Skip to main content

Review of Three-Dimensional Reconstruction Based on Hyperspectral Imaging

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1033))

  • 125 Accesses

Abstract

In the past few decades, with the continuous progress in devices and research, both hyperspectral imaging technology and three-dimensional reconstruction techniques have made significant advancements. In recent years, three-dimensional reconstruction based on hyperspectral imaging has shown remarkable results. Unlike traditional three-dimensional reconstruction techniques based on RGB images that only capture the geometric information of the target object, the spectral diversity provided by hyperspectral images allows for the reconstruction of three-dimensional models with higher accuracy and better visual effects. Consequently, an increasing number of researchers have started to explore the field of three-dimensional reconstruction based on hyperspectral imaging. This article provides a comprehensive review of the specific steps involved in three-dimensional reconstruction based on hyperspectral imaging, including traditional algorithms used in the reconstruction process. Furthermore, it introduces the latest research on implementing three-dimensional reconstruction of hyperspectral images with the assistance of deep learning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duan P, Hu S, Kang X et al (2022) Shadow removal of hyperspectral remote sensing images with multiexposure fusion. IEEE Trans Geosci Remote Sens 60:1–11

    Google Scholar 

  2. Zhang L, Jin J, Wang L et al (2023) Elimination of leaf angle impacts on plant reflectance spectra using fusion of hyperspectral images and 3D point clouds. Sensors 23(1):44

    Article  Google Scholar 

  3. Xue Q, Li H, Lu F et al (2022) Underwater hyperspectral imaging system for deep-sea exploration. Front Phys 10:1096

    Article  Google Scholar 

  4. Pu C, Huang H, Luo L (2021) Classfication of hyperspectral image with attention mechanism-based dual-path convolutional network. IEEE Geosci Remote Sens Lett 19:1–5

    Google Scholar 

  5. Pereira JFQ, Pimentel MF, Honorato RS et al (2021) Hierarchical method and hyperspectral images for classification of blood stains on colored and printed fabrics. Chemom Intell Lab Syst 210:104253

    Article  Google Scholar 

  6. Yoon J (2022) Hyperspectral imaging for clinical applications. BioChip J 16(1):1–12

    Article  Google Scholar 

  7. Nieto JI, Monteiro ST, Viejo D (2010) 3D geological modelling using laser and hyperspectral data. In: 2010 IEEE international geoscience and remote sensing symposium, pp 4568–4571. IEEE

    Google Scholar 

  8. Liang J, Zia A, Zhou J et al (2013) 3D plant modelling via hyperspectral imaging. In: Proceedings of the IEEE international conference on computer vision workshops, pp 172–177

    Google Scholar 

  9. Zia A, Liang J, Zhou J et al (2015) 3D reconstruction from hyperspectral images. In: 2015 IEEE winter conference on applications of computer vision, pp 318–325. IEEE

    Google Scholar 

  10. Ma T, Xing Y, Gong D et al (2022) A deep learning-based hyperspectral keypoint representation method and its application for 3D reconstruction. IEEE Access 10:85266–85277

    Article  Google Scholar 

  11. Boardman JW (1989) Inversion of imaging spectrometry data using singular value decomposition. In: 12th Canadian symposium on remote sensing geoscience and remote sensing symposium, vol 4, pp 2069–2072. IEEE

    Google Scholar 

  12. Goetz AFH, Vane G, Solomon JE et al (1985) Imaging spectrometry for earth remote sensing. Science 228(4704):1147–1153

    Google Scholar 

  13. Clark RN, King TVV, Klejwa M et al (1990) High spectral resolution reflectance spectroscopy of minerals. J Geophys Res: Solid Earth 95(B8):12653–12680

    Article  Google Scholar 

  14. Curran PJ (1994) Imaging spectrometry. Prog Phys Geogr 18(2):247–266

    Article  MathSciNet  Google Scholar 

  15. Wehr A, Lohr U (1999) Airborne laser scanning—an introduction and overview. ISPRS J Photogramm Remote Sens 54(2–3):68–82

    Article  Google Scholar 

  16. Mouroulis P, Green RO, Chrien TG (2000) Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. Appl Opt 39(13):2210–2220

    Article  Google Scholar 

  17. Hill B (2002) The history of multispectral imaging at Aachen university of technology. Spect Vision 2–8

    Google Scholar 

  18. Shogenji R, Kitamura Y, Yamada K et al (2004) Multispectral imaging using compact compound optics. Opt Express 12(8):1643–1655

    Article  Google Scholar 

  19. Sima A, Livens S, Dierckx W et al (2014) Spatially variable filters—expanding the spectral dimension of compact cameras for remotely piloted aircraft systems. In: 2014 IEEE geoscience and remote sensing symposium, pp 1983–1986. IEEE

    Google Scholar 

  20. Hirai A, Inoue T, Itoh K et al (1994) Application of measurement multiple-image fourier of fast phenomena transform spectral imaging to measurement of fast phenomena. Opt Rev 1:205–207

