Skip to main content
Log in

Accuracy of Unmanned Aerial Systems Photogrammetry and Structure from Motion in Surveying and Mapping: A Review

  • Review Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Highly detailed topographic surveying at minimal cost and effort has always been one of the developing areas of scientific interest. Image-based remote sensing solutions using unmanned aerial systems (UAS) and structure from motion (SfM) with multi-view stereo (MVS) photogrammetry are the latest automation and advancement in surveying engineering that provides high-resolution topographic data. Although recent developments have led to the extensive use of UAS–SfM in mapping applications, the only concern that remains is the UAS-based survey accuracy; is this method accurate enough to be used in surveying and mapping applications as an alternative to conventional methods? Evaluation of accuracy and validation of products before they can be applied to a real-world problem is a prerequisite for any emerging technology. Recently, there has been a proliferation of accuracy assessment and validation studies of UAS–SfM-based surveying. However, quantitative validation studies are slightly different, and the accuracy of each study is significantly different from another. The true limits of this technique can only be revealed by assembling a large dataset from previous individual studies. This study was motivated by the lack of such quantitative analysis. This study gives an overview of UAS and SfM, discusses the major factors that influence the accuracy, and presents a synthesis of the recent validation studies conducted quantitative assessments of UAS–SfM-derived digital elevation datasets, and thereby demonstrates the accuracy and limitation of UAS–SfM -based topographic surveying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aasen, H., Honkavaara, E., Lucieer, A., & Zarco-Tejada, P. J. (2018). Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correction workflows. Remote Sensing, 10(7), 1091.

    Article  Google Scholar 

  • Abu Sari, M. Y., Ahmad, A., Dollah, R., Rasib, A. W., Ali, H. M., Yusoff, A. R. M., et al. (2018). 3D mapping based-on integration of UAV platform and ground surveying. International Journal of Advanced Computer Science and Applications, 9(12), 160–168.

    Google Scholar 

  • Adamopoulos, E., & Rinaudo, F. (2020). UAS-based archaeological remote sensing: Review, meta-analysis and state-of-the-art. Drones, 4(3), 46.

    Article  Google Scholar 

  • Agisoft, L. L. C. (2018). PhotoScan user manual, professional edition, version 1.4. https://www.agisoft.com/pdf/photoscan-pro_1_4_en.pdf. Accessed 1 Oct 2018.

  • Agüera-Vega, F., Carvajal-Ramírez, F., & Martínez-Carricondo, P. (2016). Accuracy of digital surface models and orthophotos derived from unmanned aerial vehicle photogrammetry. Journal of Surveying Engineering, 143(2), 04016025.

    Article  Google Scholar 

  • Agüera-Vega, F., Carvajal-Ramírez, F., Martínez-Carricondo, P., López, J.S.-H., Mesas-Carrascosa, F. J., García-Ferrer, A., & Pérez-Porras, F. J. (2018). Reconstruction of extreme topography from UAV structure from motion photogrammetry. Measurement, 121, 127–138.

    Article  Google Scholar 

  • Ajayi, O. G., Salubi, A. A., Angbas, A. F., & Odigure, M. G. (2017). Generation of accurate digital elevation models from UAV acquired low percentage overlapping images. International journal of remote sensing, 38(8–10), 3113–3134.

    Article  Google Scholar 

  • Alidoost, F., & Arefi, H. (2017). Comparison of UAS-based photogrammetry software for 3d point cloud generation: A survey over a historical site. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, IV- 4/W4, 55–61. https://doi.org/10.5194/isprs-annals-IV-4-W4-55-2017.

  • ASCE. (2018). Policy Statement 333—Engineering surveying definition. Retrieved December 24, 2018, from https://www.asce.org/issues-and-advocacy/public-policy/policy-statement-333---engineering-surveying-definition/

  • ASPRS, (American Society for Photogrammetry and Remote Sensing). (1990). ASPRS accuracy standards for large-scale maps. Photogrammetric Engineering and Remote Sensing, 56(7), 1068–1070.

    Google Scholar 

  • ASPRS, (American Society for Photogrammetry and Remote Sensing). (2014). ASPRS positional accuracy standards for digital geospatial data. https://doi.org/10.14358/PERS.81.3.A1-A26

  • Avanzi, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Pagliari, D., et al. (2018). Centimetric accuracy in snow depth using unmanned aerial system photogrammetry and a multistation. Remote Sensing, 10(5), 765.

    Article  Google Scholar 

  • Benassi, F., Dall’Asta, E., Diotri, F., Forlani, G., Morra di Cella, U., Roncella, R., & Santise, M. (2017). Testing accuracy and repeatability of UAV blocks oriented with GNSS-supported aerial triangulation. Remote Sensing, 9(2), 172.

    Article  Google Scholar 

  • Bhardwaj, A., Sam, L., Martín-Torres, F. J., & Kumar, R. (2016). UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote sensing of environment, 175, 196–204.

    Article  Google Scholar 

  • Birdal, A. C., Avdan, U., & Türk, T. (2017). Estimating tree heights with images from an unmanned aerial vehicle. Geomatics, Natural Hazards and Risk, 8(2), 1144–1156.

    Article  Google Scholar 

  • Bühler, Y., Adams, M. S., Bösch, R., & Stoffel, A. (2016). Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): Potential and limitations. The Cryosphere, 10(3), 1075–1088.

    Article  Google Scholar 

  • Caroti, G., Martínez-Espejo Zaragoza, I., & Piemonte, A. (2015). Accuracy assessment in structure from motion 3D reconstruction from UAV-born images: The influence of the data processing methods. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 40(1), 103–109, https://doi.org/10.5194/isprsarchives-XL-1-W4-103-2015..

    Article  Google Scholar 

  • Carrera-Hernández, J. J., Levresse, G., & Lacan, P. (2020). Is UAV-SfM surveying ready to replace traditional surveying techniques? International Journal of Remote Sensing, 41(12), 4820–4837.

    Article  Google Scholar 

  • Carrivick, J. L., Smith, M. W., & Quincey, D. J. (2016). Structure from motion in the geosciences. . Wiley.

    Book  Google Scholar 

  • Chiabrando, F., Nex, F., Piatti, D., & Rinaudo, F. (2011). UAV and RPV systems for photogrammetric surveys in archaelogical areas: Two tests in the Piedmont region (Italy). Journal of Archaeological Science, 38(3), 697–710.

    Article  Google Scholar 

  • Cir, I. C. A. O. (2011). 328, unmanned aircraft systems (UAS). International Civil Aviation Organization.

  • Clapuyt, F., Vanacker, V., & Van Oost, K. (2016). Reproducibility of UAV-based earth topography reconstructions based on structure-from-motion algorithms. Geomorphology, 260, 4–15.

    Article  Google Scholar 

  • Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79–97.

    Article  Google Scholar 

  • Cook, K. L. (2017). An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, 278, 195–208.

    Article  Google Scholar 

  • Coveney, S., & Roberts, K. (2017). Lightweight UAV digital elevation models and orthoimagery for environmental applications: Data accuracy evaluation and potential for river flood risk modelling. International Journal of Remote Sensing, 38(8–10), 3159–3180.

    Article  Google Scholar 

  • Cryderman, C., Mah, S. B., & Shufletoski, A. (2014). Evaluation of UAV photogrammetric accuracy for mapping and earthworks computations. Geomatica, 68(4), 309–317.

    Article  Google Scholar 

  • Dandois, J., Olano, M., & Ellis, E. (2015). Optimal altitude, overlap, and weather conditions for computer vision UAV estimates of forest structure. Remote Sensing, 7(10), 13895–13920.

    Article  Google Scholar 

  • Dronezon. (2020). DroneZon—Drones, drone technology, knowledge, news & reviews. DroneZon. Retrieved March 4, 2020, from https://www.dronezon.com/

  • Duarte, D., Nex, F., Kerle, N., & Vosselman, G. (2017). Towards a more efficient detection of earthquake induced facade damages using oblique UAV imagery. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 93.

    Article  Google Scholar 

  • Eisenbeiß, H. (2009). UAV photogrammetry (Doctoral dissertation, ETH Zurich). ETH Zurich, Zurich.

  • El Meouche, R., Hijazi, I., Poncet, P. A., Abunemeh, M., & Rezoug, M. (2016). UAV photogrammetry implementation to enhance land surveying, comparisons and possibilities. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W2, 107–114, https://doi.org/10.5194/isprs-archives-XLII-2-W2-107-2016.

    Article  Google Scholar 

  • Eltner, A., Baumgart, P., Maas, H.-G., & Faust, D. (2015). Multi-temporal UAV data for automatic measurement of rill and interrill erosion on loess soil. Earth Surface Processes and Landforms, 40(6), 741–755.

    Article  Google Scholar 

  • Fahlstrom, P., & Gleason, T. (2012). Introduction to UAV systems. Wiley.

    Google Scholar 

  • Fernandez Galarreta, J., Kerle, N., & Gerke, M. (2015). UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning. Natural hazards and earth system sciences, 15(6), 1087–1101.

    Article  Google Scholar 

  • Fernández, T., Pérez, J., Cardenal, J., Gómez, J., Colomo, C., & Delgado, J. (2016). Analysis of landslide evolution affecting olive groves using UAV and photogrammetric techniques. Remote Sensing, 8(10), 837.

    Article  Google Scholar 

  • Forsmoo, J., Anderson, K., Macleod, C. J., Wilkinson, M. E., DeBell, L., & Brazier, R. E. (2019). Structure from motion photogrammetry in ecology: Does the choice of software matter? Ecology and Evolution, 9(23), 12964–12979.

    Article  Google Scholar 

  • Furukawa, Y., & Ponce, J. (2009). Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 1362–1376.

    Article  Google Scholar 

  • Gabrlik, P., la Cour-Harbo, A., Kalvodova, P., Zalud, L., & Janata, P. (2018). Calibration and accuracy assessment in a direct georeferencing system for UAS photogrammetry. International Journal of Remote Sensing, 39(15–16), 4931–4959.

    Article  Google Scholar 

  • Gaffey, C., & Bhardwaj, A. (2020). Applications of unmanned aerial vehicles in cryosphere: Latest advances and prospects. Remote Sensing, 12(6), 948.

    Article  Google Scholar 

  • Gerke, M., & Przybilla, H.-J. (2016). Accuracy analysis of photogrammetric UAV image blocks: Influence of onboard RTK-GNSS and cross flight patterns. Photogrammetrie-Fernerkundung-Geoinformation, 2016(1), 17–30.

    Article  Google Scholar 

  • Gindraux, S., Boesch, R., & Farinotti, D. (2017). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on glaciers. Remote Sensing, 9(2), 186.

    Article  Google Scholar 

  • Godone, D., Allasia, P., Borrelli, L., & Gullà, G. (2020). UAV and structure from motion approach to monitor the maierato landslide evolution. Remote Sensing, 12(6), 1039.

    Article  Google Scholar 

  • Gómez-Gutiérrez, Á., de Sanjosé-Blasco, J., Lozano-Parra, J., Berenguer-Sempere, F., & de Matías-Bejarano, J. (2015). Does HDR pre-processing improve the accuracy of 3D models obtained by means of two conventional SfM–MVS software packages? The case of the Corral del Veleta rock glacier. Remote Sensing, 7(8), 10269–10294.

    Article  Google Scholar 

  • Gonçalves, J. A., & Henriques, R. (2015). UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 101–111.

    Article  Google Scholar 

  • Govender, N. (2009). Evaluation of feature detection algorithms for structure from motion.

  • Granshaw, S. I. (1980). Bundle adjustment methods in engineering photogrammetry. The Photogrammetric Record, 10(56), 181–207.

    Article  Google Scholar 

  • Greenwood, W. W., Lynch, J. P., & Zekkos, D. (2019). Applications of UAVs in Civil Infrastructure. Journal of Infrastructure Systems, 25(2), 04019002.

    Article  Google Scholar 

  • Harwin, S., & Lucieer, A. (2012). Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sensing, 4(6), 1573–1599.

    Article  Google Scholar 

  • He, F., Zhou, T., Xiong, W., Hasheminnasab, S., & Habib, A. (2018). Automated aerial triangulation for UAV-based mapping. Remote Sensing, 10(12), 1952.

    Article  Google Scholar 

  • Hill, A. C. (2019). Economical drone mapping for archaeology: Comparisons of efficiency and accuracy. Journal of Archaeological Science: Reports, 24, 80–91.

    Google Scholar 

  • Hugenholtz, C., Brown, O., Walker, J., Barchyn, T., Nesbit, P., Kucharczyk, M., & Myshak, S. (2016). Spatial accuracy of UAV-derived orthoimagery and topography: Comparing photogrammetric models processed with direct geo-referencing and ground control points. Geomatica, 70(1), 21–30.

    Article  Google Scholar 

  • Hugenholtz, C. H., Walker, J., Brown, O., & Myshak, S. (2014). Earthwork volumetrics with an unmanned aerial vehicle and softcopy photogrammetry. Journal of Surveying Engineering, 141(1), 06014003.

    Article  Google Scholar 

  • Jain, K. (2020). How photogrammetric software works: A perspective based on UAV’s exterior orientation parameters. Journal of the Indian Society of Remote Sensing, 49, 641–649. https://doi.org/10.1007/s12524-020-01256-8.

    Article  Google Scholar 

  • James, M. R., Robson, S., d’Oleire-Oltmanns, S., & Niethammer, U. (2017). Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology, 280, 51–66.

    Article  Google Scholar 

  • Jaud, M., Passot, S., Le Bivic, R., Delacourt, C., Grandjean, P., & Le Dantec, N. (2016). Assessing the accuracy of high resolution digital surface models computed by PhotoScan® and MicMac® in sub-optimal survey conditions. Remote Sensing, 8(6), 465.

    Article  Google Scholar 

  • Jeziorska, J. (2019). UAS for wetland mapping and hydrological modeling. Remote Sensing, 11(17), 1997.

    Article  Google Scholar 

  • Jiang, S., Jiang, C., & Jiang, W. (2020). Efficient structure from motion for large-scale UAV images: A review and a comparison of SfM tools. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 230–251.

    Article  Google Scholar 

  • Jiang, S., Jiang, W., Huang, W., & Yang, L. (2017). UAV-based oblique photogrammetry for outdoor data acquisition and offsite visual inspection of transmission line. Remote Sensing, 9(3), 278.

    Article  Google Scholar 

  • Kerle, N., Nex, F., Gerke, M., Duarte, D., & Vetrivel, A. (2020). UAV-based structural damage mapping: A review. ISPRS International Journal of Geo-Information, 9(1), 14.

    Article  Google Scholar 

  • Kim, D.-W., Yun, H., Jeong, S.-J., Kwon, Y.-S., Kim, S.-G., Lee, W., & Kim, H.-J. (2018). Modeling and testing of growth status for Chinese cabbage and white radish with UAV-based RGB imagery. Remote Sensing, 10(4), 563.

    Article  Google Scholar 

  • Kinzel, P. J., Wright, C. W., Nelson, J. M., & Burman, A. R. (2007). Evaluation of an experimental LiDAR for surveying a shallow, braided, sand-bedded river. Journal of Hydraulic Engineering, 133(7), 838–842.

    Article  Google Scholar 

  • Koci, J., Jarihani, B., Leon, J. X., Sidle, R., Wilkinson, S., & Bartley, R. (2017). Assessment of UAV and ground-based structure from motion with multi-view stereo photogrammetry in a gullied savanna catchment. ISPRS International Journal of Geo-Information, 6(11), 328.

    Article  Google Scholar 

  • Kršák, B., Blišťan, P., Pauliková, A., Puškárová, P., Kovanič, Ľ, Palková, J., & Zelizňaková, V. (2016). Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study. Measurement, 91, 276–287.

    Article  Google Scholar 

  • Laporte-Fauret, Q., Marieu, V., Castelle, B., Michalet, R., Bujan, S., & Rosebery, D. (2019). Low-cost UAV for high-resolution and large-scale coastal dune change monitoring using photogrammetry. Journal of Marine Science and Engineering, 7(3), 63.

    Article  Google Scholar 

  • Liu, P., Chen, A. Y., Huang, Y.-N., Han, J.-Y., Lai, J.-S., Kang, S.-C., et al. (2014). A review of rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering. Smart Structures and Systems, 13(6), 1065–1094.

    Article  Google Scholar 

  • Lizarazo, I., Angulo, V., & Rodríguez, J. (2017). Automatic mapping of land surface elevation changes from UAV-based imagery. International Journal of Remote Sensing, 38(8–10), 2603–2622.

    Article  Google Scholar 

  • Long, N., Millescamps, B., Pouget, F., Dumon, A., Lachaussée, N., & Bertin, X. (2016). Accuracy assessment of coastal topography derived from UAV images. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 1127.

    Article  Google Scholar 

  • Lowe, D. G. (1999). Object recognition from local scale-invariant features. In ICCV (Vol. 99, pp. 1150–1157).

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Lucieer, A., de Jong, S. M., & Turner, D. (2014). Mapping landslide displacements using structure from motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 38(1), 97–116.

    Article  Google Scholar 

  • Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., & Gabbianelli, G. (2013). Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sensing, 5(12), 6880–6898.

    Article  Google Scholar 

  • Martínez-Carricondo, P., Agüera-Vega, F., Carvajal-Ramírez, F., Mesas-Carrascosa, F.-J., García-Ferrer, A., & Pérez-Porras, F.-J. (2018). Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International Journal of Applied Earth Observation and Geoinformation, 72, 1–10.

    Article  Google Scholar 

  • Martínez-Espejo Zaragoza, I., Caroti, G., Piemonte, A., Riedel, B., Tengen, D., & Niemeier, W. (2017). Structure from motion (SfM) processing of UAV images and combination with terrestrial laser scanning, applied for a 3D-documentation in a hazardous situation. Geomatics, Natural Hazards and Risk, 8(2), 1492–1504.

    Article  Google Scholar 

  • Mateos, R. M., Azañón, J. M., Roldán, F. J., Notti, D., Pérez-Peña, V., Galve, J. P., et al. (2017). The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain). Landslides, 14(2), 743–754.

    Article  Google Scholar 

  • Mesas-Carrascosa, F.-J., Notario García, M., Meroño de Larriva, J., & García-Ferrer, A. (2016). An analysis of the influence of flight parameters in the generation of unmanned aerial vehicle (UAV) orthomosaicks to survey archaeological areas. Sensors, 16(11), 1838.

    Article  Google Scholar 

  • Michelleti, N., Chandler, J. H., & Lane, S. N. (2015). Structure from motion (SFM) photogrammetry. Geomorphol Techniques

  • Mölg, N., & Bolch, T. (2017). Structure-from-motion using historical aerial images to analyse changes in glacier surface elevation. Remote Sensing, 9(10), 1021.

    Article  Google Scholar 

  • Murtiyoso, A., & Grussenmeyer, P. (2017). Documentation of heritage buildings using close-range UAV images: Dense matching issues, comparison and case studies. The Photogrammetric Record, 32(159), 206–229.

    Article  Google Scholar 

  • Nesbit, P. R., & Hugenholtz, C. H. (2019). Enhancing UAV–SfM 3D model accuracy in high-relief landscapes by incorporating oblique images. Remote Sensing, 11(3), 239.

    Article  Google Scholar 

  • Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1), 1–15.

    Article  Google Scholar 

  • Nikolakopoulos, K. G., Soura, K., Koukouvelas, I. K., & Argyropoulos, N. G. (2017). UAV vs classical aerial photogrammetry for archaeological studies. Journal of Archaeological Science: Reports, 14, 758–773.

    Google Scholar 

  • Oniga, V.-E., Breaban, A.-I., Pfeifer, N., & Chirila, C. (2020). Determining the suitable number of ground control points for UAS images georeferencing by varying number and spatial distribution. Remote Sensing, 12(5), 876.

    Article  Google Scholar 

  • Oniga, V.-E., Breaban, A.-I., & Statescu, F. (2018). Determining the optimum number of ground control points for obtaining high precision results based on UAS images. In multidisciplinary digital publishing institute proceedings (Vol. 2, p. 352).

  • Ostrowski, W. (2016). Accuracy of measurements in oblique aerial images for urban environment. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W2, 79–85. https://doi.org/10.5194/isprs-archives-XLII-2-W2-79-2016.

    Article  Google Scholar 

  • Ouédraogo, M. M., Degré, A., Debouche, C., & Lisein, J. (2014). The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds. Geomorphology, 214, 339–355.

    Article  Google Scholar 

  • Pajares, G. (2015). Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering & Remote Sensing, 81(4), 281–330.

    Article  Google Scholar 

  • Pérez, M., Agüera, F., & Carvajal, F. (2013). Low cost surveying using an unmanned aerial vehicle. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 311–315.

    Article  Google Scholar 

  • Pix4D, S. A. (2017). Pix4Dmapper 4.1 user manual. Pix4D SA: Lausanne, Switzerland.

  • Raeva, P. L., Filipova, S. L., & Filipov, D. G. (2016). Volume computation of a stockpile-a study case comparing GPS and UAV measurements in an open pit quarry. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLI-B1, 999–1004. https://doi.org/10.5194/isprs-archives-XLI-B1-999-2016.

  • Rehak, M., & Skaloud, J. (2015). Fixed-wing micro aerial vehicle for accurate corridor mapping. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, II-1/W1, 23–31. https://doi.org/10.5194/isprsannals-II-1-W1-23-2015.

  • Reshetyuk, Y., & Mårtensson, S.-G. (2016). Generation of highly accurate digital elevation models with unmanned aerial vehicles. The Photogrammetric Record, 31(154), 143–165.

    Article  Google Scholar 

  • Rokhmana, C. A. (2015). The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia. Procedia Environmental Sciences, 24, 245–253.

    Article  Google Scholar 

  • Roze, A., Zufferey, J. C., Beyeler, A., & McClellan, A. (2014). eBee RTK accuracy assessment, Lausanne, Switzerland.

  • Ruiz, J. J., Diaz-Mas, L., Perez, F., & Viguria, A. (2013). Evaluating the accuracy of DEM generation algorithms from UAV imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 333–337.

    Article  Google Scholar 

  • Rusnák, M., Sládek, J., Kidová, A., & Lehotský, M. (2018). Template for high-resolution river landscape mapping using UAV technology. Measurement, 115, 139–151.

    Article  Google Scholar 

  • Ruzgienė, B., Berteška, T., Gečyte, S., Jakubauskienė, E., & Aksamitauskas, V. Č. (2015). The surface modelling based on UAV Photogrammetry and qualitative estimation. Measurement, 73, 619–627.

    Article  Google Scholar 

  • Salach, A., Bakuła, K., Pilarska, M., Ostrowski, W., Górski, K., & Kurczyński, Z. (2018). Accuracy assessment of point clouds from LidaR and dense image matching acquired using the UAV platform for DTM creation. ISPRS International Journal of Geo-Information, 7(9), 342.

    Article  Google Scholar 

  • Sanz-Ablanedo, E., Chandler, J., Rodríguez-Pérez, J., & Ordóñez, C. (2018). Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. Remote Sensing, 10(10), 1606.

    Article  Google Scholar 

  • Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) (Vol. 1, pp. 519–528). IEEE.

  • Sensefly. (2020). eBee Plus-senseFly. Retrieved March 4, 2020, from https://www.sensefly.com/drone/ebee-x-fixed-wing-drone/

  • Serifoglu Yilmaz, C., Yilmaz, V., & Güngör, O. (2018). Investigating the performances of commercial and non-commercial software for ground filtering of UAV-based point clouds. International Journal of Remote Sensing, 39(15–16), 5016–5042.

    Article  Google Scholar 

  • Siebert, S., & Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system. Automation in Construction, 41, 1–14.

    Article  Google Scholar 

  • Singh, K. K., & Frazier, A. E. (2018). A meta-analysis and review of unmanned aircraft system (UAS) imagery for terrestrial applications. International Journal of Remote Sensing, 39(15–16), 5078–5098.

    Article  Google Scholar 

  • Smith, M. W., Carrivick, J. L., & Quincey, D. J. (2016). Structure from motion photogrammetry in physical geography. Progress in Physical Geography, 40(2), 247–275.

    Article  Google Scholar 

  • Smith, M. W., & Vericat, D. (2015). From experimental plots to experimental landscapes: Topography, erosion and deposition in sub-humid badlands from structure-from-motion photogrammetry. Earth Surface Processes and Landforms, 40(12), 1656–1671.

    Article  Google Scholar 

  • Snavely, N., Seitz, S. M., & Szeliski, R. (2006). Photo tourism: Exploring photo collections in 3D. In ACM transactions on graphics (TOG) (Vol. 25, pp. 835–846). ACM.

  • Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the world from internet photo collections. International Journal of Computer Vision, 80(2), 189–210.

    Article  Google Scholar 

  • Sona, G., Pinto, L., Pagliari, D., Passoni, D., & Gini, R. (2014). Experimental analysis of different software packages for orientation and digital surface modelling from UAV images. Earth Science Informatics, 7(2), 97–107.

    Article  Google Scholar 

  • Stalin, J. L., & Gnanaprakasam, R. C. P. (2020). Application of unmanned aerial vehicle for mapping and modeling of Indian mines. Journal of the Indian Society of Remote Sensing, 48(6), 841–852.

    Article  Google Scholar 

  • Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the current state of UAV regulations. Remote Sensing, 9(5), 459.

    Article  Google Scholar 

  • Tahar, K. N., & Ahmad, A. (2013). An evaluation on fixed wing and multi-rotor UAV images using photogrammetric image processing. International Journal of Computer and Information Engineering, 7, 48–52.

    Google Scholar 

  • Teza, G., Pesci, A., & Ninfo, A. (2016). Morphological analysis for architectural applications: Comparison between laser scanning and structure-from-motion photogrammetry. Journal of Surveying Engineering, 142(3), 04016004.

    Article  Google Scholar 

  • Tmušić, G., Manfreda, S., Aasen, H., James, M. R., Gonçalves, G., Ben-Dor, E., et al. (2020). Current practices in UAS-based environmental monitoring. Remote Sensing, 12(6), 1001.

    Article  Google Scholar 

  • Tomaštík, J., Mokroš, M., Saloň, Š, Chudý, F., & Tunák, D. (2017). Accuracy of photogrammetric UAV-based point clouds under conditions of partially-open forest canopy. Forests, 8(5), 151.

    Article  Google Scholar 

  • Tonkin, T., & Midgley, N. (2016). Ground-control networks for image based surface reconstruction: An investigation of optimum survey designs using UAV derived imagery and structure-from-motion photogrammetry. Remote Sensing, 8(9), 786.

    Article  Google Scholar 

  • Tonkin, T. N., Midgley, N. G., Graham, D. J., & Labadz, J. C. (2014). The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys: A test of emerging integrated approaches at Cwm Idwal, North Wales. Geomorphology, 226, 35–43.

    Article  Google Scholar 

  • Torresan, C., Berton, A., Carotenuto, F., Di Gennaro, S. F., Gioli, B., Matese, A., et al. (2017). Forestry applications of UAVs in Europe: A review. International Journal of Remote Sensing, 38(8–10), 2427–2447.

    Article  Google Scholar 

  • Toth, C., & Jóźków, G. (2016). Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 22–36.

    Article  Google Scholar 

  • Triggs, B., McLauchlan, P. F., Hartley, R. I., & Fitzgibbon, A. W. (1999). Bundle adjustment—a modern synthesis. In International workshop on vision algorithms (pp. 298–372). Springer.

  • Tucci, G., Gebbia, A., Conti, A., Fiorini, L., & Lubello, C. (2019). Monitoring and Computation of the Volumes of Stockpiles of Bulk Material by Means of UAV Photogrammetric Surveying. Remote Sensing, 11(12), 1471.

    Article  Google Scholar 

  • Tziavou, O., Pytharouli, S., & Souter, J. (2018). Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys: Considerations for optimum results. Engineering Geology, 232, 12–21.

    Article  Google Scholar 

  • Ullman, S. (1979). The interpretation of visual motion. Massachusetts Inst of Technology Pr.

  • Vacca, G., Dessì, A., & Sacco, A. (2017). The use of nadir and oblique UAV images for building knowledge. ISPRS International Journal of Geo-Information, 6(12), 393.

    Article  Google Scholar 

  • Valkaniotis, S., Papathanassiou, G., & Ganas, A. (2018). Mapping an earthquake-induced landslide based on UAV imagery; case study of the 2015 Okeanos landslide, Lefkada, Greece. Engineering Geology, 245, 141–152.

    Article  Google Scholar 

  • Verykokou, S., & Ioannidis, C. (2018). Oblique aerial images: a review focusing on georeferencing procedures. International journal of remote sensing, 39(11), 3452–3496.

    Article  Google Scholar 

  • Wang, Q., Wu, L., Chen, S., Shu, D., Xu, Z., Li, F., & Wang, R. (2014). Accuracy evaluation of 3D geometry from low-attitude uav images: a case study at Zijin Mine. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-4, 297–300. https://doi.org/10.5194/isprsarchives-XL-4-297-2014.

  • Whitehead, K., & Hugenholtz, C. H. (2015). Applying ASPRS accuracy standards to surveys from small unmanned aircraft systems (UAS). Photogrammetric Engineering & Remote Sensing, 81(10), 787–793.

    Article  Google Scholar 

  • Wierzbicki, D., Kedzierski, M., & Fryskowska, A. (2015). Assesment of the influence of UAV image quality on the orthophoto production. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1), 1.

    Google Scholar 

  • Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E. (2014). Elements of photogrammetry with applications in GIS (4th edn. [fully updated]). McGraw-Hill Education.

  • Woodget, A. S., Carbonneau, P. E., Visser, F., & Maddock, I. P. (2015). Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surface Processes and Landforms, 40(1), 47–64.

    Article  Google Scholar 

  • Yao, H., Qin, R., & Chen, X. (2019). Unmanned aerial vehicle for remote sensing applications—A review. Remote Sensing, 11(12), 1443.

    Article  Google Scholar 

  • Yu, J. J., Kim, D. W., Lee, E. J., & Son, S. W. (2020). Determining the optimal number of ground control points for varying study sites through accuracy evaluation of unmanned aerial system-based 3D point clouds and digital surface models. Drones, 4(3), 49.

    Article  Google Scholar 

  • Yu, M., Huang, Y., Zhou, J., & Mao, L. (2017). Modeling of landslide topography based on micro-unmanned aerial vehicle photography and structure-from-motion. Environmental earth sciences, 76(15), 1–9.

    Article  Google Scholar 

  • Zhou, S., & Gheisari, M. (2018). Unmanned aerial system applications in construction: A systematic review. Construction Innovation, 18(4), 453–468.

    Article  Google Scholar 

  • Zulkipli, M. A., & Tahar, K. N. (2018). Multirotor UAV-Based Photogrammetric Mapping for Road Design. International Journal of Optics.

Download references

Acknowledgements

This paper was extracted from an MSc thesis entitled "Accuracy Analysis and Evaluation of UAS Photogrammetry and Structure from Motion in Engineering Surveying," conducted by Sayed Ishaq Deliry at Eskisehir Technical University in 2020 under the supervision of Assoc. Prof. Dr. Uğur AVDAN.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Ishaq Deliry.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deliry, S.I., Avdan, U. Accuracy of Unmanned Aerial Systems Photogrammetry and Structure from Motion in Surveying and Mapping: A Review. J Indian Soc Remote Sens 49, 1997–2017 (2021). https://doi.org/10.1007/s12524-021-01366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01366-x

Keywords

Navigation