Skip to main content

Thermally Activated Delayed Fluorescence in Metal-Free Small Organic Materials: Understanding and Applications in OLEDs

  • Chapter
  • First Online:
Handbook of Materials Science, Volume 1

Part of the book series: Indian Institute of Metals Series ((IIMS))

  • 455 Accesses

Abstract

Thermally activated delayed fluorescence (TADF) is one of the most attractive photophysical properties due to its potential application as a triplet harvesting mechanism in metal-free OLED emitters. TADF shows a way to achieve 100% theoretical internal quantum efficiency by thermally up-converting the non-radiative triplet excitons. Initially, the mechanism of TADF was proposed to be based on the thermal equilibrium of the lowest singlet (S1) and triplet (T1) states, where the rate constant for reverse intersystem crossing (kRISC) was dependent on the temperature. At the same time, the flipping of spin in TADF is considered to be the result of spin–orbit coupling. Recent findings showed that the TADF and organic room temperature phosphorescence (RTP) property of a purely organic emitter can be tuned by steric hindrance between donor and acceptor groups in D-A-D molecules. The intersystem crossing between triplet charge transfer (3CT) and triplet local exciton (3LE) states depends on the extent of vibronic coupling and the adiabatic energy difference between them. Furthermore, the optimal energy gap of 1CT and 3CT and 3CT and 3LE states is important for efficient TADF. Overall, there are several factors involved in designing the materials for efficient TADF. Herein, we briefly review the fundamental mechanism, photophysical kinetics, and different theories of TADF along with the photophysical characterization of some organic TADF molecules. Also, the applications of some of the TADF materials in OLEDs were summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aizawa, N., Harabuchi, Y., Maeda, S., Pu, Y.J.: Kinetic prediction of reverse intersystem crossing in organicdonor–acceptor molecules. Nat. Commun. 11, 1–6 (2020)

    Article  Google Scholar 

  • Albrecht, A.C.: Vibronic—spin-orbit perturbations and the assignment of the lowest triplet state of benzene. J. Chem. Phys. 38(2), 354–365 (1963)

    Article  CAS  Google Scholar 

  • Awasthi, A.A., Gupta, N., Siddiqui, Q.T., Parab, P., Palit, D.K., Bose, S., Agarwal, N.: Synthesis of acridone-naphthylamine derivative and its thermally-activated delayed fluorescence studies for application in OLEDs. J. Chem. Sci. 131, 1–8 (2019)

    CAS  Google Scholar 

  • Chen, T., Zheng, L., Yuan, J., An, Z., Chen, R., Tao, Y., Li, H., Xie, X., Huang, W.: Understanding the control of singlet-triplet splitting for organic exciton manipulating: a combined theoretical and experimental approach. Sci. Rep. 5, 1–11 (2015a)

    Google Scholar 

  • Chen, X.K., Zhang, S.F., Fan, J.X., Ren, A.M.: Nature of highly efficient thermally activated delayed fluorescence in organic light-emitting diode emitters: nonadiabatic effect between excited states. J. Phys. Chem. C 119, 9728–9733 (2015b)

    Article  CAS  Google Scholar 

  • Cho, Y.J., Yook, K.S., Lee, J.Y.: Cool and warm hybrid white organic light-emitting diode with blue delayed fluorescent emitter both as blue emitter and triplet host. Sci. Rep. 5, 1–7 (2015a)

    Article  CAS  Google Scholar 

  • Cho, Y.J., Jeon, S.K., Chin, B.D., Yu, E., Lee, J.Y.: The design of dual emitting cores for green thermally activated delayed fluorescent materials. Angew. Chem. Int. Ed. 54, 5201–5204 (2015b)

    Article  CAS  Google Scholar 

  • Cho, Y.J., Chin, B.D., Jeon, S.K., Lee, J.Y.: 20% external quantum efficiency in solution-processed blue thermally activated delayed fluorescent devices. Adv. Funct. Mater. 25, 6786–6792 (2015c)

    Article  CAS  Google Scholar 

  • Data, P., Pander, P., Okazaki, M., Takeda, Y., Minakata, S., Monkman, A.P.: Dibenzo[a j]Phenazine-cored donor-acceptor-donor compounds as green-to-red/NIR thermally activated delayed fluorescence organic light emitters. Angew. Chemie Int. Ed. 55, 5739–5744 (2016)