    Article  Google Scholar 

  21. Brady DJ, Gehm ME (2006) Compressive imaging spectrometers using coded apertures. Visual Inf Process XV SPIE 6246:80–88

    Google Scholar 

  22. Tao CN (2021) Research on spectral imaging system and reconstruction algorithm based on compression sensing. Zhejiang Univ. https://doi.org/10.27461/d.cnki.gzjdx.2021.000545

    Article  Google Scholar 

  23. Bao J, Bawendi MG (2015) A colloidal quantum dot spectrometer. Nature 523(7558):67–70

    Article  Google Scholar 

  24. Guan H, Niu H (2022) Feature extraction of foul action of football players based on machine vision. Mob Inf Syst

    Google Scholar 

  25. Carpenter HJ, Ghayesh MH, Zander AC et al (2022) Automated coronary optical coherence tomography feature extraction with application to three-dimensional reconstruction. Tomography 8(3):1307–1349

    Article  Google Scholar 

  26. Harris C, Stephens M (1988) A combined corner and edge detector. In: Alvey vision conference, vol 15, no 50, pp 10–5244

    Google Scholar 

  27. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60:91–110

    Article  Google Scholar 

  28. Mehta T, Bhensdadia C (2019) Adaptive near duplicate image retrieval using SURF and CNN features. Int J Intell Eng Syst 12(5):104–115

    Google Scholar 

  29. Abdel-Hakim AE, Farag AA (2006) CSIFT: a SIFT descriptor with color invariant characteristics. In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06), vol 2, pp 1978–1983. IEEE

    Google Scholar 

  30. Guiqin Y, Chang X, Jiang Z (2019) A fast aerial images mosaic method based on ORB feature and homography matrix. In: 2019 International conference on computer, information and telecommunication systems (CITS), pp 1–5. IEEE

    Google Scholar 

  31. Guoshen D, Yanli Q, Weining Y (2021) Feature extraction and matching of F-SIFT based on spectral image space. Opt Precis Eng 29(5):1180–1189

    Article  Google Scholar 

  32. Yi KM, Trulls E, Lepetit V et al (2016) Lift: Learned invariant feature transform. In: Computer vision–ECCV 2016: 14th European conference, Amsterdam, the Netherlands, October 11-14, 2016, proceedings, Part VI 14, pp 467–483. Springer International Publishing

    Google Scholar 

  33. Song Y, Cai L, Li J et al (2020) SEKD: self-evolving keypoint detection and description. arXiv preprint arXiv:2006.05077

  34. DeTone D, Malisiewicz T, Rabinovich A (2018) Superpoint: Self-supervised interest point detection and description. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 224–236

    Google Scholar 

  35. Marr D, Poggio T (1979) A computational theory of human stereo vision. In: Proceedings of the royal society of London. Series B. biological sciences 204(1156):301–328

    Google Scholar 

  36. Li W, Wang S, Xie W et al (2023) Large scale medical image online three-dimensional reconstruction based on WebGL using four tier client server architecture. Inf Vis 22(2):100–114

    Article  Google Scholar 

  37. Sampaio GS, Silva LA, Marengoni M (2021) 3D reconstruction of non-rigid plants and sensor data fusion for agriculture phenotyping. Sensors 21(12):4115

    Article  Google Scholar 

  38. Zhang D, Xu F, Pun CM et al (2021) Virtual reality aided high-quality 3D reconstruction by remote drones. ACM Trans Internet Tech (TOIT) 22(1):1–20

    Article  Google Scholar 

  39. Abdelazeem M, Elamin A, Afifi A et al (2021) Multi-sensor point cloud data fusion for precise 3D mapping. Egyptian J Remote Sens Space Sci 24(3):835–844

    Google Scholar 

  40. Mada SK, Smith ML, Smith LN et al (2003) Overview of passive and active vision techniques for hand-held 3D data acquisition opto-Ireland 2002: optical metrology, imaging, and machine vision. SPIE 4877:16–27

    Google Scholar 

  41. Özyeşil O, Voroninski V, Basri R et al (2017) A survey of structure from motion. Acta Numer 26:305–364

    Article  MathSciNet  Google Scholar 

  42. Deliry SI, Avdan U (2021) Accuracy of unmanned aerial systems photogrammetry and structure from motion in surveying and mapping: a review. J Indian Soc Remote Sens 49(8):1997–2017

    Article  Google Scholar 

  43. Pepe M, Alfio VS, Costantino D (2022) UAV platforms and the SfM-MVS approach in the 3D surveys and modelling: a review in the cultural heritage field. Appl Sci 12(24):12886

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (62001328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, L., Zou, R., Sun, C., Dong, X., Ding, X., Che, G. (2024). Review of Three-Dimensional Reconstruction Based on Hyperspectral Imaging. In: Wang, W., Liu, X., Na, Z., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2023. Lecture Notes in Electrical Engineering, vol 1033. Springer, Singapore. https://doi.org/10.1007/978-981-99-7502-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7502-0_51

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7555-6

  • Online ISBN: 978-981-99-7502-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics