Skip to main content

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

  • 82 Accesses

Abstract

We'll concentrate on the diagnostic aspect in this chapter. The below figure presents the topics focused on in this chapter hierarchically. Since a long time ago, iron oxide nanoparticles (IONP) with distinctive magnetic characteristics and great biocompatibility have been employed extensively as MRI contrast agents (CA). The recent advancement of IONP as classic T2 CA and its novel applications for many MRI modalities, including T1 imaging, simultaneous T2/T1, MRI/other imaging modality, and environment-responsive CA remain uncommon, nevertheless. This chapter begins with an examination of the path for the development of high-performance MRI CA in both T2 and T1 modalities based on the Solomon-Bloembergen-Morgan (SBM) theory and the quantum mechanical outer sphere. Recent attempts to rationally improve the MRI contrast of IONP by modifying the critical parameters, such as magnetization, size, effective radius, inhomogeneity of the magnetic field generated by the environment, crystal phase, the coordination number of water, electronic relaxation time, and surface modification, are outlined. The introduction of a second imaging modality to increase imaging accuracy, equipping IONP with environment response capacity to elevate the signal difference between the lesion and normal tissue, and optimizing the interface structure to increase the amount of IONP that accumulates in the lesion are all strategies to increase the in vivo contrast efficiency of IONP. This comprehensive part gives readers a thorough overview of current studies on the creation of high-performance IONP-based MRI CAs. It is believed that this would inspire the design of the next-generation MRI CAs for rapid and precise diagnosis.

Additionally, over the past few decades, the use of imaging modalities like magnetic resonance imaging (MRI), positron emission tomography (PET), and single photon emission computed tomography (SPECT) in routine clinical practice has made it possible for clinicians to accurately diagnose diseases in their early stages. Radiolabeled iron oxide nanoparticles (RIONs) are a platform of complex physical features because they mix their inherent magnetic behavior with the extrinsic nature of the radionuclide additive. The capacity of RIONs to combine the high sensitivity of SPECT or PET with the high spatial resolution of MRI in real time makes them the physical parents of the so-called dual-modality contrast agents (DMCAs) used in SPECT/MRI and PET/MRI applications. The synthesis of RIONs and their in vivo examination of their biodistribution and imaging effectiveness as possible SPECT/MRI or PET/MRI DMCAs are other topics covered in this chapter.

Abstract’s hierarchical chart of the most common diagnosis methods in medicine based on Imaging and ways to boost their performance (discussed in depth in this chapter)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abakumov MA, Nukolova NV, Sokolsky-Papkov M, Shein SA, Sandalova TO, Vishwasrao HM, Grinenko NF, Gubsky IL, Abakumov AM, Kabanov AV (2015) VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomed Nanotechnol Biol Med 11(4):825–833

    Google Scholar 

  • Ai F, Ferreira CA, Chen F, Cai W (2016) Engineering of radiolabeled iron oxide nanoparticles for dual-modality imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(4):619–630

    Article  Google Scholar 

  • Ai H, Flask C, Weinberg B, Shuai XT, Pagel MD, Farrell D, Duerk J, Gao J (2005) Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv Mater 17(16):1949–1952

    Article  Google Scholar 

  • Akopdzhanov A, Shimanovskii N, Borisova A, Parshin V, Frolov G (2020) Magnetic ferrite nanoparticles as a possible platform for magnetic-resonance contrast agents. Pharm Chem J 53:1164–1167

    Article  Google Scholar 

  • Aliakbari M, Mohammadian E, Esmaeili A, Pahlevanneshan Z (2019) Differential effect of polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles on BT-474 human breast cancer cell viability. Toxicol in Vitro 54:114–122

    Article  Google Scholar 

  • Alipour A, Soran-Erdem Z, Utkur M, Sharma VK, Algin O, Saritas EU, Demir HV (2018) A new class of cubic SPIONs as a dual-mode T1 and T2 contrast agent for MRI. Magn Reson Imaging 49:16–24

    Article  Google Scholar 

  • Almasi T, Gholipour N, Akhlaghi M, Mokhtari Kheirabadi A, Mazidi SM, Hosseini SH, Geramifar P, Beiki D, Rostampour N, Shahbazi Gahrouei D (2021) Development of Ga-68 radiolabeled DOTA functionalized and acetylated PAMAM dendrimer-coated iron oxide nanoparticles as PET/MR dual-modal imaging agent. Int J Polym Mater Polym Biomater 70(15):1077–1089

    Article  Google Scholar 

  • Ametamey SM, Honer M, Schubiger PA (2008) Molecular imaging with PET. Chem Rev 108(5):1501–1516

    Article  Google Scholar 

  • Ángeles-Pascual A, Piñón-Hernández J, Estevez-González M, Pal U, Velumani S, Pérez R, Esparza R (2018) Structure, magnetic and cytotoxic behaviour of solvothermally grown Fe3O4@ Au core-shell nanoparticles. Mater Charact 142:237–244

    Article  Google Scholar 

  • Anijdan SM, Gholami A, Lahooti A (2020) Development of radiolabeled dextran coated iron oxide nanoparticles with 111In and its biodistribution studies. Int J Radiat Res 18(3):539–547

    Google Scholar 

  • Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  ADS  Google Scholar 

  • Armstrong RE, Horáček M, Zijlstra P (2020) Plasmonic assemblies for real-time single-molecule biosensing. Small 16(52):2003934

    Article  Google Scholar 

  • Aryal S, Key J, Stigliano C, Ananta JS, Zhong M, Decuzzi P (2013) Engineered magnetic hybrid nanoparticles with enhanced relaxivity for tumor imaging. Biomaterials 34(31):7725–7732

    Article  Google Scholar 

  • Atrei A, Innocenti C, Lamponi S, Paesano S, Leone G, Reale A, Paolino M, Cappelli A (2020) Covalent hyaluronic-based coating of magnetite nanoparticles: Preparation, physicochemical and biological characterization. Mater Sci Eng, C 107:110271

    Article  Google Scholar 

  • Baaziz W, Pichon BP, Fleutot S, Liu Y, Lefevre C, Greneche J-M, Toumi M, Mhiri T, Begin-Colin S (2014) Magnetic iron oxide nanoparticles: reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. J Phys Chem C 118(7):3795–3810

    Article  Google Scholar 

  • Badrigilan S, Shaabani B, Gharehaghaji N, Mesbahi A (2019) Iron oxide/bismuth oxide nanocomposites coated by graphene quantum dots: “Three-in-one” theranostic agents for simultaneous CT/MR imaging-guided in vitro photothermal therapy. Photodiagn Photodyn Ther 25:504–514

    Article  Google Scholar 

  • Bai C, Jia Z, Song L, Zhang W, Chen Y, Zang F, Ma M, Gu N, Zhang Y (2018) Time-dependent T1–T2 switchable magnetic resonance imaging realized by c (RGDyK) modified ultrasmall Fe3O4 nanoprobes. Adv Func Mater 28(32):1802281

    Article  Google Scholar 

  • Baishya B, Segawa TF, Bodenhausen G (2009) Apparent transverse relaxation rates in systems with scalar-coupled protons. J Am Chem Soc 131(48):17538–17539

    Article  Google Scholar 

  • Bamrungsap S, Shukoor MI, Chen T, Sefah K, Tan W (2011) Detection of lysozyme magnetic relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles. Anal Chem 83(20):7795–7799

    Article  Google Scholar 

  • Bao Y, Sherwood J, Sun Z (2018) Magnetic iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging. J Mater Chem C 6(6):1280–1290

    Article  Google Scholar 

  • Barick K, Aslam M, Lin Y-P, Bahadur D, Prasad PV, Dravid VP (2009) Novel and efficient MR active aqueous colloidal Fe 3 O 4 nanoassemblies. J Mater Chem 19(38):7023–7029

    Article  Google Scholar 

  • Barrow M, Taylor A, Murray P, Rosseinsky MJ, Adams DJ (2015) Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chem Soc Rev 44(19):6733–6748

    Article  Google Scholar 

  • Bartholoma MD, Louie AS, Valliant JF, Zubieta J (2010) Technetium and gallium derived radiopharmaceuticals: comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chem Rev 110(5):2903–2920

    Article  Google Scholar 

  • Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci 104(39):15549–15554

    Article  ADS  Google Scholar 

  • Belderbos S, González-Gómez MA, Cleeren F, Wouters J, Piñeiro Y, Deroose CM, Coosemans A, Gsell W, Bormans G, Rivas J (2020) Simultaneous in vivo PET/MRI using fluorine-18 labeled Fe3O4@ Al (OH) 3 nanoparticles: Comparison of nanoparticle and nanoparticle-labeled stem cell distribution. EJNMMI Res 10(1):1–13

    Article  Google Scholar 

  • Bertini I, Capozzi F, Luchinat C, Xia Z (1993) Nuclear and electron relaxation of hexaaquairon (3+). J Phys Chem 97(6):1134–1137

    Article  Google Scholar 

  • Biju S, Gallo J, Bañobre‐López M, Manshian BB, Soenen SJ, Himmelreich U, Vander Elst L, Parac‐Vogt TN (2018) A magnetic chameleon: biocompatible lanthanide fluoride nanoparticles with magnetic field dependent tunable contrast properties as a versatile contrast agent for low to ultrahigh field MRI and optical imaging in biological window. Chem A Eur J 24(29):7388–7397

    Google Scholar 

  • Bjørnerud A, Johansson L (2004) The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR in Biomed Int J Devoted Dev Appl Mag Reson in Vivo 17(7):465–477

    Google Scholar 

  • Bleuzen A, Foglia F, Furet E, Helm L, Merbach AE, Weber J (1996) Second coordination shell water exchange rate and mechanism: experiments and modeling on hexaaquachromium (III). J Am Chem Soc 118(50):12777–12787

    Article  Google Scholar 

  • Bloembergen N, Morgan L (1961) Proton relaxation times in paramagnetic solutions. Effects of electron spin relaxation. J Chem Phys 34(3):842–850

    Article  ADS  Google Scholar 

  • Bogdanov AA Jr, Dixon AJ, Gupta S, Zhang L, Zheng S, Shazeeb MS, Zhang S, Klibanov AL (2016) Synthesis and testing of modular dual-modality nanoparticles for magnetic resonance and multispectral photoacoustic imaging. Bioconjug Chem 27(2):383–390

    Article  Google Scholar 

  • Bonnet CS, Fries PH, Crouzy S, Delangle P (2010) Outer-sphere investigation of MRI relaxation contrast agents. Example of a cyclodecapeptide gadolinium complex with second-sphere water. J Phys Chem B 114(26):8770–8781

    Article  Google Scholar 

  • Brooks RA (2002) T2-shortening by strongly magnetized spheres: a chemical exchange model. Magn Reson Med Official J Int Soc Magn Reson Med 47(2):388–391

    Article  Google Scholar 

  • Brooks RA, Moiny F, Gillis P (2001) On T2-shortening by weakly magnetized particles: the chemical exchange model. Magn Reson Med Official J Int Soc Magn Reson Med 45(6):1014–1020

    Article  Google Scholar 

  • Burke BP, Baghdadi N, Clemente GS, Camus N, Guillou A, Kownacka AE, Domarkas J, Halime Z, Tripier R, Archibald SJ (2015a) Final step gallium-68 radiolabelling of silica-coated iron oxide nanorods as potential PET/MR multimodal imaging agents. Faraday Discuss 175:59–71

    Google Scholar 

  • Burke BP, Baghdadi N, Kownacka AE, Nigam S, Clemente GS, Al-Yassiry MM, Domarkas J, Lorch M, Pickles M, Gibbs P (2015b) Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions. Nanoscale 7(36):14889–14896

    Article  ADS  Google Scholar 

  • Cai H, Li K, Li J, Wen S, Chen Q, Shen M, Zheng L, Zhang G, Shi X (2015) Dendrimer-assisted formation of Fe3O4/Au nanocomposite particles for targeted dual mode CT/MR imaging of tumors. Small 11(35):4584–4593

    Article  Google Scholar 

  • Cai H, Li K, Shen M, Wen S, Luo Y, Peng C, Zhang G, Shi X (2012) Facile assembly of Fe 3 O 4@ Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem 22(30):15110–15120

    Article  Google Scholar 

  • Cai W, Chen K, Li Z-B, Gambhir SS, Chen X (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48(11):1862–1870

    Article  Google Scholar 

  • Caldemeyer KS, Buckwalter KA (1999) The basic principles of computed tomography and magnetic resonance imaging. J Am Acad Dermatol 41(5):768–771

    Article  Google Scholar 

  • Cao Y, He Y, Mao Z, Kuang Y, Liu M, Zhang Y, Pei R (2020a) Synergistic regulation of longitudinal and transverse relaxivity of extremely small iron oxide nanoparticles (ESIONPs) using pH-responsive nanoassemblies. Nanoscale 12(33):17502–17516

    Article  Google Scholar 

  • Cao Y, Mao Z, He Y, Kuang Y, Liu M, Zhou Y, Zhang Y, Pei R (2020b) Extremely small iron oxide nanoparticle-encapsulated nanogels as a glutathione-responsive T1 contrast agent for tumor-targeted magnetic resonance imaging. ACS Appl Mater Interfaces 12(24):26973–26981

    Article  Google Scholar 

  • Cao Z, Yu Q, Xue H, Cheng G, Jiang S (2010) Nanoparticles for drug delivery prepared from amphiphilic PLGA zwitterionic block copolymers with sharp contrast in polarity between two blocks. Angew Chem Int Ed 49(22):3771–3776

    Article  Google Scholar 

  • Carril M (2017) Activatable probes for diagnosis and biomarker detection by MRI. Journal of Materials Chemistry B 5(23):4332–4347

    Article  Google Scholar 

  • Carroll MR, Woodward RC, House MJ, Teoh WY, Amal R, Hanley TL, St Pierre TG (2009) Experimental validation of proton transverse relaxivity models for superparamagnetic nanoparticle MRI contrast agents. Nanotechnology 21(3):035103

    Article  ADS  Google Scholar 

  • Chakravarty R, Valdovinos HF, Chen F, Lewis CM, Ellison PA, Luo H, Meyerand ME, Nickles RJ, Cai W (2014) Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in-vivo dual-modality PET/MR imaging. Adv Mater 26(30):5119–5123

    Article  Google Scholar 

  • Chen F, Ellison PA, Lewis CM, Hong H, Zhang Y, Shi S, Hernandez R, Meyerand ME, Barnhart TE, Cai W (2013) Chelator-free synthesis of a dual-modality PET/MRI agent. Angew Chem Int Ed 52(50):13319–13323

    Article  Google Scholar 

  • Chen S, Rong L, Lei Q, Cao P-X, Qin S-Y, Zheng D-W, Jia H-Z, Zhu J-Y, Cheng S-X, Zhuo R-X (2016) A surface charge-switchable and folate modified system for co-delivery of proapoptosis peptide and p53 plasmid in cancer therapy. Biomaterials 77:149–163

    Article  Google Scholar 

  • Chen X, Li G, Han Q, Li X, Li L, Wang T, Wang C (2017) Rational design of branched Au–fe3O4 Janus nanoparticles for simultaneous trimodal imaging and photothermal therapy of cancer cells. Chem Eur J 23(68):17204–17208

    Google Scholar 

  • Chen Y, Ye D, Wu M, Chen H, Zhang L, Shi J, Wang L (2014) Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv Mater 26(41):7019–7026

    Article  Google Scholar 

  • Cheng K, Yang M, Zhang R, Qin C, Su X, Cheng Z (2014) Hybrid nanotrimers for dual T 1 and T 2-weighted magnetic resonance imaging. ACS Nano 8(10):9884–9896

    Article  Google Scholar 

  • Cheong S, Ferguson P, Feindel KW, Hermans IF, Callaghan PT, Meyer C, Slocombe A, Su CH, Cheng FY, Yeh CS (2011) Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angew Chem 123(18):4292–4295

    Article  ADS  Google Scholar 

  • Cho B-B, Park JH, Jung SJ, Lee J, Lee JH, Hur MG, Justin Raj C, Yu K-H (2015) Synthesis and characterization of 68 Ga labeled Fe 3 O 4 nanoparticles for positron emission tomography (PET) and magnetic resonance imaging (MRI). J Radioanal Nucl Chem 305:169–178

    Article  Google Scholar 

  • Cho EC, Xie J, Wurm PA, Xia Y (2009) Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett 9(3):1080–1084

    Article  ADS  Google Scholar 

  • Choi CHJ, Alabi CA, Webster P, Davis ME (2010a) Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci 107(3):1235–1240

    Article  ADS  Google Scholar 

  • Choi J-S, Kim S, Yoo D, Shin T-H, Kim H, Gomes MD, Kim SH, Pines A, Cheon J (2017) Distance-dependent magnetic resonance tuning as a versatile MRI sensing platform for biological targets. Nat Mater 16(5):537–542

    Article  ADS  Google Scholar 

  • Choi J-S, Lee J-H, Shin T-H, Song H-T, Kim EY, Cheon J (2010b) Self-confirming “AND” logic nanoparticles for fault-free MRI. J Am Chem Soc 132(32):11015–11017

    Article  Google Scholar 

  • Choi Js, Park JC, Nah H, Woo S, Oh J, Kim KM, Cheon GJ, Chang Y, Yoo J, Cheon J (2008) A hybrid nanoparticle probe for dual‐modality positron emission tomography and magnetic resonance imaging. Angew Chem Int Ed 47(33):6259–6262

    Google Scholar 

  • Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS (2013) Radiometals for combined imaging and therapy. Chem Rev 113(2):858–883

    Article  Google Scholar 

  • Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T (2019) Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 138:302–325

    Article  Google Scholar 

  • Das B, Choudhury B, Gomathi A, Manna AK, Pati S, Rao C (2011) Interaction of inorganic nanoparticles with graphene. ChemPhysChem 12(5):937–943

    Article  Google Scholar 

  • de Barros AB, Tsourkas A, Saboury B, Cardoso VN, Alavi A (2012) Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res 2:1–15

    Article  Google Scholar 

  • de Haan HW (2011) Mechanisms of proton spin dephasing in a system of magnetic particles. Magn Reson Med 66(6):1748–1758

    Article  Google Scholar 

  • de Haan HW, Paquet C (2011) Enhancement and degradation of the R relaxation rate resulting from the encapsulation of magnetic particles with hydrophilic coatings. Magn Reson Med 66(6):1759–1766

    Article  Google Scholar 

  • De Rosales RTM, Finucane C, Mather S, Blower P (2009) Bifunctional bisphosphonate complexes for the diagnosis and therapy of bone metastases. Chem Commun (32):4847–4849

    Google Scholar 

  • de Souza Albernaz M, Toma SH, Clanton J, Araki K, Santos-Oliveira R (2018) Decorated superparamagnetic iron oxide nanoparticles with monoclonal antibody and diethylene-triamine-pentaacetic acid labeled with thechnetium-99m and galium-68 for breast cancer imaging. Pharm Res 35:1–9

    Article  Google Scholar 

  • Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44(18):2782–2785

    Article  Google Scholar 

  • Deng S, Zhang W, Zhang B, Hong R, Chen Q, Dong J, Chen Y, Chen Z, Wu Y (2015) Radiolabeled cyclic arginine-glycine-aspartic (RGD)-conjugated iron oxide nanoparticles as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer. J Nanopart Res 17:1–11

    Article  Google Scholar 

  • dos Santos AlF, De Almeida DRQ, Terra LF, Baptista McS, Labriola L (2019) Photodynamic therapy in cancer treatment-an update review. J Cancer Metastasis Treat 5:25

    Google Scholar 

  • Duan X, Li Y (2013) Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9(9–10):1521–1532

    Article  Google Scholar 

  • Duan Y, Xu Y, Mao D, Liew WH, Guo B, Wang S, Cai X, Thakor N, Yao K, Zhang CJ (2018) Photoacoustic and magnetic resonance imaging bimodal contrast agent displaying amplified photoacoustic signal. Small 14(42):1800652

    Article  Google Scholar 

  • Ducommun Y, Newman KE, Merbach AE (1980) High-pressure oxygen-17 NMR evidence for a gradual mechanistic changeover from Ia to Id for water exchange on divalent octahedral metal ions going from manganese (II) to nickel (II). Inorg Chem 19(12):3696–3703

    Article  Google Scholar 

  • Estephan ZG, Schlenoff PS, Schlenoff JB (2011) Zwitteration as an alternative to PEGylation. Langmuir 27(11):6794–6800

    Article  Google Scholar 

  • Evertsson M, Kjellman P, Cinthio M, Andersson R, Tran TA, in’t Zandt R, Grafström G, Toftevall H, Fredriksson S, Ingvar C (2017) Combined magnetomotive ultrasound, PET/CT, and MR imaging of 68Ga-labelled superparamagnetic iron oxide nanoparticles in rat sentinel lymph nodes in vivo. Sci Reports 7(1):4824

    Google Scholar 

  • Feng L, Yang D, He F, Gai S, Li C, Dai Y, Yang P (2017) A Core–shell-satellite structured Fe3O4@ g-C3N4–UCNPs–PEG for T1/T2-weighted dual-modal MRI-guided photodynamic therapy. Adv Healthcare Mater 6(18):1700502

    Article  Google Scholar 

  • Fernandes DA, Kolios MC (2018) Intrinsically absorbing photoacoustic and ultrasound contrast agents for cancer therapy and imaging. Nanotechnology 29(50):505103

    Article  Google Scholar 

  • Fernandes DA, Kolios MC (2019) Near-infrared absorbing nanoemulsions as nonlinear ultrasound contrast agents for cancer theranostics. J Mol Liq 287:110848

    Article  Google Scholar 

  • Fernández-Barahona I, Gutiérrez L, Veintemillas-Verdaguer S, Pellico J, Morales MdP, Catala M, Del Pozo MA, Ruiz-Cabello Js, Herranz F (2019) Cu-doped extremely small iron oxide nanoparticles with large longitudinal relaxivity: one-pot synthesis and in vivo targeted molecular imaging. ACS Omega 4(2):2719–2727

    Google Scholar 

  • Frison R, Cernuto G, Cervellino A, Zaharko O, Colonna GM, Guagliardi A, Masciocchi N (2013) Magnetite–maghemite nanoparticles in the 5–15 nm range: correlating the core–shell composition and the surface structure to the magnetic properties. A total scattering study. Chem Mater 25(23):4820–4827

    Article  Google Scholar 

  • Fu A, Wilson RJ, Smith BR, Mullenix J, Earhart C, Akin D, Guccione S, Wang SX, Gambhir SS (2012) Fluorescent magnetic nanoparticles for magnetically enhanced cancer imaging and targeting in living subjects. ACS Nano 6(8):6862–6869

    Article  Google Scholar 

  • Fu C-M, Wang Y-F, Chao Y-C, Hung S-H, Yang M-D (2004) Directly labeling ferrite nanoparticles with Tc-99m radioisotope for diagnostic applications. IEEE Trans Magn 40(4):3003–3005

    Article  ADS  Google Scholar 

  • Fu S, Cai Z, Ai H (2021) Stimulus-responsive nanoparticle magnetic resonance imaging contrast agents: design considerations and applications. Adv Healthcare Mater 10(5):2001091

    Article  Google Scholar 

  • Gallo J, Kamaly N, Lavdas I, Stevens E, Nguyen QD, Wylezinska-Arridge M, Aboagye EO, Long NJ (2014) CXCR4-targeted and MMP-responsive iron oxide nanoparticles for enhanced magnetic resonance imaging. Angew Chem Int Ed 53(36):9550–9554

    Article  Google Scholar 

  • Gao J, Zhang W, Huang P, Zhang B, Zhang X, Xu B (2008) Intracellular spatial control of fluorescent magnetic nanoparticles. J Am Chem Soc 130(12):3710–3711

    Article  Google Scholar 

  • Gao Z, Hou Y, Zeng J, Chen L, Liu C, Yang W, Gao M (2017) Tumor microenvironment-triggered aggregation of antiphagocytosis 99mTc-Labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo. Adv Mater 29(24):1701095

    Article  Google Scholar 

  • García KP, Zarschler K, Barbaro L, Barreto JA, O’Malley W, Spiccia L, Stephan H, Graham B (2014) Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10(13):2516–2529

    Article  Google Scholar 

  • Gholipour N, Akhlaghi M, Kheirabadi AM, Geramifar P, Beiki D (2020) Development of Ga-68 labeled, biotinylated thiosemicarbazone dextran-coated iron oxide nanoparticles as multimodal PET/MRI probe. Int J Biol Macromol 148:932–941

    Article  Google Scholar 

  • Gillis P, Moiny F, Brooks RA (2002) On T2-shortening by strongly magnetized spheres: a partial refocusing model. Magn Reson Med Off J Int Soc Magn Reson Med 47(2):257–263

    Article  Google Scholar 

  • Glaus C, Rossin R, Welch MJ, Bao G (2010) In vivo evaluation of 64Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug Chem 21(4):715–722

    Article  Google Scholar 

  • Gong T, Dong Z, Fu Y, Gong T, Deng L, Zhang Z (2019) Hyaluronic acid modified doxorubicin loaded Fe 3 O 4 nanoparticles effectively inhibit breast cancer metastasis. J Mater Chem B 7(38):5861–5872

    Article  Google Scholar 

  • Gros CP, Eggenspiller A, Nonat A, Barbe J-M, Denat F (2011) New potential bimodal imaging contrast agents based on DOTA-like and porphyrin macrocycles. MedChemComm 2(2):119–125

    Article  Google Scholar 

  • Guéron M (1975) Nuclear relaxation in macromolecules by paramagnetic ions: a novel mechanism. J Magn Reson (1969) 19(1):58–66

    Google Scholar 

  • Guo W, Li D, Zhu J-A, Wei X, Men W, Yin D, Fan M, Xu Y (2014) A magnetic nanoparticle stabilized gas containing emulsion for multimodal imaging and triggered drug release. Pharm Res 31:1477–1484

    Article  Google Scholar 

  • Hachani R, Lowdell M, Birchall M, Hervault A, Mertz D, Begin-Colin S, Thanh NTK (2016) Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 8(6):3278–3287

    Article  ADS  Google Scholar 

  • Hadjipanayis CG, Bonder MJ, Balakrishnan S, Wang X, Mao H, Hadjipanayis GC (2008) Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 4(11):1925–1929

    Article  Google Scholar 

  • Hajesmaeelzadeh F, Shanehsazzadeh S, Grüttner C, Daha FJ, Oghabian MA (2016) Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI. Iran J Basic Med Sci 19(2):166

    Google Scholar 

  • Hajiramezanali M, Atyabi F, Mosayebnia M, Akhlaghi M, Geramifar P, Jalilian AR, Mazidi SM, Yousefnia H, Shahhosseini S, Beiki D (2019) 68Ga-radiolabeled bombesin-conjugated to trimethyl chitosan-coated superparamagnetic nanoparticles for molecular imaging: preparation, characterization and biological evaluation. Int J Nanomed 14:2591

    Article  Google Scholar 

  • Han X, Xu K, Taratula O, Farsad K (2019) Applications of nanoparticles in biomedical imaging. Nanoscale 11(3):799–819

    Article  Google Scholar 

  • Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22(25):2729–2742

    Article  Google Scholar 

  • Hauser AK, Mitov MI, Daley EF, McGarry RC, Anderson KW, Hilt JZ (2016) Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials 105:127–135

    Article  Google Scholar 

  • He M-Q, Yu Y-L, Wang J-H (2020) Biomolecule-tailored assembly and morphology of gold nanoparticles for LSPR applications. Nano Today 35:101005

    Article  Google Scholar 

  • Helgason Ö, Rasmussen HK, Mørup S (2006) Spin-canting and transverse relaxation in maghemite nanoparticles and in tin-doped maghemite. J Magn Magn Mater 302(2):413–420

    Article  ADS  Google Scholar 

  • Hicks RJ, Hofman MS (2012) Is there still a role for SPECT–CT in oncology in the PET–CT era? Nat Rev Clin Oncol 9(12):712–720

    Article  Google Scholar 

  • Holik HA, Ibrahim FM, Elaine AA, Putra BD, Achmad A, Kartamihardja AHS (2022) The chemical scaffold of theranostic radiopharmaceuticals: radionuclide, bifunctional chelator, and pharmacokinetics modifying linker. Molecules 27(10):3062

    Article  Google Scholar 

  • Hosu O, Tertis M, Cristea C (2019) Implication of magnetic nanoparticles in cancer detection, screening and treatment. Magnetochemistry 5(4):55

    Article  Google Scholar 

  • Hu D, Liu C, Song L, Cui H, Gao G, Liu P, Sheng Z, Cai L (2016a) Indocyanine green–loaded polydopamine–iron ions coordination nanoparticles for photoacoustic/magnetic resonance dual-modal imaging-guided cancer photothermal therapy. Nanoscale 8(39):17150–17158

    Article  Google Scholar 

  • Hu F, Jia Q, Li Y, Gao M (2011) Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrast T1- and T2-weighted magnetic resonance imaging. Nanotechnology 22(24):245604

    Article  ADS  Google Scholar 

  • Hu Y, Mignani S, Majoral J-P, Shen M, Shi X (2018) Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem Soc Rev 47(5):1874–1900

    Article  Google Scholar 

  • Hu Y, Wang Y, Jiang J, Han B, Zhang S, Li K, Ge S, Liu Y (2016) Preparation and characterization of novel perfluorooctyl bromide nanoparticle as ultrasound contrast agent via layer-by-layer self-assembly for folate-receptor-mediated tumor imaging. BioMed Res Int 2016:1–14

    Google Scholar 

  • Huang D-M, Hsiao J-K, Chen Y-C, Chien L-Y, Yao M, Chen Y-K, Ko B-S, Hsu S-C, Tai L-A, Cheng H-Y (2009) The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 30(22):3645–3651

    Article  Google Scholar 

  • Huang G, Li H, Chen J, Zhao Z, Yang L, Chi X, Chen Z, Wang X, Gao J (2014) Tunable T 1 and T 2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control. Nanoscale 6(17):10404–10412

    Article  ADS  Google Scholar 

  • Huang J, Bu L, Xie J, Chen K, Cheng Z, Li X, Chen X (2010) Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4(12):7151–7160

    Article  Google Scholar 

  • Huang J, Wang L, Lin R, Wang AY, Yang L, Kuang M, Qian W, Mao H (2013) Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting. ACS Appl Mater Interfaces 5(11):4632–4639

    Article  Google Scholar 

  • Hunt JP, Grant M, Dodgen HW (1971) Water exchange between solvent and aquomanganese (II) and aquophenanthrolinemanganese (II) complexes. Inorg Chem 10(1):71–73

    Article  Google Scholar 

  • Huynh E, Leung BY, Helfield BL, Shakiba M, Gandier J-A, Jin CS, Master ER, Wilson BC, Goertz DE, Zheng G (2015) In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat Nanotechnol 10(4):325–332

    Article  ADS  Google Scholar 

  • Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 8:927–934

    Google Scholar 

  • Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801

    Article  Google Scholar 

  • Im GH, Kim SM, Lee D-G, Lee WJ, Lee JH, Lee IS (2013) Fe3O4/MnO hybrid nanocrystals as a dual contrast agent for both T1-and T2-weighted liver MRI. Biomaterials 34(8):2069–2076

    Article  Google Scholar 

  • Injumpa W, Ritprajak P, Insin N (2017) Size-dependent cytotoxicity and inflammatory responses of PEGylated silica-iron oxide nanocomposite size series. J Magn Magn Mater 427:60–66

    Article  ADS  Google Scholar 

  • Ivanova A, Nikitin A, Gabashvily A, Vishnevskiy D, Abakumov M (2021) Synthesis and intensive analysis of antibody labeled single core magnetic nanoparticles for targeted delivery to the cell membrane. J Magn Magn Mater 521:167487

    Article  Google Scholar 

  • Jang Jt, Nah H, Lee JH, Moon SH, Kim MG, Cheon J (2009) Critical enhancements of MRI contrast and hyperthermic effects by dopant‐controlled magnetic nanoparticles. Angew Chem Int Ed 48(7):1234–1238

    Google Scholar 

  • Janowski M, Bulte JW, Walczak P (2012) Personalized nanomedicine advancements for stem cell tracking. Adv Drug Deliv Rev 64(13):1488–1507

    Article  Google Scholar 

  • Jeon M, Halbert MV, Stephen ZR, Zhang M (2021) Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: fundamentals, challenges, applications, and prospectives. Adv Mater 33(23):1906539

    Article  Google Scholar 

  • Jia L, Li X, Liu H, Xia J, Shi X, Shen M (2021) Ultrasound-enhanced precision tumor theranostics using cell membrane-coated and pH-responsive nanoclusters assembled from ultrasmall iron oxide nanoparticles. Nano Today 36:101022

    Article  Google Scholar 

  • Jia Z, Song L, Zang F, Song J, Zhang W, Yan C, Xie J, Ma Z, Ma M, Teng G (2016) Active-target T1-weighted MR imaging of tiny hepatic tumor via RGD modified ultra-small Fe3O4 nanoprobes. Theranostics 6(11):1780

    Article  Google Scholar 

  • Jin Y, Jia C, Huang S-W, O'donnell M, Gao X (2010) Multifunctional nanoparticles as coupled contrast agents. Nat Commun 1(1):41

    Google Scholar 

  • Jing L, Ding K, Kershaw SV, Kempson IM, Rogach AL, Gao M (2014) Magnetically engineered semiconductor quantum dots as multimodal imaging probes. Adv Mater 26(37):6367–6386

    Article  Google Scholar 

  • Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6(4):715–728

    Article  Google Scholar 

  • Joshi HM, De M, Richter F, He J, Prasad P, Dravid VP (2013) Effect of silica shell thickness of Fe 3 O 4–SiO x core–shell nanostructures on MRI contrast. J Nanopart Res 15:1–8

    Article  Google Scholar 

  • Joshi HM, Lin YP, Aslam M, Prasad P, Schultz-Sikma EA, Edelman R, Meade T, Dravid VP (2009) Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J Phys Chem C 113(41):17761–17767

    Article  Google Scholar 

  • Jun Y-W, Huh Y-M, Choi J-S, Lee J-H, Song H-T, Kim S, Yoon S, Kim K-S, Shin J-S, Suh J-S (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127(16):5732–5733

    Article  Google Scholar 

  • Justin C, Samrot AV, Sahithya CS, Bhavya KS, Saipriya C (2018) Preparation, characterization and utilization of coreshell super paramagnetic iron oxide nanoparticles for curcumin delivery. PLoS ONE 13(7):e0200440

    Article  Google Scholar 

  • Kang N, Xu D, Han Y, Lv X, Chen Z, Zhou T, Ren L, Zhou X (2019) Magnetic targeting core/shell Fe3O4/Au nanoparticles for magnetic resonance/photoacoustic dual-modal imaging. Mater Sci Eng, C 98:545–549

    Article  Google Scholar 

  • Karageorgou M-A, Bouziotis P, Stiliaris E, Stamopoulos D (2023) Radiolabeled iron oxide nanoparticles as dual modality contrast agents in SPECT/MRI and PET/MRI. Nanomaterials 13(3):503

    Article  Google Scholar 

  • Karageorgou M-A, Rapsomanikis A-N, Mirković M, Vranješ-Ðurić S, Stiliaris E, Bouziotis P, Stamopoulos D (2022) 99mTc-labeled iron oxide nanoparticles as dual-modality contrast agent: a preliminary study from synthesis to magnetic resonance and gamma-camera imaging in mice models. Nanomaterials 12(15):2728

    Article  Google Scholar 

  • Karageorgou M-A, Stamopoulos D (2021) Immunocompatibility of a new dual modality contrast agent based on radiolabeled iron-oxide nanoparticles. Sci Rep 11(1):9753

    Article  ADS  Google Scholar 

  • Karageorgou M-A, Vranješ-Djurić S, Radović M, Lyberopoulou A, Antić B, Rouchota M, Gazouli M, Loudos G, Xanthopoulos S, Sideratou Z (2017) Gallium-68 labeled iron oxide nanoparticles coated with 2, 3-dicarboxypropane-1, 1-diphosphonic acid as a potential pet/mr imaging agent: a proof-of-concept study. Contrast Media Mol Imag 2017:6951240

    Google Scholar 

  • Karakoçak BB, Raliya R, Davis JT, Chavalmane S, Wang W-N, Ravi N, Biswas P (2016) Biocompatibility of gold nanoparticles in retinal pigment epithelial cell line. Toxicol in Vitro 37:61–69

    Article  Google Scholar 

  • Karakoti AS, Das S, Thevuthasan S, Seal S (2011) PEGylated inorganic nanoparticles. Angew Chem Int Ed 50(9):1980–1994

    Article  Google Scholar 

  • Khurshid H, Hadjipanayis CG, Chen H, Li W, Mao H, Machaidze R, Tzitzios V, Hadjipanayis GC (2013) Core/shell structured iron/iron-oxide nanoparticles as excellent MRI contrast enhancement agents. J Magn Magn Mater 331:17–20

    Article  ADS  Google Scholar 

  • Kievit FM, Veiseh O, Fang C, Bhattarai N, Lee D, Ellenbogen RG, Zhang M (2010) Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano 4(8):4587–4594

    Article  Google Scholar 

  • Kim BH, Hackett MJ, Park J, Hyeon T (2014) Synthesis, characterization, and application of ultrasmall nanoparticles. Chem Mater 26(1):59–71

    Article  Google Scholar 

  • Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, Shin K, Lee Y, Kwon SG, Na HB (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T 1 magnetic resonance imaging contrast agents. J Am Chem Soc 133(32):12624–12631

    Article  Google Scholar 

  • Kim D, Kim J, Park YI, Lee N, Hyeon T (2018a) Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent Sci 4(3):324–336

    Article  Google Scholar 

  • Kim GG, Lee JY, Choi PS, Vyas CK, Yang SD, Hur MG, Park JH (2018b) Synthesis and evaluation of triphenylphosphonium conjugated 18 F-labeled silica nanoparticles for PET imaging. J Radioanal Nucl Chem 316:1099–1106

    Article  Google Scholar 

  • Kim M-H, Son H-Y, Kim G-Y, Park K, Huh Y-M, Haam S (2016) Redoxable heteronanocrystals functioning magnetic relaxation switch for activatable T1 and T2 dual-mode magnetic resonance imaging. Biomaterials 101:121–130

    Article  Google Scholar 

  • Kim S-M, Chae MK, Yim MS, Jeong IH, Cho J, Lee C, Ryu EK (2013) Hybrid PET/MR imaging of tumors using an oleanolic acid-conjugated nanoparticle. Biomaterials 34(33):8114–8121

    Article  Google Scholar 

  • Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, Marks JD, Benz CC, Park JW (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Can Res 66(13):6732–6740

    Article  Google Scholar 

  • Koenig SH, Kellar KE (1995) Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med 34(2):227–233

    Article  Google Scholar 

  • Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee TR (2013) Tuning the magnetic properties of nanoparticles. Int J Mol Sci 14(8):15977–16009

    Article  Google Scholar 

  • Kostevsek N, Locatelli E, Garrovo C, Arena F, Monaco I, Nikolov IP, Sturm S, Rozman KZ, Lorusso V, Giustetto P (2016) The one-step synthesis and surface functionalization of dumbbell-like gold–iron oxide nanoparticles: a chitosan-based nanotheranostic system. Chem Commun 52(2):378–381

    Article  Google Scholar 

  • Kostiv U, Patsula V, Šlouf M, Pongrac IM, Škokić S, Radmilović MD, Pavičić I, Vrček IV, Gajović S, Horák D (2017) Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe 3 O 4 & SiO 2 core–shell nanoparticles. RSC Adv 7(15):8786–8797

    Article  ADS  Google Scholar 

  • Kubicek V, Havlickova J, Kotek J, Tircsó G, Hermann P, Tóth É, Lukes I (2010) Gallium (III) complexes of DOTA and DOTA−monoamide: kinetic and thermodynamic studies. Inorg Chem 49(23):10960–10969

    Article  Google Scholar 

  • Kubíček Vc, Bohmova Z, Ševčíková R, Vaněk J, Lubal Pe, Polakova Z, Michalicová R, Kotek J, Hermann P (2018) NOTA complexes with copper (II) and divalent metal ions: kinetic and thermodynamic studies. Inorg Chem 57(6):3061–3072

    Google Scholar 

  • Kumar A, Sahoo B, Montpetit A, Behera S, Lockey RF, Mohapatra SS (2007) Development of hyaluronic acid–Fe2O3 hybrid magnetic nanoparticles for targeted delivery of peptides. Nanomed Nanotechnol Biol Med 3(2):132–137

    Google Scholar 

  • Kuprov I, Hodgson DM, Kloesges J, Pearson CI, Odell B, Claridge TD (2015) Anomalous Nuclear Overhauser Effects in Carbon-Substituted Aziridines: Scalar Cross-Relaxation of the First Kind. Angew Chem Int Ed 54(12):3697–3701

    Article  Google Scholar 

  • La Mar GN, Walker FA (1973) Proton nuclear magnetic resonance and electron spin resonance investigation of the electronic structure and magnetic properties of synthetic low-spin ferric porphyrins. J Am Chem Soc 95(6):1782–1790

    Article  Google Scholar 

  • LaConte LE, Nitin N, Zurkiya O, Caruntu D, O’Connor CJ, Hu X, Bao G (2007) Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity. J Magn Reson Imag Offi J Int Soc Magn Reson Med 26(6):1634–1641

    Google Scholar 

  • Lacroix L-M, Frey Huls N, Ho D, Sun X, Cheng K, Sun S (2011) Stable single-crystalline body centered cubic Fe nanoparticles. Nano Lett 11(4):1641–1645

    Article  ADS  Google Scholar 

  • Lahooti A, Sarkar S, Saligheh Rad H, Gholami A, Nosrati S, Muller RN, Laurent S, Grüttner C, Geramifar P, Yousefnia H (2017) PEGylated superparamagnetic iron oxide nanoparticles labeled with 68 Ga as a PET/MRI contrast agent: a biodistribution study. J Radioanal Nucl Chem 311:769–774

    Article  Google Scholar 

  • Landmark KJ, DiMaggio S, Ward J, Kelly C, Vogt S, Hong S, Kotlyar A, Myc A, Thomas TP, Penner-Hahn JE (2008) Synthesis, characterization, and in vitro testing of superparamagnetic iron oxide nanoparticles targeted using folic acid-conjugated dendrimers. ACS Nano 2(4):773–783

    Article  Google Scholar 

  • Lane LA, Qian X, Nie S (2015) SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem Rev 115(19):10489–10529

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  Google Scholar 

  • Ledda M, Fioretti D, Lolli MG, Papi M, Di Gioia C, Carletti R, Ciasca G, Foglia S, Palmieri V, Marchese R (2020) Biocompatibility assessment of sub-5 nm silica-coated superparamagnetic iron oxide nanoparticles in human stem cells and in mice for potential application in nanomedicine. Nanoscale 12(3):1759–1778

    Article  Google Scholar 

  • Lee H-Y, Li Z, Chen K, Hsu AR, Xu C, Xie J, Sun S, Chen X (2008) PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)–conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 49(8):1371–1379

    Article  Google Scholar 

  • Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006) Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128(22):7383–7389

    Article  Google Scholar 

  • Lee H, Shin T-H, Cheon J, Weissleder R (2015) Recent developments in magnetic diagnostic systems. Chem Rev 115(19):10690–10724

    Article  Google Scholar 

  • Lee H, Yu MK, Park S, Moon S, Min JJ, Jeong YY, Kang H-W, Jon S (2007a) Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J Am Chem Soc 129(42):12739–12745

    Article  Google Scholar 

  • Lee J-H, Huh Y-M, Jun Y-W, Seo J-W, Jang J-T, Song H-T, Kim S, Cho E-J, Yoon H-G, Suh J-S (2007b) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99

    Article  Google Scholar 

  • Lee JE, Lee N, Kim H, Kim J, Choi SH, Kim JH, Kim T, Song IC, Park SP, Moon WK (2010a) Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J Am Chem Soc 132(2):552–557

    Article  Google Scholar 

  • Lee JH, Jun Yw, Yeon SI, Shin JS, Cheon J (2006) Dual‐mode nanoparticle probes for high‐performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed 45(48):8160–8162

    Google Scholar 

  • Lee N, Cho HR, Oh MH, Lee SH, Kim K, Kim BH, Shin K, Ahn T-Y, Choi JW, Kim Y-W (2012a) Multifunctional Fe3O4/TaO x Core/Shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography. J Am Chem Soc 134(25):10309–10312

    Article  Google Scholar 

  • Lee N, Choi Y, Lee Y, Park M, Moon WK, Choi SH, Hyeon T (2012b) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r 2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett 12(6):3127–3131

    Article  ADS  Google Scholar 

  • Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41(7):2575–2589

    Article  Google Scholar 

  • Lee P-W, Hsu S-H, Wang J-J, Tsai J-S, Lin K-J, Wey S-P, Chen F-R, Lai C-H, Yen T-C, Sung H-W (2010b) The characteristics, biodistribution, magnetic resonance imaging and biodegradability of superparamagnetic core–shell nanoparticles. Biomaterials 31(6):1316–1324

    Article  Google Scholar 

  • Lei M, Fu C, Cheng X, Fu B, Wu N, Zhang Q, