHDA:

6-Hydroxydopamine

AAD :

Autoimmune Addison’s disease

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

ACE:

Angiotensin-converting enzyme

ACTH :

Adrenocorticotropic hormone

ADCC:

Antibody-dependent cell-mediated cytotoxicity

ADs:

Autoimmune diseases

AIRE:

Autoimmune regulator

ALD:

Alzheimer’s disease

AP-1:

Activator protein-1

APCs:

Antigen-presenting cells

APECED:

Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy

APP :

Amyloid precursor protein

APS1:

Autoimmune polyglandular syndrome type 1

APS2 :

Autoimmune polyglandular syndrome type 2

AR:

Aldose reductase

AS-IV:

Astragaloside IV

B cells:

Bursa-derived cell

BBB:

Blood brain barrier

CAT :

Catalase

CCL:

Chemokine ligand

CD:

Clusters of differentiation cell

CFA :

Complete Ferund’s adjuvant

CLDN1:

Claudin-1

CNS :

Central nervous system

COX-2:

Cyclooxygenase-2

CTLA-4:

Cytotoxic T Lymphocyte Antigen-4

CTLs:

Cytotoxic T lymphocytes

CXCL:

CXC chemokine ligand

DA:

Dopamine

DAD:

Diallyl disulfide

DAT:

Diallyl trisulfide

DCs:

Dendritic cells

DJ-1:

Protein deglycase

DLE :

Discoid lupus erythematosus

DPPH :

α,α-Diphenyl-β-picryl hydrazyl

EAE:

Experimental autoimmune encephalitis

EBV :

Epstein-Barr virus

EC :

Epicatechin

ECG :

Epicatechin gallate

EGC :

Epigallocatechin

EGCG:

Epigallocatechin gallate

ER:

Endoplasmic reticulum

ERK :

Extracellular-signal-regulated kinase

FLG :

Filaggrin

Foxp3:

Forkhead box protein 3 gene

GluR3 :

Glutamate receptor

GM-CSF:

Granulocyte macrophage colony stimulating factor

GR :

Glucocorticoid receptor

HBD-2:

Human beta-defensin

HD :

Huntington’s disease

HHV6:

Human herpes virus-6

HLA:

Human lymphocyte antigen

HLA:

Human lymphocyte antigen-27

IB kinase:

I-kappa B kinase

IBD:

Inflammatory bowel disease

IFNs:

Type 1 interferons

IFN-β:

Interferon-β

IFN-γ:

Interferon-gamma

IgE:

Immunoglobulin E

IL :

Interleukin

ILC3:

Innate lymphoid cells 3

IMQ:

Imiquimod

iNOS :

Inducible nitric oxide synthase

IPEX syndrome:

Immune polyendocrinopathy X-linked syndrome

IRF :

Interferon regulatory factor

JAK/STAT:

Janus kinase/signal transducer and activators of transcription

LN :

Lupus nephritis

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MBEH:

Monobenzyl ether of hydroquinone

MC1R:

Melanocortin 1 receptor

MEOg :

Methanol extraction of O. gratissimum leaves

MHC:

Major histocompatibility complex

MMP:

Matrix metalloproteinase

MOG:

Myelin oligodendrocyte glycoprotein

MPP+ :

1-Methyl-4-phenylpyridinium ion

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MS:

Multiple sclerosis

MSH:

Melanocyte stimulating hormone

n-BuOH:

n-Butanolic

NBUVB :

Narrowband UVB

NGF:

Nerve growth factor

NL:

Neonatal lupus

NMDA :

N-methyl-d-aspartate

NO:

Nitric oxide

NSAID:

Nonsteroidal anti-inflammatory drugs

NSO:

Noni seed oil

OCA2 :

Oculocutaneous albinism

OVA:

Ovalbumin

OXA :

Oxazolone

PAG:

Processed Aloe vera gel

PD:

Parkinson’s disease

PGE2:

Prostaglandin E2

PHF:

Pentaherbs formula

PINK1 :

PTEN induced putative kinase 1

PPMS:

Primary progressive MS

ProFLG:

Pro-filaggrin

PSEN1:

Presenilin 1

PSEN2:

Presenilin 2

PTS :

Propyl-propane thiosulfinate

PTSO :

Propyl-propane thiosulfonate

RA:

Rheumatoid arthritis

ROS:

Reactive oxygen species

RRMS:

Relapsing remitting MS

SAC :

S-allyl-cysteine

SLE:

Systemic lupus erythematosus

SPMS :

Secondary progressive MS

SPP1:

Secreted phosphoprotein 1

SS:

Sjogren’s syndrome

STAT-3:

Signal transducer and activator of transcription 3

T CELLS:

T lymphocytes

TAP1 :

Transporters associated with antigen processing protein-1

T-bet:

T-box expressed in T cells

TCR:

T-cell receptor

TEFF:

Effector T cells

Tfh:

T follicular helper

TGF-β:

Transforming growth factor beta

Th:

T helper cell

TH:

Tyrosine hydroxylase

TLRs:

Toll-like receptors

TNFATP3:

TNF alpha induced protein 3

TNF-α:

Tumor necrosis factor-α

Treg:

Regulatory T cells

TSLP:

Lymphopoietin

TSN:

Tanshione IIA

TwHF :

Tripterygium wilfordii hook f.

TYR :

Tyrosine

UCH-L1:

Ubiquitin carboxyl-terminal hydrolase L1

UPR :

Unfolded protein response

UPS :

Ubiquitin-proteasome system

WS :

Withania somnifera

ZO1 :

Zonula occludens-1

References

  1. Ahsan H. Origins and history of autoimmunity—a brief review. Rheumatol Autoimmun. 2023;3:9–14.

    Article  Google Scholar 

  2. Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med. 2015;278(4):369–95.

    Article  PubMed  Google Scholar 

  3. Miller FW. The increasing prevalence of autoimmunity and autoimmune diseases: an urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr Opin Immunol. 2023;80:102266.

    Article  PubMed  Google Scholar 

  4. Muñiz-Castrillo S, Vogrig A, Honnorat J. Associations between HLA and autoimmune neurological diseases with autoantibodies. Autoimmun Highlights. 2020;11(1):1–13.

    Article  Google Scholar 

  5. Matzaraki V, Kumar V, Wijmenga C, Zhernakova A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 2017;18(1):1–21.

    Article  Google Scholar 

  6. Ramos-Casals M, Diaz-Lagares C, Cuadrado MJ, Khamashta MA, Group BS. Autoimmune diseases induced by biological agents: a double-edged sword? Autoimmun Rev. 2010;9(3):188–93.

    Article  PubMed  Google Scholar 

  7. Barber MR, Drenkard C, Falasinnu T, Hoi A, Mak A, Kow NY, et al. Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17(9):515–32.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fava A, Petri M. Systemic lupus erythematosus: diagnosis and clinical management. J Autoimmun. 2019;96:1–13.

    Article  PubMed  Google Scholar 

  9. Balkrishna A, Thakur P, Singh S, Chandra Dev SN, Varshney A. Mechanistic paradigms of natural plant metabolites as remedial candidates for systemic lupus erythematosus. Cells. 2020;9(4):1049.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shin J. Epidemiology of atopic dermatitis. In: Practical insights into atopic dermatitis. Berlin: Springer; 2021. p. 11–20.

    Chapter  Google Scholar 

  11. Na K, Lkhagva-Yondon E, Kim M, Lim YR, Shin E, Lee CK, et al. Oral treatment with Aloe polysaccharide ameliorates ovalbumin-induced atopic dermatitis by restoring tight junctions in skin. Scand J Immunol. 2020;91(3):e12856.

    Article  PubMed  Google Scholar 

  12. Tsang MS, Jiao D, Chan BC, Hon KL, Leung PC, Lau CB, et al. Anti-inflammatory activities of pentaherbs formula, berberine, gallic acid and chlorogenic acid in atopic dermatitis-like skin inflammation. Molecules. 2016;21(4):519.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bergqvist C, Ezzedine K. Vitiligo: a focus on pathogenesis and its therapeutic implications. J Dermatol. 2021;48(3):252–70.

    Article  PubMed  Google Scholar 

  14. Mihăilă B, Dinică RM, Tatu AL, Buzia OD. New insights in vitiligo treatments using bioactive compounds from Piper nigrum. Exp Ther Med. 2019;17(2):1039–44.

    PubMed  Google Scholar 

  15. Stojanović-Radić Z, Pejčić M, Dimitrijević M, Aleksić A, Anil Kumar NV, Salehi B, et al. Piperine—a major principle of black pepper: a review of its bioactivity and studies. Appl Sci. 2019;9(20):4270.

    Article  Google Scholar 

  16. Thakur S, Kaurav H, Chaudhary G. Nigella sativa (Kalonji): a black seed of miracle. Int J Res Rev. 2021;8(4):342–57.

    Article  Google Scholar 

  17. Sarac G, Kapicioglu Y, Sener S, Mantar I, Yologlu S, Dundar C, et al. Effectiveness of topical Nigella sativa for vitiligo treatment. Dermatol Ther. 2019;32(4):e12949.

    Article  PubMed  Google Scholar 

  18. Yamanaka K, Yamamoto O, Honda T. Pathophysiology of Psoriasis: a review. J Dermatol. 2021;48(6):722–31.

    Article  PubMed  Google Scholar 

  19. Ampawong S, Kengkoom K, Sukphopetch P, Aramwit P, Muangkaew W, Kanjanapruthipong T, et al. Evaluating the effect of rice (Oryza sativa L.: SRNC05053-6-2) crude extract on Psoriasis using in vitro and in vivo models. Sci Rep. 2020;10(1):1–14.

    Article  Google Scholar 

  20. Bahraini P, Rajabi M, Mansouri P, Sarafian G, Chalangari R, Azizian Z. Turmeric tonic as a treatment in scalp Psoriasis: a randomized placebo-control clinical trial. J Cosmet Dermatol. 2018;17(3):461–6.

    Article  PubMed  Google Scholar 

  21. Antiga E, Bonciolini V, Volpi W, Del Bianco E, Caproni M. Oral curcumin (Meriva) is effective as an adjuvant treatment and is able to reduce IL-22 serum levels in patients with Psoriasis vulgaris. Biomed Res Int. 2015;2015:283634.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Saverino S, Falorni A. Autoimmune Addison’s disease. Best Pract Res Clin Endocrinol Metab. 2020;34(1):101379.

    Article  PubMed  Google Scholar 

  23. Stansbury J, Saunders P, Winston D, Zampieron ER. Treating adrenal insufficiency and hypotension with glycyrrhiza. J Restor Med. 2012;1(1):102–6.

    Article  Google Scholar 

  24. Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MB. Liquorice (Glycyrrhiza glabra): a phytochemical and pharmacological review. Phytother Res. 2018;32(12):2323–39.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS. Mult Scler J. 2020;26(14):1816–21.

    Article  Google Scholar 

  26. Ekiert H, Świątkowska J, Knut E, Klin P, Rzepiela A, Tomczyk M, et al. Artemisia dracunculus (Tarragon): a review of its traditional uses, phytochemistry and pharmacology. Front Pharmacol. 2021;12:653993.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dumurgier J, Sabia S. Epidemiology of Alzheimer’s disease: latest trends. Rev Prat. 2020;70(2):149–51.

    PubMed  Google Scholar 

  28. Saleem S, Muhammad G, Hussain MA, Altaf M, Bukhari SNA. Withania somnifera L.: insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. Iran J Basic Med Sci. 2020;23(12):1501.

    PubMed  PubMed Central  Google Scholar 

  29. Ball N, Teo WP, Chandra S, Chapman J. Parkinson’s disease and the environment. Front Neurol. 2019;10:218.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res. 2020;161:105263.

    Article  PubMed  Google Scholar 

  31. Horwitz DA, Fahmy TM, Piccirillo CA, La Cava A. Rebalancing immune homeostasis to treat autoimmune diseases. Trends Immunol. 2019;40(10):888–908.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Frizinsky S, Haj-Yahia S, Machnes Maayan D, Lifshitz Y, Maoz-Segal R, Offengenden I, Kidon M, Agmon-Levin N. The innate immune perspective of autoimmune and autoinflammatory conditions. Rheumatology. 2019;58(Suppl 6):vi1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Langan D, Rose NR, Moudgil KD. Common innate pathways to autoimmune disease. Clin Immunol. 2020;212:108361.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maddur MS, Vani J, Lacroix-Desmazes S, Kaveri S, Bayry J. Autoimmunity as a predisposition for infectious diseases. PLoS Pathog. 2010;6(11):e1001077.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kamali AN, Noorbakhsh SM, Hamedifar H, Jadidi-Niaragh F, Yazdani R, Bautista JM, et al. A role for Th1-like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders. Mol Immunol. 2019;105:107–15.

    Article  PubMed  Google Scholar 

  36. El-Zayat SR, Sibaii H, Mannaa FA. Toll-like receptors activation, signaling, and targeting: an overview. Bull Natl Res Centre. 2019;43(1):1–2.

    Article  Google Scholar 

  37. Xing Y, Hogquist KA. T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol. 2012;4(6):a006957.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang L, Wang G, Xia H. Molecular mechanism for impaired suppressive function of Tregs in autoimmune diseases: a summary of cell-intrinsic and cell-extrinsic factors. J Cell Mol Med. 2020;24(19):11056–63.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sehrawat S, Rouse BT. Interplay of regulatory T cell and Th17 cells during infectious diseases in humans and animals. Front Immunol. 2017;8:341.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Takaba H, Takayanagi H. The mechanisms of T cell selection in the thymus. Trends Immunol. 2017;38(11):805–16.

    Article  PubMed  Google Scholar 

  41. Khan U, Ghazanfar H. T lymphocytes and autoimmunity. Int Rev Cell Mol Biol. 2018;341:125–68.

    Article  PubMed  Google Scholar 

  42. Anaya JM, Restrepo Jimenez P, Rojas M, Pacheco Nieva Y, Monsalve DM, Ramirez-Santana C. Molecular mimicry and autoimmunity.

    Google Scholar 

  43. Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, et al. Molecular mimicry and autoimmunity. J Autoimmun. 2018;95:100–23.

    Article  PubMed  Google Scholar 

  44. Cunningham MW. Molecular mimicry, autoimmunity, and infection: the cross-reactive antigens of group A streptococci and their sequelae. Microbiol Spectr. 2019;7(4):7–4.

    Article  Google Scholar 

  45. Cornaby C, Gibbons L, Mayhew V, Sloan CS, Welling A, Poole BD. B cell epitope spreading: mechanisms and contribution to autoimmune diseases. Immunol Lett. 2015;163(1):56–68.

    Article  PubMed  Google Scholar 

  46. Didona D, Di Zenzo G. Humoral epitope spreading in autoimmune bullous diseases. Front Immunol. 2018;9:779.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Venkatesha SH, Durai M, Moudgil KD. Epitope spreading in autoimmune diseases. In: Infection and autoimmunity. Amsterdam: Elsevier; 2015. p. 45–68.

    Chapter  Google Scholar 

  48. Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The role of viral infections in the onset of autoimmune diseases. Viruses. 2023;15(3):782.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pacheco Y, Acosta-Ampudia Y, Monsalve DM, Chang C, Gershwin ME, Anaya JM. Bystander activation and autoimmunity. J Autoimmun. 2019;103:102301.

    Article  PubMed  Google Scholar 

  50. Lee H, Jeong S, Shin EC. Significance of bystander T cell activation in microbial infection. Nat Immunol. 2022;23(1):13–22.

    Article  PubMed  Google Scholar 

  51. Shim CH, Cho S, Shin YM, Choi JM. Emerging role of bystander T cell activation in autoimmune diseases. BMB Rep. 2022;55(2):57.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bruserud Ø, Oftedal BE, Wolff AB, Husebye ES. AIRE-mutations and autoimmune disease. Curr Opin Immunol. 2016;43:8–15.

    Article  PubMed  Google Scholar 

  53. Zhao B, Chang L, Fu H, Sun G, Yang W. The role of autoimmune regulator (AIRE) in peripheral tolerance. J Immunol Res. 2018;2018:2018.

    Article  Google Scholar 

  54. Dominguez-Villar M, Hafler DA. Regulatory T cells in autoimmune disease. Nat Immunol. 2018;19(7):665–73.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. CTLA-4: from mechanism to autoimmune therapy. Int Immunopharmacol. 2020;80:106221.

    Article  PubMed  Google Scholar 

  56. Surace AE, Hedrich CM. The role of epigenetics in autoimmune/inflammatory disease. Front Immunol. 2019;10:1525.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Aslani S, Mahmoudi M, Karami J, Jamshidi AR, Malekshahi Z, Nicknam MH. Epigenetic alterations underlying autoimmune diseases. Autoimmunity. 2016;49(2):69–83.

    Article  PubMed  Google Scholar 

  58. Ilchmann-Diounou H, Menard S. Psychological stress, intestinal barrier dysfunctions, and autoimmune disorders: an overview. Front Immunol. 2020;11:1823.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ilchmann-Diounou H, Ménard S. Psychological stress, intestinal barrier dysfunctions, and autoimmune disorders: an overview. Front Immunol. 2020;11:1823.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ortona E, Pierdominici M, Maselli A, Veroni C, Aloisi F, Shoenfeld Y. Sex-based differences in autoimmune diseases. Ann Ist Super Sanita. 2016;52(2):205–12.

    PubMed  Google Scholar 

  61. Mazzucca CB, Raineri D, Cappellano G, Chiocchetti A. How to tackle the relationship between autoimmune diseases and diet: well begun is half-done. Nutrients. 2021;13(11):3956.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lerner A, Matthias T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev. 2015;14(6):479–89.

    Article  PubMed  Google Scholar 

  63. Ferrari SM, Fallahi P, Antonelli A, Benvenga S. Environmental issues in thyroid diseases. Front Endocrinol. 2017;8:50.

    Article  Google Scholar 

  64. Winston D. Adaptogens: herbs for strength, stamina, and stress relief. New York: Simon and Schuster; 2019.

    Google Scholar 

  65. Santos AL, Junior CP, Neto RN, Santos MH, Santos VF, Rocha BA, et al. Machaerium acutifolium lectin inhibits inflammatory responses through cytokine modulation. Process Biochem. 2020;97:149–57.

    Article  Google Scholar 

  66. Lin Y, Wu S. Vegetable soybean (Glycine max (L.) Merr.) leaf extracts: functional components and antioxidant and anti-inflammatory activities. J Food Sci. 2021;86(6):2468–80.

    Article  PubMed  Google Scholar 

  67. Burgos RA, Alarcón P, Quiroga J, Manosalva C, Hancke J. Andrographolide, an anti-inflammatory multitarget drug: all roads lead to cellular metabolism. Molecules. 2020;26(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Beg S, Swain S, Hasan H, Barkat MA, Hussain MS. Systematic review of herbals as potential anti-inflammatory agents: recent advances, current clinical status and future perspectives. Pharmacogn Rev. 2011;5(10):120.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sahoo BM, Banik BK. Medicinal plants: source for immunosuppressive agents. Immunol Curr Res. 2018;2:106.

    Google Scholar 

  70. Batiha GES, Magdy Beshbishy A, Wasef L, Elewa YH, Abd El-Hack ME, Taha AE, et al. Uncaria tomentosa (Willd. ex Schult.) DC.: a review on chemical constituents and biological activities. Appl Sci. 2020;10(8):2668.

    Article  Google Scholar 

  71. Montserrat-de la Paz S, Fernandez-Arche A, De La Puerta R, Quilez AM, Muriana FJ, Garcia-Gimenez MD, et al. Mitraphylline inhibits lipopolysaccharide-mediated activation of primary human neutrophils. Phytomedicine. 2016;23(2):141–8.

    Article  PubMed  Google Scholar 

  72. Batiha GE, Magdy Beshbishy A, Wasef L, Elewa YH, Abd El-Hack ME, Taha AE, Al-Sagheer AA, Devkota HP, Tufarelli V. Uncaria tomentosa (Willd. ex Schult.) DC.: a review on chemical constituents and biological activities. Appl Sci. 2020;10(8):2668.

    Article  Google Scholar 

  73. Wang HMD, Fu L, Cheng CC, Gao R, Lin MY, Su HL, et al. Inhibition of LPS-induced oxidative damages and potential anti-inflammatory effects of Phyllanthus emblica extract via down-regulating NF-κB, COX-2, and iNOS in RAW 264.7 cells. Antioxidants. 2019;8(8):270.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Guazelli CF, Fattori V, Ferraz CR, Borghi SM, Casagrande R, Baracat MM, et al. Antioxidant and anti-inflammatory effects of hesperidin methyl chalcone in experimental ulcerative colitis. Chem Biol Interact. 2021;333:109315.

    Article  PubMed  Google Scholar 

  75. de Oliveira ALB, Monteiro VVS, Navegantes-Lima KC, Reis JF, Gomes RdS, Rodrigues DVS, et al. Resveratrol role in autoimmune disease—a mini-review. Nutrients. 2017;9(12):1306.

    Google Scholar 

  76. Bai J, Zhang Y, Tang C, Hou Y, Ai X, Chen X, et al. Gallic acid: pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother. 2021;133:110985.

    Article  PubMed  Google Scholar 

  77. Rahayu RP, Prasetyo RA, Purwanto DA, Kresnoadi U, Iskandar RPD, Rubianto M. The immunomodulatory effect of green tea (Camellia sinensis) leaves extract on immunocompromised Wistar rats infected by Candida albicans. Vet World. 2018;11(6):765–70.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yuan K, Li X, Lu Q, Zhu Q, Jiang H, Wang T, et al. Application and mechanisms of triptolide in the treatment of inflammatory diseases—a review. Front Pharmacol. 2019;10:1469.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Song J, Hu Y, Wang L, Ao C. Ethanol extract of Artemisia Annua prevents LPS-induced inflammation and blood–milk barrier disruption in bovine mammary epithelial cells. Animals. 2022;12(10):1228.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Vetvicka V, Vannucci L. Biological properties of andrographolide, an active ingredient of Andrographis Paniculata: a narrative review. Ann Transl Med. 2021;9(14):1186.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, et al. Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Des Devel Ther. 2021:4503–25.

    Google Scholar 

  82. Batiha GE, Beshbishy AM, Wasef LG, Elewa YH, Al-Sagan AA, El-Hack MEA, Taha AE, Abd-Elhakim YM, Devkota HP. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): a review. Nutrients. 2020;12(3):872.

    Article  Google Scholar 

  83. Zhu L, Myhill LJ, Andersen-Civil AI, Thamsborg SM, Blanchard A, Williams AR. Garlic-derived organosulfur compounds regulate metabolic and immune pathways in macrophages and attenuate intestinal inflammation in mice. Mol Nutr Food Res. 2022;66(7):2101004.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zamani Taghizadeh Rabe S, Ghazanfari T, Siadat Z, Rastin M, Zamani Taghizadeh Rabe S, Mahmoudi M. Anti-inflammatory effect of garlic 14-kDa protein on LPS-stimulated-J774A.1 macrophages. Immunopharmacol Immunotoxicol. 2015;37(2):158–64.

    Article  Google Scholar 

  85. Alanazi HH, Elfaki E. The immunomodulatory role of Withania somnifera (L.) dunal in inflammatory diseases. Front Pharmacol. 2023;14:430.

    Article  Google Scholar 

  86. Bashir A, Nabi M, Tabassum N, Afzal S, Ayoub M. An updated review on phytochemistry and molecular targets of Withania somnifera (L.) dunal (Ashwagandha). Front Pharmacol. 2023;14:643.

    Article  Google Scholar 

  87. Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, et al. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol. 2017;174(11):1325–48.

    Article  PubMed  Google Scholar 

  88. Ghanaatian N, Lashgari NA, Abdolghaffari AH, Rajaee SM, Panahi Y, Barreto GE, et al. Curcumin as a therapeutic candidate for multiple sclerosis: molecular mechanisms and targets. J Cell Physiol. 2019;234(8):12237–48.

    Article  PubMed  Google Scholar 

  89. Kang D, Li B, Luo L, Jiang W, Lu Q, Rong M, et al. Curcumin shows excellent therapeutic effect on psoriasis in mouse model. Biochimie. 2016;123:73–80.

    Article  PubMed  Google Scholar 

  90. Zhang S, Wang J, Liu L, Sun X, Zhou Y, Chen S, Lu Y, Cai X, Hu M, Yan G, Miao X. Efficacy and safety of curcumin in psoriasis: preclinical and clinical evidence and possible mechanisms. Front Pharmacol. 2022;13:903160.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chopra H, Dey PS, Das D, Bhattacharya T, Shah M, Mubin S, et al. Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules. 2021;26(16):4998.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bulboacă AE, Porfire AS, Tefas LR, Boarescu PM, Bolboacă SD, Stănescu IC, et al. Liposomal curcumin is better than curcumin to alleviate complications in experimental diabetic mellitus. Molecules. 2019;24(5):846.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Recinella L, Gorica E, Chiavaroli A, Fraschetti C, Filippi A, Cesa S, et al. Anti-inflammatory and antioxidant effects induced by Allium sativum L. extracts on an ex vivo experimental model of ulcerative colitis. Foods. 2022;11(22):3559.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ezzat SM, Ezzat MI, Okba MM, Menze ET, Abdel-Naim AB. The hidden mechanism beyond ginger (Zingiber officinale R.) potent in vivo and in vitro anti-inflammatory activity. J Ethnopharmacol. 2018;214:113–23.

    Article  PubMed  Google Scholar 

  95. Habib SH, Makpol S, Hamid NA, Das S, Ngah WZ, Yusof YA. Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics. 2008;63(6):807–13.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hwang JH, Jung HW, Oh SY, Kang JS, Kim JP, Park YK. Effects of Zingiber officinale extract on collagen-induced arthritis in mice and IL-1β-induced inflammation in human synovial fibroblasts. Eur J Inflamm. 2017;15(3):168–78.

    Article  Google Scholar 

  97. Karthikeyan V, Balakrishnan BR, Senniappan P, Janarthanan L, Venkateswarlu BS, Anandharaj G. Berbris aristata DC: pharmacognostical standardization and phytochemical studies of its leaves. J Drug Deliv Ther. 2019;9(4-A):229–36.

    Article  Google Scholar 

  98. Ehteshamfar SM, Akhbari M, Afshari JT, Seyedi M, Nikfar B, Shapouri-Moghaddam A, et al. Anti-inflammatory and immune-modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. J Cell Mol Med. 2020;24(23):13573–88.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yue M, Xia Y, Shi C, Guan C, Li Y, Liu R, et al. Berberine ameliorates collagen-induced arthritis in rats by suppressing Th17 cell responses via inducing cortistatin in the gut. FEBS J. 2017;284(17):2786–801.

    Article  PubMed  Google Scholar 

  100. Sharifi-Rad J, Quispe C, Ayatollahi SA, Kobarfard F, Staniak M, Stępień A, Czopek K, Sen S, Acharya K, Matthews KR, Sener B. Chemical composition, biological activity, and health-promoting effects of Withania somnifera for pharma-food industry applications. J Food Qual. 2021;2021:8985179.

    Article  Google Scholar 

  101. Fry CH, Fluck D, Han TS. Adrenal hypofunction associated with ashwagandha (Withania somnifera) supplementation: a case report. Toxicol Environ Health Sci. 2022;14(2):141–5.

    Article  Google Scholar 

  102. Khan N, Swami DH, Gourav P, Kushwah M, Raj P. Phytochemical investigation and evaluation of anti-inflammatory activity of Camellia sinensis (Green Tea) leaves in experimental animals. 8(2).

    Google Scholar 

  103. Oliveira AP, Guimarães AL, de Oliveira-Júnior RG, Quintans JD, de Medeiros FA, Barbosa-Filho JM, Quintans-Júnior LJ, da Silva Almeida JR. Camellia sinensis (L.) Kuntze: a review of chemical and nutraceutical properties. Nat Prod Res Rev. 2016;4:21–62.

    Google Scholar 

  104. Kim J, Choi H, Choi DH, Park K, Kim HJ, Park M. Application of green tea catechins, polysaccharides, and flavonol prevent fine dust induced bronchial damage by modulating inflammation and airway cilia. Sci Rep. 2021;11(1):2232.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Huang SS, Su SY, Chang JS, Lin HJ, Wu WT, Deng JS, et al. Antioxidants, anti-inflammatory, and antidiabetic effects of the aqueous extracts from glycine species and its bioactive compounds. Bot Stud. 2016;57(1):1–11.

    Article  Google Scholar 

  106. Hancke JL, Srivastav S, Cáceres DD, Burgos RA. A double-blind, randomized, placebo-controlled study to assess the efficacy of Andrographis paniculata standardized extract (ParActin®) on pain reduction in subjects with knee osteoarthritis. Phytother Res. 2019;33(5):1469–79.

    Article  PubMed  Google Scholar 

  107. Suriyo T, Pholphana N, Ungtrakul T, Rangkadilok N, Panomvana D, Thiantanawat A, Pongpun W, Satayavivad J. Clinical parameters following multiple oral dose administration of a standardized Andrographis paniculata capsule in healthy Thai subjects. Planta Medica. 2017;83(9):778–89.

    Article  PubMed  Google Scholar 

  108. Ciampi E, Uribe-San-Martin R, Cárcamo C, Cruz JP, Reyes A, Reyes D, Pinto C, Vásquez M, Burgos RA, Hancke J. Efficacy of andrographolide in not active progressive multiple sclerosis: a prospective exploratory double-blind, parallel-group, randomized, placebo-controlled trial. BMC Neurol. 2020;20:173.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lu J, Ma Y, Wu J, Huang H, Wang X, Chen Z, et al. A review for the neuroprotective effects of andrographolide in the central nervous system. Biomed Pharmacother. 2019;117:109078.

    Article  PubMed  Google Scholar 

  110. Borges RS, Ortiz BLS, Pereira ACM, Keita H, Carvalho JCT. Rosmarinus officinalis essential oil: a review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J Ethnopharmacol. 2019;229:29–45.

    Article  PubMed  Google Scholar 

  111. Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo P. Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. Future Sci OA. 2018;4(4):FSO283.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Yuan R, Liu Z, Zhao J, Wang QQ, Zuo A, Huang L, et al. Novel compounds in fruits of coriander (Coşkuner & Karababa) with anti-inflammatory activity. J Funct Foods. 2020;73:104145.

    Article  Google Scholar 

  113. Chahal KK, Singh R, Kumar A, Bhardwaj U. Chemical composition and biological activity of Coriandrum sativum L.: a review. Indian J Nat Prod Resour. 2018;8:193–203.

    Google Scholar 

  114. Foudah AI, Alqarni MH, Alam A, Salkini MA, Ahmed EOI, Yusufoglu HS. Evaluation of the composition and in vitro antimicrobial, antioxidant, and anti-inflammatory activities of Cilantro (Coriandrum sativum L. leaves) cultivated in Saudi Arabia (Al-Kharj). Saudi J Biol Sci. 2021;28(6):3461–8.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Jahurul MHA, Patricia M, Shihabul A, Norazlina MR, George MR, Noorakmar AW, et al. A review on functional and nutritional properties of noni fruit seed (Morinda citrifolia L.) and its oil. Food Biosci. 2021;41:101000.

    Article  Google Scholar 

  116. Tanikawa T, Kitamura M, Hayashi Y, Tomida N, Uwaya A, Isami F, et al. Anti-inflammatory effects of Morinda citrifolia extract against lipopolysaccharide-induced inflammation in RAW264 Cells. Medicines. 2021;8(8):43.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lee D, Yu JS, Huang P, Qader M, Manavalan A, Wu X, et al. Identification of anti-inflammatory compounds from Hawaiian noni (Morinda citrifolia L.) fruit juice. Molecules. 2020;25(21):4968.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Salaria D, Rolta R, Sharma N, Dev K, Sourirajan A, Kumar V. In silico and in vitro evaluation of the anti-inflammatory and antioxidant potential of Cymbopogon citratus from North-western Himalayas. BioRxiv. 2020;2020.05.31.124982.

    Google Scholar 

  119. Ekpenyong CE, Akpan E, Nyoh A. Ethnopharmacology, phytochemistry, and biological activities of Cymbopogon citratus (DC.) Stapf extracts. Chinese J Nat Med. 2015;13(5):321–37.

    Google Scholar 

  120. Borges PH, Pedreiro S, Baptista SJ, Geraldes CF, Batista MT, Silva MM, et al. Inhibition of α-glucosidase by flavonoids of Cymbopogon citratus (DC) Stapf. J Ethnopharmacol. 2021;280:114470.

    Article  PubMed  Google Scholar 

  121. Ajayi AM, Ologe MO, Ben-Azu B, Okhale SE, Adzu B, Ademowo OG, Ocimum gratissimum Linn. Leaf extract inhibits free radical generation and suppressed inflammation in carrageenan-induced inflammation models in rats. J Basic Clin Physiol Pharmacol. 2017;28(6):531–41.

    Article  PubMed  Google Scholar 

  122. Tiwari P, Nayak P, Prusty SK, Sahu PK. Phytochemistry and pharmacology of Tinospora cordifolia: a review. Syst Rev Pharm. 2018;9(1):70–8.

    Article  Google Scholar 

  123. Nandan A, Sharma V, Banerjee P, Sadasivam K, Venkatesan S, Prasher B. Deciphering the mechanism of Tinospora cordifolia extract on Th17 cells through in-depth transcriptomic profiling and in silico analysis. Front Pharmacol. 2022;13:1056677.

    Article  PubMed  Google Scholar 

  124. Maidhof W, Hilas O. Lupus: an overview of the disease and management options. Pharm Ther. 2012;37(4):240–9.

    Google Scholar 

  125. Balkrishna A, Thakur P, Singh S, Chandra Dev SN, Varshney A. Mechanistic paradigms of natural plant metabolites as remedial candidates for systemic lupus erythromatosus. Cells. 2020;9(4):1049.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Pan L, Lu MP, Wang JH, Xu M, Yang SR. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr. 2020;16:19–30.

    Article  PubMed  Google Scholar 

  127. Dörner T, Furie R. Novel paradigms in systemic lupus erythematosus. Lancet. 2019;393(10188):2344–58.

    Article  PubMed  Google Scholar 

  128. Song CY, Xu YG, Lu YQ. Use of Tripterygium wilfordii Hook F for immune-mediated inflammatory diseases: progress and future prospects. J Zhejiang Univ Sci B. 2020;21(4):280–90.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sun Q, Liu Y, Lu D, Ji L, Wang W, Wang X, et al. Therapeutic effects of triptolide on the balance of Th17/Treg cells via AKT/mTOR/p70S6k signaling pathway in lupus-like mic. 2022 [cited 2022 Dec 18]. https://doi.org/10.21203/rs.3.rs-1354719/v1.

  130. Zhang LY, Li H, Wu YW, Cheng L, Yan YX, Yang XQ, Zhu FH, He SJ, Tang W, Zuo JP. (5R)-5-hydroxytriptolide ameliorates lupus nephritis in MRL/lpr mice by preventing infiltration of immune cells. Am J Physiol Renal Physiol. 2017;312(4):F769–77.

    Article  PubMed  Google Scholar 

  131. Zhang Y, Zhang F, Gao Y, Wang M, Li H, Sun J, Wen C, Xie Z. Triptolide in the treatment of systemic lupus erythematosus-regulatory effects on miR-146a in B cell TLR7 signaling pathway in mice. Front Pharmacol. 2022;13:952775.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Liu W, Yan L, Zhu Q, Shao FM. Therapeutic effect of Tripterygium glycosides plus prednisone on moderate active systemic lupus erythematosus. J Chin Pract Diagn Ther. 2014;28(12):1234–5.

    Google Scholar 

  133. Wang YJ, Li YX, Li S, He W, Wang ZR, Zhan TP, et al. Progress in traditional Chinese medicine and natural extracts for the treatment of lupus nephritis. Biomed Pharmacother. 2022;149:112799.

    Article  PubMed  Google Scholar 

  134. Zamani S, Emami SA, Iranshahi M, Rabe SZ, Mahmoudi M. Sesquiterpene fractions of Artemisia plants as potent inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 expression. Iran J Basic Med Sci. 2019;22(7):774.

    PubMed  PubMed Central  Google Scholar 

  135. Chebbac K, Benziane Ouaritini Z, El Moussaoui A, Chalkha M, Lafraxo S, Bin Jardan YA, Nafidi HA, Bourhia M, Guemmouh R. Antimicrobial and antioxidant properties of chemically analyzed essential oil of Artemisia annua L. (Asteraceae) native to Mediterranean Area. Life. 2023;13(3):807.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Avena-Woods C. Overview of atopic dermatitis. Am J Manag Care. 2017;23(8 Suppl):S115–23.

    PubMed  Google Scholar 

  137. Otsuka A, Nomura T, Rerknimitr P, Seidel JA, Honda T, Kabashima K. The interplay between genetic and environmental factors in the pathogenesis of atopic dermatitis. Immunol Rev. 2017;278(1):246–62.

    Article  PubMed  Google Scholar 

  138. David Boothe W, Tarbox JA, Tarbox MB. Atopic dermatitis: pathophysiology. In: Management of atopic dermatitis: methods and challenges. Berlin: Springer; 2017. p. 21–37.

    Chapter  Google Scholar 

  139. Sroka-Tomaszewska J, Trzeciak M. Molecular mechanisms of atopic dermatitis pathogenesis. Int J Mol Sci. 2021;22(8):4130.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Peng W, Novak N. Pathogenesis of atopic dermatitis. Clin Exp Allergy. 2015;45(3):566–74.

    Article  PubMed  Google Scholar 

  141. Kim J, Kim BE, Leung DY. Pathophysiology of atopic dermatitis: clinical implications. In: Allergy and asthma proceedings. East Providence: OceanSide Publications; 2019. p. 84.

    Google Scholar 

  142. Kwatra SG, Misery L, Clibborn C, Steinhoff M. Molecular and cellular mechanisms of itch and pain in atopic dermatitis and implications for novel therapeutics. Clin Transl Immunol. 2022;11(5):e1390.

    Article  Google Scholar 

  143. Fania L, Moretta G, Antonelli F, Scala E, Abeni D, Albanesi C, et al. Multiple roles for cytokines in atopic dermatitis: from pathogenic mediators to endotype-specific biomarkers to therapeutic targets. Int J Mol Sci. 2022;23(5):2684.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Dattola A, Bennardo L, Silvestri M, Nisticò SP. What’s new in the treatment of atopic dermatitis? Dermatol Ther. 2019;32(2):e12787.

    Article  PubMed  Google Scholar 

  145. Maliehe TS, Nqotheni MI, Shandu JS, Selepe TN, Masoko P, Pooe OJ. Chemical profile, antioxidant and antibacterial activities, mechanisms of action of the leaf extract of Aloe arborescens Mill. Plants. 2023;12(4):869.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Rodrigues M, Ezzedine K, Hamzavi I, Pandya AG, Harris JE, Group VW. New discoveries in the pathogenesis and classification of Vitiligo. J Am Acad Dermatol. 2017;77(1):1–13.

    Article  PubMed  Google Scholar 

  147. Spritz RA, Santorico SA. The genetic basis of Vitiligo. J Investig Dermatol. 2021;141(2):265–73.

    Article  PubMed  Google Scholar 

  148. Bergqvist C, Ezzedine K. Vitiligo: a review. Dermatology. 2020;236(6):571–92.

    Article  PubMed  Google Scholar 

  149. Harris JE. Chemical-induced Vitiligo. Dermatol Clin. 2017;35(2):151–61.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Manga P, Choudhury N. The unfolded protein and integrated stress response in melanoma and Vitiligo. Pigment Cell Melanoma Res. 2021;34(2):204–11.

    Article  PubMed  Google Scholar 

  151. Seneschal J, Boniface K, D’Arino A, Picardo M. An update on Vitiligo pathogenesis. Pigment Cell Melanoma Res. 2021;34(2):236–43.

    Article  PubMed  Google Scholar 

  152. Stojanović-Radić Z, Pejčić M, Dimitrijević M, Aleksić A, Anil Kumar NV, Salehi B, Cho CW, Sharifi-Rad J. Piperine—a major principle of black pepper: a review of its bioactivity and studies. Appl Sci. 2019;9(20):4270.

    Article  Google Scholar 

  153. Shafiee A, Hoormand M, Shahidi-Dadras M, Abadi A. The effect of topical piperine combined with narrowband UVB on Vitiligo treatment: a clinical trial study. Phytother Res. 2018;32(9):1812–7.

    Article  PubMed  Google Scholar 

  154. Hwang JR, Cartron AM, Khachemoune A. A review of Nigella sativa plant-based therapy in dermatology. Int J Dermatol. 2021;60(12):e493–9.

    Article  PubMed  Google Scholar 

  155. Hugh JM, Weinberg JM. Update on the pathophysiology of psoriasis. Cutis. 2018;102(5S):6–12.

    PubMed  Google Scholar 

  156. Sarac G, Koca TT, Baglan T. A brief summary of clinical types of psoriasis. North Clin Istanb. 2016;3(1):79.

    PubMed  PubMed Central  Google Scholar 

  157. Yan BX, Chen XY, Ye LR, Chen JQ, Zheng M, Man XY. Cutaneous and systemic psoriasis: classifications and classification for the distinction. Front Med. 2021;8:649408.

    Article  Google Scholar 

  158. Zhou X, Chen Y, Cui L, Shi Y, Guo C. Advances in the pathogenesis of psoriasis: from keratinocyte perspective. Cell Death Dis. 2022;13(1):81.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Herman A, Herman AP. Topically used herbal products for the treatment of psoriasis—mechanism of action, drug delivery, clinical studies. Planta Med. 2016;82(17):1447–55.

    Article  PubMed  Google Scholar 

  160. Rout SK, Tripathy BC, Kar BR. Natural green alternatives to psoriasis treatment—a review. Glob J Pharm Pharm Sci. 2017;4(1):1–7.

    Google Scholar 

  161. Aghmiuni AI, Khiavi AA. Medicinal plants to calm and treat psoriasis disease. In: Aromatic and medicinal plants—back to nature, vol. 2016. London: IntechOpen; 2017. p. 1–28.

    Google Scholar 

  162. Thepthanee C, Liu CC, Yu HS, Huang HS, Yen CH, Li YH, et al. Evaluation of phytochemical contents and in vitro antioxidant, anti-inflammatory, and anticancer activities of black rice leaf (Oryza sativa L.) extract and its fractions. Foods. 2021;10(12):2987.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Xu Y, Shi Y, Huang J, Gu H, Li C, Zhang L, et al. The essential oil derived from Perilla frutescens (L.) Britt. attenuates imiquimod-induced psoriasis-like skin lesions in BALB/c mice. Molecules. 2022;27(9):2996.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Hellesen A, Bratland E, Husebye ES. Autoimmune Addison’s disease—an update on pathogenesis. In: Annales d’endocrinologie. Amsterdam: Elsevier; 2018. p. 157–63.

    Google Scholar 

  165. Bancos I, Hahner S, Tomlinson J, Arlt W. Diagnosis and management of adrenal insufficiency. Lancet Diabetes Endocrinol. 2015;3(3):216–26.

    Article  PubMed  Google Scholar 

  166. Perniola R, Fierabracci A, Falorni A. Autoimmune Addison’s disease as part of the autoimmune polyglandular syndrome type 1: historical overview and current evidence. Front Immunol. 2021;12:606860.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Husebye ES, Pearce SH, Krone NP, Kämpe O. Adrenal insufficiency. Lancet. 2021;397(10274):613–29.

    Article  PubMed  Google Scholar 

  168. Pignatti E, Flück CE. Adrenal cortex development and related disorders leading to adrenal insufficiency. Mol Cell Endocrinol. 2021;527:111206.

    Article  PubMed  Google Scholar 

  169. Hellesen A, Bratland E, Husebye ES. Autoimmune Addison’s disease—an update on pathogenesis. In: Annales d’endocrinologie, vol. 79, no. 3. Paris: Elsevier Masson; 2018. p. 157–63.

    Google Scholar 

  170. Betterle C, Presotto F, Furmaniak J. Epidemiology, pathogenesis, and diagnosis of Addison’s disease in adults. J Endocrinol Invest. 2019;42(12):1407–33.

    Article  PubMed  Google Scholar 

  171. Methlie P, Husebye EE, Hustad S, Lien EA, Løvås K. Grapefruit juice and licorice increase cortisol availability in patients with Addison’s disease. Eur J Endocrinol. 2011;165(5):761–9.

    Article  PubMed  Google Scholar 

  172. Kumari A, Kumar R, Sulabh G, Singh P, Kumar J, Singh VK, Ojha KK. In silico ADMET, molecular docking and molecular simulation-based study of glabridin’s natural and semisynthetic derivatives as potential tyrosinase inhibitors. Adv Tradit Med. 2023;23:733–51.

    Article  Google Scholar 

  173. Morsy MA, Patel SS, El-Sheikh AA, Savjani JK, Nair AB, Shah JN, Venugopala KN. Computational and biological comparisons of plant steroids as modulators of inflammation through interacting with glucocorticoid receptor. Mediators Inflamm. 2019;2019:3041438.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Boswellia Serrata, a potential antiinflammatory agent: an overview—PMC. [cited 2023 Mar 3]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309643/.

  175. Zameer S, Najmi AK, Vohora D, Akhtar M. A review on therapeutic potentials of Trigonella foenum graecum (fenugreek) and its chemical constituents in neurological disorders: complementary roles to its hypolipidemic, hypoglycemic, and antioxidant potential. Nutr Neurosci. 2018;21(8):539–45.

    Article  PubMed  Google Scholar 

  176. Aylanc V, Eskin B, Zengin G, Dursun M, Cakmak YS. In vitro studies on different extracts of fenugreek (Trigonella spruneriana BOISS.): phytochemical profile, antioxidant activity, and enzyme inhibition potential. J Food Biochem. 2020;44(11):e13463.

    Article  PubMed  Google Scholar 

  177. Prema A, Thenmozhi AJ, Manivasagam T, Essa MM, Akbar MD, Akbar M. Fenugreek seed powder nullified aluminium chloride induced memory loss, biochemical changes, Aβ burden and apoptosis via regulating Akt/GSK3β signaling pathway. PLoS One. 2016;11(11):e0165955.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Ratheesh G, Tian L, Venugopal JR, Ezhilarasu H, Sadiq A, Fan TP, et al. Role of medicinal plants in neurodegenerative diseases. Biomanuf Rev. 2017;2(1):2.

    Article  Google Scholar 

  179. Rai K, Gupta N, Dharamdasani L, Nair P, Bodhankar P. Bacopa monnieri: a wonder drug changing fortune of people. Int J Appl Sci Biotechnol. 2017;5(2):127–32.

    Article  Google Scholar 

  180. Fatima U, Roy S, Ahmad S, Ali S, Elkady WM, Khan I, Alsaffar RM, Adnan M, Islam A, Hassan MI. Pharmacological attributes of Bacopa monnieri extract: current updates and clinical manifestation. Front Nutr. 2022;9:972379.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Kishore D, Babu RS, Begum A, Noor A, Farheen S, Kauser SM, Yaser AA. Evaluation of nootropic activity of two marketed drugs of Bacopa monnieri in scopolamine induced amnesic models. Indian J Res Pharm Biotechnol. 2018;6:84–90.

    Google Scholar 

  182. Nowak A, Kojder K, Zielonka-Brzezicka J, Wróbel J, Bosiacki M, Fabiańska M, et al. The use of Ginkgo Biloba L. as a neuroprotective agent in the Alzheimer’s Disease. Front Pharmacol. 2021;12:775034. https://www.frontiersin.org/articles/10.3389/fphar.2021.775034.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Das R, Lami MS, Chakraborty AJ, Mitra S, Tallei TE, Idroes R, Mohamed AA, Hossain M, Dhama K, Mostafa-Hedeab G, Emran TB. Ginkgo biloba: a treasure of functional phytochemicals with multimedicinal applications. Evid Based Complement Alternat Med. 2022;2022:8288818.

    PubMed  PubMed Central  Google Scholar 

  184. Yu D, Zhang P, Li J, Liu T, Zhang Y, Wang Q, Zhang J, Lu X, Fan X. Neuroprotective effects of Ginkgo biloba dropping pills in Parkinson’s disease. J Pharm Anal. 2021;11(2):220–31.

    Article  PubMed  Google Scholar 

  185. Rapp M, Burkart M, Kohlmann T, Bohlken J. Similar treatment outcomes with Ginkgo biloba extract EGb 761 and donepezil in Alzheimer’s dementia in very old age: a retrospective observational study. Int J Clin Pharmacol Ther. 2018;56(3):130.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, et al. Therapeutic potential of Centella asiatica and its triterpenes: a review. Front Pharmacol. 2020;11:568032.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Wong JH, Barron AM, Abdullah JM. Mitoprotective effects of Centella asiatica (L.) Urb.: anti-inflammatory and neuroprotective opportunities in neurodegenerative disease. Front Pharmacol. 2021;12:687935.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Hafiz ZZ, Amin MAM, Johari James RM, Teh LK, Salleh MZ, Adenan MI. Inhibitory effects of raw-extract Centella asiatica (RECA) on acetylcholinesterase, inflammations, and oxidative stress activities viain vitro and in vivo. Molecules. 2020;25(4):892.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Fujimori H, Ohba T, Mikami M, Nakamura S, Ito K, Kojima H, Takahashi T, Iddamalgoda A, Shimazawa M, Hara H. The protective effect of Centella asiatica and its constituent, araliadiol on neuronal cell damage and cognitive impairment. J Pharmacol Sci. 2022;148(1):162–71.

    Article  PubMed  Google Scholar 

  190. Gray NE, Zweig JA, Murchison C, Caruso M, Matthews DG, Kawamoto C, Harris CJ, Quinn JF, Soumyanath A. Centella asiatica attenuates Aβ-induced neurodegenerative spine loss and dendritic simplification. Neurosci Lett. 2017;646:24–9.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Nakoti SS, Juyal D, Josh AK. A review on pharmacognostic and phytochemical study of a plant Nardostachys Jatamansi. Pharma Innov. 2017;6(7, Part G):936.

    Google Scholar 

  192. Liu QF, Jeon Y, Sung Y-W, Lee JH, Jeong H, Kim YM, et al. Nardostachys jatamansi ethanol extract ameliorates Aβ42 cytotoxicity. Biol Pharm Bull. 2018;41(4):470–7.

    Article  PubMed  Google Scholar 

  193. Kaur N, Sarkar B, Gill I, Kaur S, Mittal S, Dhiman M, et al. Indian herbs and their therapeutic potential against Alzheimer’s disease and other neurological disorders. In: Neuroprotective effects of phytochemicals in neurological disorders. New York: Wiley; 2017. p. 79–112.

    Chapter  Google Scholar 

  194. Devi P. An updated review on Shankhpushpi—As Medhya Rasayana. J Ayurvedic Herb Med. 2021;7(2):119–23.

    Article  Google Scholar 

  195. Sethiya NK, Nahata A, Singh PK, Mishra SH. Neuropharmacological evaluation on four traditional herbs used as nervine tonic and commonly available as Shankhpushpi in India. J Ayurveda Integr Med. 2019;10(1):25–31.

    Article  PubMed  Google Scholar 

  196. Suryavanshi SV, Barve K, Addepalli V, Utpat SV, Kulkarni YA. Triphala Churna—a traditional formulation in ayurveda mitigates diabetic neuropathy in rats. Front Pharmacol. 2021;12:662000.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Ning W, Li S, Tsering J, Ma Y, Li H, Ma Y, et al. Protective effect of Triphala against oxidative stress-induced neurotoxicity. Biomed Res Int. 2021;2021:6674988.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Tarlinton RE, Khaibullin T, Granatov E, Martynova E, Rizvanov A, Khaiboullina S. The interaction between viral and environmental risk factors in the pathogenesis of multiple sclerosis. Int J Mol Sci. 2019;20(2):303.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Guan Y, Jakimovski D, Ramanathan M, Weinstock-Guttman B, Zivadinov R. The role of Epstein-Barr virus in multiple sclerosis: from molecular pathophysiology to in vivo imaging. Neural Regen Res. 2019;14(3):373.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Zéphir H. Progress in understanding the pathophysiology of multiple sclerosis. Rev Neurol (Paris). 2018;174(6):358–63.

    Article  PubMed  Google Scholar 

  201. Dighriri IM, Aldalbahi AA, Albeladi F, Tahiri AA, Kinani EM, Almohsen RA, Alamoudi NH, Alanazi AA, Alkhamshi SJ, Althomali NA, Alrubaiei SN. An overview of the history, pathophysiology, and pharmacological interventions of multiple sclerosis. Cureus. 2023;15(1):e33242.

    PubMed  PubMed Central  Google Scholar 

  202. Kaskow BJ, Baecher-Allan C. Effector T cells in multiple sclerosis. Cold Spring Harb Perspect Med. 2018;8(4):a029025.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Huang WJ, Chen WW, Zhang X. Multiple sclerosis: pathology, diagnosis and treatments. Exp Ther Med. 2017;13(6):3163–6.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Moser T, Akgün K, Proschmann U, Sellner J, Ziemssen T. The role of TH17 cells in multiple sclerosis: therapeutic implications. Autoimmun Rev. 2020;19(10):102647.

    Article  PubMed  Google Scholar 

  205. Qureshi M, Al-Suhaimi E, Shehzad A. Curcumin impact on multiple sclerosis. In: Curcumin for neurological and psychiatric disorders. Amsterdam: Elsevier; 2019. p. 365–80.

    Chapter  Google Scholar 

  206. Balasa R, Barcutean L, Balasa A, Motataianu A, Roman-Filip C, Manu D. The action of TH17 cells on blood brain barrier in multiple sclerosis and experimental autoimmune encephalomyelitis. Hum Immunol. 2020;81(5):237–43.

    Article  PubMed  Google Scholar 

  207. Kimura K. Regulatory T cells in multiple sclerosis. Clin Exp Neuroimmunol. 2020;11(3):148–55.

    Article  Google Scholar 

  208. Barcelos IP, Troxell RM, Graves JS. Mitochondrial dysfunction and multiple sclerosis. Biology. 2019;8(2):37.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Bayat P, Farshchi M, Yousefian M, Mahmoudi M, Yazdian-Robati R. Flavonoids, the compounds with anti-inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: a systematic review of preclinical evidence. Int Immunopharmacol. 2021;95:107562.

    Article  PubMed  Google Scholar 

  210. Safari H, Anani Sarab G, Naseri M. Artemisia dracunculus L. modulates the immune system in a multiple sclerosis mouse model. Nutr Neurosci. 2021;24(11):843–9.

    Article  PubMed  Google Scholar 

  211. Adetuyi BO, Omolabi FK, Olajide PA, Oloke JK. Pharmacological, biochemical and therapeutic potential of milk thistle (silymarin): a review. World News Nat Sci. 2021;37:75–91.

    Google Scholar 

  212. Shariati M, Shaygannejad V, Abbasirad F, Hosseininasab F, Kazemi M, Mirmosayyeb O, et al. Silymarin restores regulatory T cells (tregs) function in multiple sclerosis (MS) patients in vitro. Inflammation. 2019;42:1203–14.

    Article  PubMed  Google Scholar 

  213. Eratne D, Loi SM, Farrand S, Kelso W, Velakoulis D, Looi JC. Alzheimer’s disease: clinical update on epidemiology, pathophysiology and diagnosis. Australas Psychiatry. 2018;26(4):347–57.

    Article  PubMed  Google Scholar 

  214. Twohig D, Nielsen HM. α-Synuclein in the pathophysiology of Alzheimer’s disease. Mol Neurodegener. 2019;14(1):1–19.

    Article  Google Scholar 

  215. Scheltens P, Blennow K, Breteler MM, De Strooper B, Frisoni GB, Salloway S, et al. Alzheimer’s disease. Lancet. 2016;388(10043):505–17.

    Article  PubMed  Google Scholar 

  216. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primer. 2015;1(1):1–18.

    Article  Google Scholar 

  217. Wan W, Cao L, Kalionis B, Murthi P, Xia S, Guan Y. Iron deposition leads to hyperphosphorylation of tau and disruption of insulin signaling. Front Neurol. 2019;10:607.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Kumar A, Singh A. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67(2):195–203.

    Article  PubMed  Google Scholar 

  219. Khoury R, Rajamanickam J, Grossberg GT. An update on the safety of current therapies for Alzheimer’s disease: focus on rivastigmine. Ther Adv Drug Saf. 2018;9(3):171–8.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Balakrishnan R, Cho DY, Kim IS, Seol SH, Choi DK. Molecular mechanisms and therapeutic potential of α- and β-asarone in the treatment of neurological disorders. Antioxidants. 2022;11(2):281.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Esfandiari E, Ghanadian M, Rashidi B, Mokhtarian A, Vatankhah AM. The effects of Acorus calamus L. in preventing memory loss, anxiety, and oxidative stress on lipopolysaccharide-induced neuroinflammation rat models. Int J Prev Med. 2018;9:85.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Mikami M, Takuya O, Yoshino Y, Nakamura S, Ito K, Kojima H, et al. Acorus calamus extract and its component α-asarone attenuate murine hippocampal neuronal cell death induced by l-glutamate and tunicamycin. Biosci Biotechnol Biochem. 2021;85(3):493–501.

    Article  PubMed  Google Scholar 

  223. Talebi M, Talebi M, Samarghandian S. Association of Crocus sativus with cognitive dysfunctions and Alzheimer’s disease: a systematic review. Biointerface Res Appl Chem. 2021;11(1):7468–92.

    Google Scholar 

  224. D’Onofrio G, Nabavi SM, Sancarlo D, Greco A, Pieretti S, Crocus sativus L. (Saffron) in Alzheimer’s disease treatment: bioactive effects on cognitive impairment. Curr Neuropharmacol. 2021;19(9):1606.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397(10291):2284–303.

    Article  PubMed  Google Scholar 

  226. Johnson ME, Stecher B, Labrie V, Brundin L, Brundin P. Triggers, facilitators, and aggravators: redefining Parkinson’s disease pathogenesis. Trends Neurosci. 2019;42(1):4–13.

    Article  PubMed  Google Scholar 

  227. Maiti P, Manna J, Dunbar GL. Current understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. Transl Neurodegener. 2017;6:1–35.

    Article  Google Scholar 

  228. Liu Y, Zhang RY, Zhao J, Dong Z, Feng DY, Wu R, et al. Ginsenoside Rd protects SH-SY5Y cells against 1-methyl-4-phenylpyridinium induced injury. Int J Mol Sci. 2015;16(7):14395–408.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Zhou T, Zu G, Zhang X, Wang X, Li S, Gong X, et al. Neuroprotective effects of ginsenoside Rg1 through the Wnt/β-catenin signaling pathway in both in vivo and in vitro models of Parkinson’s disease. Neuropharmacology. 2016;101:480–9.

    Article  PubMed  Google Scholar 

  230. Zhang J, Wu C, Gao L, Du G, Qin X. Astragaloside IV derived from Astragalus membranaceus: a research review on the pharmacological effects. Adv Pharmacol. 2020;87:89–112.

    Article  PubMed  Google Scholar 

  231. Xu Z, Yang D, Huang X, Huang H. Astragaloside IV protects 6-hydroxydopamine-induced SH-SY5Y cell model of Parkinson’s disease via activating the JAK2/STAT3 pathway. Front Neurosci. 2021;15:631501.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukne, A., Dangat, S., Shirodkar, P., Sawate, K. (2023). Herbs for Autoimmune Diseases. In: Dhara, A.K., Mandal, S.C. (eds) Role of Herbal Medicines . Springer, Singapore. https://doi.org/10.1007/978-981-99-7703-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7703-1_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7702-4

  • Online ISBN: 978-981-99-7703-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics