Skip to main content

Biochemical and Physiological Aspects of HBOT

  • Chapter
  • First Online:
Hyperbaric Oxygen Therapy: Principles and Applications

Abstract

The role of oxygen is central to the process of cellular respiration. The rate of oxygen consumption by tissues determines its metabolic activity. The oxygen demand of cells or tissues is subjected to change according to physiological needs such as exercise, cells undergoing rapid multiplication or physiological changes as in case of immune cells. Thus, it is important to understand the biochemical processes underlying the utilization of oxygen for in order to meet the metabolic demands of the cells. Also, there are certain products derived from food sources called ‘nutraceuticals’ which are able to enhance the physiological effect of hyperbaric oxygen administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Priestley J. Experiments and observations on different kinds of air, vol. 2. London: J. Johnson; 1776.

    Google Scholar 

  2. Cramer WA, Knaff DB. Energy transduction in biological membranes: a textbook of bioenergetics. Cham: Springer; 2012.

    Google Scholar 

  3. Jensen FB. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol Scand. 2004;182(3):215–27.

    Article  CAS  PubMed  Google Scholar 

  4. Teboul J-L, Scheeren T. Understanding the Haldane effect. Intensive Care Med. 2017;43(1):91–3.

    Article  PubMed  Google Scholar 

  5. Siggaard-Andersen O, Garby L. The Bohr effect and the Haldane effect, vol. 31. Abingdon: Taylor & Francis; 1973. p. 1–8.

    Google Scholar 

  6. Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 1980;4(2):61–5.

    Article  CAS  Google Scholar 

  7. LaFarge C, Miettinen O. The estimation of oxygen consumption. Cardiovasc Res. 1970;4(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  8. Tiep BL, et al. Demand oxygen delivery during exercise. Chest. 1987;91(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  9. Brooks GA, et al. Temperature, skeletal muscle mitochondrial functions, and oxygen debt. Am J Physiol. 1971;220(4):1053–9.

    Article  CAS  PubMed  Google Scholar 

  10. Ledingham I. Factors influencing oxygen availability. J Clin Pathol. 1977;11:1.

    Article  CAS  Google Scholar 

  11. Teboul J-L, et al. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med. 1998;26(6):1007–10.

    Article  CAS  PubMed  Google Scholar 

  12. Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020;37:101674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54(1):1015–69.

    Article  CAS  PubMed  Google Scholar 

  14. Chains ET. Oxidative phosphorylation. New York: Academic; 1975.

    Google Scholar 

  15. Lodish H, et al. Electron transport and oxidative phosphorylation, in molecular cell biology. 4th ed. New York: WH Freeman; 2000.

    Google Scholar 

  16. Nickel A, Kohlhaas M, Maack C. Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol. 2014;73:26–33.

    Article  CAS  PubMed  Google Scholar 

  17. Ramana KV, Srivastava S, Singhal SS. Lipid peroxidation products in human health and disease, vol. 2013. London: Hindawi; 2013. p. 1.

    Google Scholar 

  18. El-Beltagi HS, Mohamed HI. Reactive oxygen species, lipid peroxidation and antioxidative defense mechanism. Not Bot Horti Agrobot Cluj Napoca. 2013;41(1):44–57.

    Article  CAS  Google Scholar 

  19. Ighodaro O, Akinloye O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018;54(4):287–93.

    Article  Google Scholar 

  20. Sies H, Stahl W. Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am J Clin Nutr. 1995;62(6):1315S–21S.

    Article  CAS  PubMed  Google Scholar 

  21. Sies H, Stahl W, Sundquist AR. Antioxidant functions of vitamins: vitamins E and C, Beta-carotene, and other carotenoids a. Ann N Y Acad Sci. 1992;669(1):7–20.

    Article  CAS  PubMed  Google Scholar 

  22. Thackham JA, McElwain DS, Long RJ. The use of hyperbaric oxygen therapy to treat chronic wounds: a review. Wound Repair Regen. 2008;16(3):321–30.

    Article  PubMed  Google Scholar 

  23. Bjerregård A, Jansen E. Monitoring carbon dioxide in mechanically ventilated patients during hyperbaric treatment. Diving Hyperb Med. 2012;1:134.

    Google Scholar 

  24. Shinomiya N. Molecular mechanisms of hyperbaric oxygen therapy. In: Hyperbaric oxygenation therapy. Springer; 2020. p. 3–20.

    Chapter  Google Scholar 

  25. Pinnell J, Turner S, Howell S. Cardiac muscle physiology. Continuing Education Anaesth Crit Care Pain. 2007;7(3):85–8.

    Article  Google Scholar 

  26. Niinikoski JH. Clinical hyperbaric oxygen therapy, wound perfusion, and transcutaneous oximetry. World J Surg. 2004;28(3):307–11.

    Article  PubMed  Google Scholar 

  27. Weaver LK, et al. Arterial and pulmonary arterial hemodynamics and oxygen delivery/extraction in normal humans exposed to hyperbaric air and oxygen. J Appl Physiol. 2009;107(1):336–45.

    Article  PubMed  Google Scholar 

  28. Lam G, et al. Hyperbaric oxygen therapy: exploring the clinical evidence. Adv Skin Wound Care. 2017;30(4):181–90.

    Article  PubMed  Google Scholar 

  29. De Wolde SD, et al. The effects of hyperbaric oxygenation on oxidative stress, inflammation and angiogenesis. Biomol Ther. 2021;11(8):1210.

    Google Scholar 

  30. Schreml S, et al. Oxygen in acute and chronic wound healing. Br J Dermatol. 2010;163(2):257–68.

    Article  CAS  PubMed  Google Scholar 

  31. Kalra EK. Nutraceutical-definition and introduction. AAPS PharmSci. 2003;5(3):27–8.

    Article  PubMed Central  Google Scholar 

  32. Singh J, Sinha S. Classification, regulatory acts and applications of nutraceuticals for health. Int J Pharm Bio Sci. 2012;2(1):177–87.

    CAS  Google Scholar 

  33. Mishra S, et al. Effects of nutraceuticals on genetic expressions. Open Nutraceuticals J. 2009;2(1):70.

    Article  CAS  Google Scholar 

  34. Caponio GR, et al. Nutraceuticals: focus on anti-inflammatory, anti-cancer, antioxidant properties in gastrointestinal tract. Antioxidants. 2022;11(7):1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cornelli U. Antioxidant use in nutraceuticals. Clin Dermatol. 2009;27(2):175–94.

    Article  PubMed  Google Scholar 

  36. Magrone T, Jirillo E. Disorders of innate immunity in human ageing and effects of nutraceutical administration. In: Endocrine, metabolic & immune disorders-drug targets (formerly current drug targets-immune, endocrine & metabolic disorders), vol. 14. Sharjah: Bentham Science Publishers; 2014. p. 272–82.

    Google Scholar 

  37. Tatucu-Babet OA, Ridley EJ. Malnutrition screening in outpatients receiving hyperbaric oxygen therapy: an opportunity for improvement? Diving Hyperb Med. 2018;48(4):206.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Alshamali M, et al. Successful post-surgical wound management with hyperbaric oxygen therapy. Asian J Case Rep Surg. 2020;5(2):6–11.

    Google Scholar 

  39. Lalieu RC, et al. Nutritional status of patients referred for hyperbaric oxygen treatment; a retrospective and descriptive cross-sectional study. Diving Hyperb Med. 2021;51(4):322–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, M., Somasundaram, I. (2023). Biochemical and Physiological Aspects of HBOT. In: Hyperbaric Oxygen Therapy: Principles and Applications . Springer, Singapore. https://doi.org/10.1007/978-981-99-7278-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7278-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7277-7

  • Online ISBN: 978-981-99-7278-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics