Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSINTELL))

  • 42 Accesses

Abstract

Since the beginning of the computer era, researchers have been curious whether they can be made to learn. This led to the development of various algorithms and programs, which eventually got better with time, inevitably advancing to human-level performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Expert’s work is simulated in the code without employing a real Expert.

References

  1. Mitchell TM (2007) Machine learning, vol 1. McGraw-Hill, New York

    Google Scholar 

  2. Roh Y, Heo G, Whang SE (2019) A survey on data collection for machine learning: a big data-ai integration perspective. IEEE Trans Knowl Data Eng 33(4):1328–1347

    Google Scholar 

  3. Loussaief S, Abdelkrim A (2016) Machine learning framework for image classification. In: 2016 7th International conference on sciences of electronics, technologies of information and telecommunications (SETIT). IEEE

    Google Scholar 

  4. Dollár P, Tu Z, Tao H, Belongie S (2007) Feature mining for image classification. In: IEEE conference on computer vision and pattern recognition, pp 1–8. IEEE

    Google Scholar 

  5. Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surveys (CSUR) 35(4):399–458

    Google Scholar 

  6. Tzotsos A, Argialas D (2008) Support vector machine classification for object-based image analysis. In: Object-based image analysis: Spatial concepts for knowledge-driven remote sensing applications, pp 663–677

    Google Scholar 

  7. Ikonomakis M, Kotsiantis S, Tampakas V (2005) Text classification using machine learning techniques. WSEAS Trans Comput 4(8):966–974

    Google Scholar 

  8. Kadhim AI (2019) Survey on supervised machine learning techniques for automatic text classification. Artif Intell Rev 52(1):273–292

    Article  MathSciNet  Google Scholar 

  9. Li Q, Peng H, Li J, Xia C, Yang R, Sun L, Yu PS, He L (2022) A survey on text classification: from traditional to deep learning. ACM Trans Intell Syst Technol (TIST) 13(2):1–41.

    Google Scholar 

  10. Deng L, Li X (2013) Machine learning paradigms for speech recognition: an overview. IEEE Trans Audio Speech Lang Process 21(5):1060–1089

    Google Scholar 

  11. Padmanabhan J, Premkumar MJJ (2015) Machine learning in automatic speech recognition: a survey. IETE Tech Rev 32(4):240–251

    Article  Google Scholar 

  12. Ganapathiraju A, Hamaker JE, Picone J (2004) Applications of support vector machines to speech recognition. IEEE Trans Signal Process 52(8):2348–2355

    Article  Google Scholar 

  13. Pasupa K, Sunhem W (2016) A comparison between shallow and deep architecture classifiers on small dataset. In: 2016 8th International conference on information technology and electrical engineering (ICITEE). IEEE

    Google Scholar 

  14. Luo Y, Tseng HH, Cui S, Wei L, Ten Haken RK, El Naqa I (2019) Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling. BJR|Open 1(1):20190021

    Google Scholar 

  15. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press

    Google Scholar 

  16. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  17. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90

    Article  Google Scholar 

  18. Farabet C, Couprie C, Najman L, LeCun Y (2013) Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell 35:1915–1929

    Article  Google Scholar 

  19. Tompson J, Jain A, LeCun Y, Bregler C (2014) Joint training of a convolutional network and a graphical model for human pose estimation. In: Proceedings of the advances in neural information processing systems, vol 27, pp 1799–1807

    Google Scholar 

  20. Das D, Santosh KC, Pal U (2020) Truncated inception net: covid-19 outbreak screening using chest X-rays. Phys Eng Sci Med 43:915–925. https://doi.org/10.1007/s13246-020-00888-x

    Article  Google Scholar 

  21. DasD, Santosh KC, Pal U (2020) Cross-population train/test deep learning model: abnormality screening in chest X-Rays. CBMS:514–519

    Google Scholar 

  22. Mahbub MK, Zamil MZH, Miah MAM, Ghose P, Biswas M, Santosh KC (2022) MobApp4InfectiousDisease: classify covid-19, pneumonia, and tuberculosis. In: CBMS, pp 119–124

    Google Scholar 

  23. Mikolov T, Deoras A, Povey D, Burget L, Cernocky J (2011) Strategies for training large scale neural network language models. In: Proceedings of the automatic speech recognition and understanding, pp 196–201

    Google Scholar 

  24. Hinton G, Deng L, Yu D, Dahl GE, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN, Kingsbury B (2012) Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process Mag 29:82–97

    Article  Google Scholar 

  25. Sainath T, Mohamed AR, Kingsbury B, Ramabhadran B (2013) Deep convolutional neural networks for LVCSR. In: Proceedings of the acoustics, speech and signal processing, pp 8614–8618

    Google Scholar 

  26. Shen D, Wu G, Suk HI (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248

    Google Scholar 

  27. Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK (2018) Medical image analysis using convolutional neural networks: a review. J Med Syst 42:1–13

    Google Scholar 

  28. Min S, Lee B, Yoon S (2017) Deep learning in bioinformatics. Brief Bioinf 18(5):851–869

    Google Scholar 

  29. Zhao ZQ, Zheng P, Xu S, Wu X (2019) Object detection with deep learning: a review. IEEE Trans Neural Netw Learn Syst 30(11):3212–3232

    Google Scholar 

  30. Makkar A, Santosh KC (2023) SecureFed: federated learning empowered medical imaging technique to analyze lung abnormalities in chest X-rays. Int J Mach Learn Cybern:1–12

    Google Scholar 

  31. Kamal MS, Chowdhury L, Dey N, Fong SJ, Santosh KC (2021) Explainable AI to analyze outcomes of spike neural network in covid-19 chest X-rays. SMC:3408–3415

    Google Scholar 

  32. Henderson J, Santosh KC (2022) Analyzing chest X-ray to detect the evidence of lung abnormality due to infectious disease. RTIP2R:59–77

    Google Scholar 

  33. Santosh KC, Rasmussen N, Mamun M, Aryal S (2022) A systematic review on cough sound analysis for covid-19 diagnosis and screening: is my cough sound covid-19? PeerJ Comput Sci 8:e958

    Google Scholar 

  34. Mukherjee H, Ghosh S, Dhar A, Obaidullah SM, Santosh KC, Roy K (2021) Deep neural network to detect covid-19: one architecture for both CT scans and chest X-rays. Appl Intell 51(5):2777–2789

    Google Scholar 

  35. Santosh KC, Antani S (2023) Guest editorial multimodal learning in medical imaging informatics. IEEE J Biomed Health Inf 27(3):1214–1215

    Google Scholar 

  36. Nakarmi S, Santosh K (2023) Active learning to minimize the risk from future epidemics. In: IEEE conference on artificial intelligence (CAI). IEEE

    Google Scholar 

  37. Bouguelia MR, Nowaczyk S, Santosh KC, Verikas A (2018) Agreeing to disagree: active learning with noisy labels without crowdsourcing. Int J Mach Learn Cybern 9:1307–1319

    Article  Google Scholar 

  38. Li Y (2017) Deep reinforcement learning: an overview. Preprint at arXiv:1701.07274

    Google Scholar 

  39. François-Lavet V, Henderson P, Islam R, Bellemare MG, Pineau J (2018) An introduction to deep reinforcement learning. Found Trends® Mach Learn 11(3–4):219–354

    Google Scholar 

  40. Sagiroglu S, Sinanc D (2013) Big data: a review. In: 2013 International conference on collaboration technologies and systems (CTS). IEEE

    Google Scholar 

  41. Zhou T, Lu H, Yang Z, Qiu S, Huo B, Dong Y (2021) The ensemble deep learning model for novel COVID-19 on CT images. Appl Soft Comput 98:106885

    Google Scholar 

  42. Chen J, Wu L, Zhang J, Zhang L, Gong D, Zhao Y, Chen Q, Huang S, Yang M, Yang X, Hu S, Wang Y, Hu X, Zheng B, Zhang K, Wu H, Dong Z, Xu Y, Zhu Y, Chen X, Zhang M, Yu L, Chenng F, Yu H (2020) Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography. Sci Rep 10(1):19196

    Google Scholar 

  43. Santosh KC, Ghosh S (2021) Covid-19 imaging tools: How big data is big? J Med Syst 45(7):71

    Google Scholar 

  44. Santosh KC, GhoshRoy D, Nakarmi S (2023) A systematic review on deep structured learning for Covid-19 screening using chest CT from 2020 to 2022. Healthcare MDPI 11(17)

    Google Scholar 

  45. Santosh KC, Ghosh S, GhoshRoy D (2022) Deep learning for COVID-19 screening using chest x-rays in 2020: a systematic review. Int J Pattern Recognit Artif Intell 36(05):2252010

    Google Scholar 

  46. Santosh KC, Ghosh S (2021) CheXNet for the evidence of Covid-19 using 2.3K positive chest X-rays. RTIP2R:33–41

    Google Scholar 

  47. Santosh KC (2020) AI-driven tools for coronavirus outbreak: need of active learning and cross-population train/test models on multitudinal/multimodal data. J Med Syst 44:1–5

    Google Scholar 

  48. Bouguelia MR, Nowaczyk S, Santosh KC, Verikas A (2018) Agreeing to disagree: active learning with noisy labels without crowdsourcing. Int J Mach Learn Cybern 9(8):1307–1319

    Google Scholar 

  49. Santosh KC (2020) COVID-19 prediction models and unexploited data. J Med Syst 44(9):170

    Article  Google Scholar 

  50. Monarch RM (2021) Human-in-the-loop machine learning: active learning and annotation for human-centered AI. Simon and Schuster Galton https://galton.org/books/finger-prints/galton-1892-fingerprints-1up.pdf

  51. Holzinger A (2016) Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inf 3(2):119–131

    Article  Google Scholar 

  52. Szwedo DE, Hessel ET, Loeb EL, Hafen CA, Allen JP (2017) Adolescent support seeking as a path to adult functional independence. Develop Psychol 53(5):949

    Google Scholar 

  53. Ghahramani Z (2003) Unsupervised learning. In: Summer school on machine learning, pp 72–112. Springer, Berlin, Heidelberg

    Google Scholar 

  54. Károly AI, Fullér R, Galambos P (2018) Unsupervised clustering for deep learning: a tutorial survey. Acta Polytechnica Hungarica 15(8):29–53

    Google Scholar 

  55. Santosh KC, Lamiroy B, Wendling L (2014) Integrating vocabulary clustering with spatial relations for symbol recognition. Int J Doc Anal Recognit (IJDAR) 17:61–78

    Article  Google Scholar 

  56. Madhulatha TS (2012) An overview on clustering methods. Preprint at arXiv:1205.1117

    Google Scholar 

  57. Shah K, Salunke A, Dongare S, Antala K (2017) Recommender systems: an overview of different approaches to recommendations. In: 2017 International conference on innovations in information, embedded and communication systems (ICIIECS). IEEE

    Google Scholar 

  58. Kim M, Jihye Y, Yongwon C, Keewon S, Ryoungwoo J, Hyun-jin B, Kim N (2019) Deep learning in medical imaging. Neurospine 16(4):657

    Article  Google Scholar 

  59. Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37(2):505–515

    Google Scholar 

  60. Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik 29(2):102–127

    Google Scholar 

  61. De Marco M, Fantozzi P, Fornaro C, Laura L, Miloso A (2021) Cognitive analytics management of the customer lifetime value: an artificial neural network approach. J Enterp Inf Manage 34(2):679–696

    Google Scholar 

  62. Cui H, Kan MY, Chua TS (2004) Unsupervised learning of soft patterns for generating definitions from online news. In: Proceedings of the 13th international conference on World Wide Web

    Google Scholar 

  63. Yang S, Shu K, Wang S, Gu R, Wu F, Liu H (2019) Unsupervised fake news detection on social media: a generative approach. In: Proceedings of the AAAI conference on artificial intelligence, vol 33(01)

    Google Scholar 

  64. Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks. In: International conference on machine learning. PMLR

    Google Scholar 

  65. Vinyals O, Blundell C, Lillicrap T, Kavukcuoglu K, Wierstra D (2016) Matching networks for one shot learning. In: Advances in neural information processing systems, vol 29

    Google Scholar 

  66. Wang Y, Yao Q, James KT, Ni LM (2020) Generalizing from a few examples: a survey on few-shot learning. ACM Comput Surveys (csur) 53(3):1–34

    Google Scholar 

  67. Fei-Fei L, Fergus R, Perona P (2006) One-shot learning of object categories. IEEE Trans Pattern Anal Mach Intell 28(4):594–611

    Google Scholar 

  68. Sung F, Yang Y, Zhang L, Xiang T, Torr PHS, Hospedales TM (2018) Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition

    Google Scholar 

  69. Fei-Fei L, Fergus R, Perona P (2004) Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: Conference on computer vision and pattern recognition workshop. IEEE

    Google Scholar 

  70. Chen WY, Liu YC, Kira Z, Wang YCF, Huang JB (2019) A closer look at few-shot classification. Preprint at arXiv:1904.04232

    Google Scholar 

  71. Das D, Lee CSG (2019) A two-stage approach to few-shot learning for image recognition. IEEE Trans Image Process 29:3336–3350

    Google Scholar 

  72. Souibgui MA, Fornes A, Kessentini Y, Tudor C (2020) A few-shot learning approach for historical ciphered manuscript recognition. In: 2020 25th International conference on pattern recognition (ICPR). IEEE

    Google Scholar 

  73. Cao K, Ji J, Cao Z, Chang CY, Niebles JC (2020) Few-shot video classification via temporal alignment. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

    Google Scholar 

  74. Snell J, Swersky K, Zemel R (2017) Prototypical networks for few-shot learning. In: Advances in neural information processing systems, vol 30

    Google Scholar 

  75. Mahbub MK, Biswas M, Gaur L, Alenezi F, Santosh MK (2022) Deep features to detect pulmonary abnormalities in chest X-rays due to infectious diseaseX: covid-19, pneumonia, and tuberculosis. Inf Sci 592:389–401

    Google Scholar 

  76. Santosh KC, Ghosh S (2022) Covid-19 versus lung cancer: analyzing chest CT images using deep ensemble neural network. Int J Artif Intell Tools 31(8):2250049:1–2250049:22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KC Santosh .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santosh, K., Nakarmi, S. (2023). Active Learning—Methodology. In: Active Learning to Minimize the Possible Risk of Future Epidemics. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-99-7442-9_4

Download citation

Publish with us

Policies and ethics