    Article  CAS  Google Scholar 

  • Data, P., Okazaki, M., Minakata, S., Takeda, Y.: Thermally activated delayed fluorescence: vs. room temperature phosphorescence by conformation control of organic single molecules. J. Mater. Chem. C 7, 6616–6621 (2019)

    Article  CAS  Google Scholar 

  • Deng, C., Zhang, L., Wang, D., Tsuboi, T., Zhang, Q.: Exciton-and polaron-induced reversible dipole reorientation in amorphous organic semiconductor films. Adv. Opt. Mater. 7, 1801644 (2019)

    Article  Google Scholar 

  • Dias, F.B., Santos, J., Graves, D.R., Data, P., Nobuyasu, R.S., Fox, M.A., Batsanov, A.S., Palmeira, T., Berberan-Santos, M.N., Bryce, M.R., Monkman, A.P.: The role of local triplet excited states and d-a relative orientation in thermally activated delayed fluorescence: photophysics and devices. Adv. Sci. 3, 1–10 (2016)

    Article  Google Scholar 

  • Dias, F.B., Penfold, T.J., Monkman, A.P.: Photophysics of thermally activated delayed fluorescence molecules. Methods Appl. Fluoresc. 5, 12001 (2017)

    Article  Google Scholar 

  • Dias, F.B., Bourdakos, K.N., Jankus, V., Moss, K.C., Kamtekar, K.T., Bhalla, V., Santos, J., Bryce, M.R., Monkman, A.P.: Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv. Mater. 25, 3707 (2013)

    Google Scholar 

  • Dixit, S.J.N., Gupta, C.V., Naidu, G.S., Bose, S., Agarwal, N.: Peri-N-amine-perylenes with and without phenyl bridge: photophysical studies and their OLED applications. J. Photochem. Photobio. a: Chem. 426, 113710 (2022)

    Article  CAS  Google Scholar 

  • Edwards, A.A., Alexander, B.D.: UV-Visible absorption spectroscopy organic applications. In: Encyclopedia of spectroscopy and spectrometry, pp. 511–519 (2017)

    Google Scholar 

  • Endo, A., Sato, K., Yoshimura, K., Kai, T., Kawada, A., Miyazaki, H., Adachi, C.: Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98, 2011–2014 (2011)

    Article  Google Scholar 

  • Etherington, M., Gibson, J., Higginbotham, H., et al.: Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence. Nat. Commun. 7, 13680 (2016)

    Article  CAS  Google Scholar 

  • Gibson, J., Monkman, A.P., Penfold, T.J.: The importance of vibronic coupling for efficient reverse intersystem crossing in thermally activated delayed fluorescence molecules. ChemPhysChem 1, 2956–2961 (2016)

    Article  Google Scholar 

  • Hosokai, T., Matsuzaki, H., Furube, A., Tokumaru, K., Nakanotani, H., Yahiro, M., Adachi, C.: Revealing the excited-state dynamics of thermally activated delayed fluorescence molecules by using transient absorption spectroscopy 786–789 (2016)

    Google Scholar 

  • Koseki, S., Schmidt, M.W., Gordon, M.S.: Calculations of one-electron spin-orbit coupling constants in diatomic molecules. J. Phys. Chem. 96, 10768–10772 (1992)

    Article  CAS  Google Scholar 

  • Kretzschmar, A., Patze, C., Schwaebel, S.T., Bunz, U.H.F.: Development of thermally activated delayed fluorescence materials with shortened emissive lifetimes. J. Org. Chem. 80, 9126–9131 (2015)

    Article  CAS  Google Scholar 

  • Lee, K., Kim, D.: Local-excitation versus charge-transfer characters in the triplet state: theoretical insight into the singlet-triplet energy differences of carbazolyl-phthalonitrile-based thermally activated delayed fluorescence materials. J. Phys. Chem. C 120, 28330–28336 (2016)

    Article  CAS  Google Scholar 

  • Lee, D.R., Hwang, S.H., Jeon, S.K., Lee, C.W., Lee, J.Y.: Benzofurocarbazole and Benzothienocarbazole as donors for improved quantum efficiency in blue thermally activated delayed fluorescent devices. Chem. Commun. 51, 8105–8107 (2015)

    Google Scholar 

  • Lee, S.M., Ju, B.K., Lee, C.J.: Temperature dependence of the driving properties for a green thermally activated delayed fluorescence device with a mixed host. Thin Solid Films 660, 166–170 (2017)

    Article  Google Scholar 

  • Lewis, G.N., Lipkin, D.: Reversible photochemical processes in rigid media. a study of the phosphorescent state. J. Am. Chem. Soc. 63, 3005–3018 (1941)

    Article  CAS  Google Scholar 

  • Li, B., Nomura, H., Miyazaki, H., Zhang, Q., Yoshida, K., Suzuma, Y., Orita, A., Otera, J., Adachi, C.: Dicarbazolyldicyanobenzenes as thermally activated delayed fluorescence emitters: effect of substitution position on photoluminescent and electroluminescent properties. Chem. Lett. 43(3), 319–321 (2014)

    Article  CAS  Google Scholar 

  • Li, N., Ni, F., Lv, X., Huang, Z., Cao, X., Yang, C.: Host-dopant interaction between organic thermally activated delayed fluorescence emitter and host material: insight into the excited state. Adv. Optical Mater. 10, 2101343 (2022)

    Article  CAS  Google Scholar 

  • Lim, B.T., Okajima, S., Chandra, A.K., Lim, E.C.: Radiationless transitions in electron donor-acceptor complexes: selection rules for S1 → T intersystem crossing and efficiency of S1 → S0 internal conversion. Chem. Phys. Lett. 79(1), 22–27 (1981)

    Article  CAS  Google Scholar 

  • Lin, L., Fan, J., Cai, L., Wang, C.K.: Excited state dynamics of new-type thermally activated delayed fluorescence emitters: theoretical view of light-emitting mechanism. Mol. Phys. 116, 19–28 (2014)

    Article  Google Scholar 

  • Liu, W., Zheng, C.J., Wang, K., Chen, Z., Chen, D.Y., Li, F., Ou, X.M., Dong, Y.P., Zhang, X.H.: Novel carbazol-pyridine-carbonitrile derivative as excellent blue thermally activated delayed fluorescence emitter for highly efficient organic light-emitting devices. ACS Appl. Mater. Interfaces 7, 18930–18936 (2015)

    Article  CAS  Google Scholar 

  • Liu, J., Li, Z., Hu, T., Wei, X., Wang, R., Hu, X., Liu, Y., Yi, Y., Yamada-Takamura, Y., Wang, Y., Wang, P.: Experimental evidence for “Hot Exciton” thermally activated delayed fluorescence emitters. Adv. Opt. Mater. 7, 1–9 (2019)

    Google Scholar 

  • Marian, C.M.: Mechanism of the triplet-to-singlet up-conversion in the assistant dopant ACRXTN. J. Phys. Chem. C 120, 3715–3721 (2016)

    Article  CAS  Google Scholar 

  • MĂ©hes, G., Goushi, K., Potscavage, W.J., Adachi, C.: Influence of host matrix on thermally activated delayed fluorescence: effects on emission lifetime, photoluminescence quantum yield, and device performance. Org. Electron. 15(9), 2027–2037 (2014)

    Article  Google Scholar 

  • MĂ©hes, G., Sandanayaka, A.S.D., Ribierre, J.C., Goushi, K.: Physics and design principles of OLED devices. In: Adachi, C., Hattori, R., Kaji, H., Tsujimura, T. (eds.) Handbook of Organic Light-Emitting Diodes. Springer, Tokyo (2020). https://doi.org/10.1007/978-4-431-55761-6_49-1

  • Niwa, A., Kobayashi, T., Nagase, T., Goushi, K., Adachi, C., Naito, H.: Temperature dependence of photoluminescence properties in a thermally activated delayed fluorescence emitter. Appl. Phys. Lett. 104, 213303 (2014)

    Article  Google Scholar 

  • Northey, T., Stacey, J., Penfold, T.J.: The role of solid-state solvation on the charge transfer state of a thermally activated delayed fluorescence emitter. J. Mater. Chem. C 5, 11001–11009 (2017)

    Article  CAS  Google Scholar 

  • Ogiwara, T., Wakikawa, Y., Ikoma, T.: Mechanism of intersystem crossing of thermally activated delayed fluorescence molecules. J. Phys. Chem. A 119, 3415–3418 (2015)

    Article  CAS  Google Scholar 

  • Pan, Y., Li, W., Zhang, S., Yao, L., Gu, C., Xu, H., Yang, B., Ma, Y.: High yields of singlet excitons in organic electroluminescence through two paths of cold and hot excitons. Adv. Opt. Mater. 2, 510–515 (2014)

    Article  CAS  Google Scholar 

  • Park, I.S., Lee, S.Y., Adachi, C., Yasuda, T.: Full-color delayed fluorescence materials based on wedge-shaped phthalonitriles and dicyanopyrazines: systematic design tunable photophysical properties and OLED performance. Adv. Funct. Mater. 26, 1813–1821 (2016)

    Article  CAS  Google Scholar 

  • Parker, C.A., Hatchard, C.G.: Triplet-singlet emission in fluid solutions. Phosphorescence of Eosin. Trans. Faraday Soc. 57, 1894–1904 (1961)

    Article  Google Scholar 

  • Penfold, T.J., Gindensperger, E., Daniel, C., Marian, C.M.: Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 118, 6975–7025 (2018)

    Article  CAS  Google Scholar 

  • Pyykkö, P.: Relativistic effects in chemistry: more common than you thought. Annu. Rev. Phys. Chem. 63, 45–64 (2012)

    Article  Google Scholar 

  • Randall John Turton: The fluorescence of compounds containing manganese. Proc. r. Soc. Lond. A 170, 272–293 (1939)

    Article  Google Scholar 

  • Ravinson, D.S., Thompson, M.E.: Thermally assisted delayed fluorescence (TADF): fluorescence delayed is fluorescence denied. Mater. Horiz. 7(5), 1210–1217 (2020)

    Article  CAS  Google Scholar 

  • Reichardt, C.: Solvents and solvent effects: an introduction. Org. Process Res. Dev. 11, 105–113 (2007)

    Article  CAS  Google Scholar 

  • Rothe, C., Monkman, A.: Regarding the origin of the delayed fluorescence of conjugated polymers. J. Chem. Phys. 123, 1–6 (2005)

    Article  Google Scholar 

  • Santos, P.L., Ward, J.S., Data, P., Batsanov, A.S., Bryce, M.R., Dias, F.B., Monkman, A.P.: Engineering the singlet-triplet energy splitting in a TADF molecule. J. Mater. Chem. C 4, 3815–1824 (2016)

    Google Scholar 

  • Sato, K., Shizu, K., Yoshimura, K., Kawada, A., Miyazaki, H., Adachi, C.: Organic luminescent molecule with energetically equivalent singlet and triplet excited states for organic light-emitting diodes. Phys. Rev. Lett. 110, 1–5 (2013)

    Article  Google Scholar 

  • Siddiqui, Q.T., Awasthi, A.A., Bhui, P., Muneer, M., Chandrakumar, K.R.S., Bose, S., Agarwal, N.: Thermally activated delayed fluorescence (Green) in undoped film and exciplex emission (Blue) in acridone-carbazole derivatives for OLEDs. J. Phys. Chem. C 123, 1003–1014 (2018)

    Article  Google Scholar 

  • Siddiqui, Q.T., Awasthi, A.A., Bhui, P., Parab, P., Muneer, M., Bose, S., Agarwal, N.: TADF and exciplex emission in a xanthone–carbazole derivative and tuning of its electroluminescence with applied voltage. RSC Adv. 9, 40248–40254 (2019)

    Google Scholar 

  • Strickler, S.J., Berg, R.A.: Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 37, 814–822 (1962)

    Article  CAS  Google Scholar 

  • Sun, H., Hu, Z., Zhong, C., Chen, X., Sun, Z., Bredas, J.: Impact of dielectric constant on the singlet-triplet gap in thermally activated delayed fluorescence (TADF) materials impact of dielectric constant on the singlet-triplet gap in thermally activated delayed fluorescence materials. J. Phys. Chem. Lett. 8, 2393–2398 (2017)

    Article  CAS  Google Scholar 

  • Taneda, M., Shizu, K., Tanaka, H., Adachi, C.: High efficiency thermally activated delayed fluorescence based on 1 3 5-Tris(4-(Diphenylamino)Phenyl)-2 4 6-tricyanobenzene. Chem. Commun. 51, 5028–5031 (2015)

    Article  CAS  Google Scholar 

  • Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C.: Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012)

    Article  CAS  Google Scholar 

  • Vikramaditya, T., Saisudhakar, M., Sumithra, K.: Computational study on thermally activated delayed fluorescence of donor-linker-acceptor network molecules. RSC Adv. 6, 37203–37211 (2016)

    Article  CAS  Google Scholar 

  • Wang, S., Yan, X., Cheng, Z., Zhang, H., Liu, Y., Wang, Y.: Highly efficient near-infrared delayed fluorescence organic light emitting diodes using a phenanthrene-based charge-transfer compound. Angew. Chemie Int. Ed. 54, 13068–13072 (2015)

    Article  CAS  Google Scholar 

  • Wang, K., Shi, Y.Z., Zheng, C.J., Liu, W., Liang, K., Li, X., Zhang, M., Lin, H., Tao, S.L., Lee, C.S., Ou, X.M., Zhang, X.H.: Control of dual conformations: developing thermally activated delayed fluorescence emitters for highly efficient single-emitter white organic light-emitting diodes. ACS Appl. Mater. Interfaces 10, 31515–31525 (2018)

    Article  CAS  Google Scholar 

  • Ward, J.S., Nobuyasu, R.S., Batsanov, A.S., Data, P., Monkman, A.P., Dias, F.B., Bryce, M.R.: The interplay of thermally activated delayed fluorescence (TADF) and room temperature organic phosphorescence in sterically-constrained donor-acceptor charge-transfer molecules. Chem. Commun. 52, 2612–2615 (2016)

    Article  CAS  Google Scholar 

  • Xie, F., Zhou, J., Li, Y.: Effects of the relative position and number of donors and acceptors on the properties of TADF materials. J. Mater. Chem. C 8(28), 9476–9494 (2020)

    Article  CAS  Google Scholar 

  • Xu, Y., Xu, P., Hu, D., Ma, Y.: Recent progress in hot exciton materials for organic light-emitting diodes. Chem. Soc. Rev. 50, 1030–1069 (2021)

    Article  CAS  Google Scholar 

  • Yang, Z., Mao, Z., Xie, Z., Zhang, Y., Liu, S., Zhao, J., Xu, J., Chi, Z., Aldred, M.P.: Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 46, 915–1016 (2017)

    Article  CAS  Google Scholar 

  • Youn Lee, S., Yasuda, T., Nomura, H., Adachi, C.: High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor-acceptor hybrid molecules. Appl. Phys. Lett. 101, 9–13 (2012)

    Article  Google Scholar 

  • Zhang, Q., Li, J., Shizu, K., Huang, S., Hirata, S., Miyazaki, H., Adachi, C.: Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J. Am. Chem. Soc. 134, 14706–14709 (2012)

    Article  CAS  Google Scholar 

  • Zhang, D., Cai, M., Zhang, Y., Zhang, D., Duan, L.: Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability. Mater. Horizons 3, 145–151 (2016)

    Article  CAS  Google Scholar 

  • Zhang, W., Song, H., Kong, J., Kuang, Z., Li, M., Guo, Q., Chen, C.F., Xia, A.: Importance of conformational change in excited states for efficient thermally activated delayed fluorescence. J. Phys. Chem. C 123, 19322–19332 (2019)

    Article  CAS  Google Scholar 

  • Zhang, X., Shi, Y., Cai, L., Zhou, Y., Wang, C.K., Lin, L.: Solvent effect on the photophysical properties of thermally activated delayed fluorescence molecules. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 225, 117473 (2020)

    Google Scholar 

  • Zuehlsdorff, T.J., Isborn, C.M.: Modeling absorption spectra of molecules in solution. Int. J. Quantum Chem. 119, e25719 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behera, B.K., Agarwal, N. (2024). Thermally Activated Delayed Fluorescence in Metal-Free Small Organic Materials: Understanding and Applications in OLEDs. In: Ningthoujam, R.S., Tyagi, A.K. (eds) Handbook of Materials Science, Volume 1. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-99-7145-9_9

Download citation

Publish with us

Policies and ethics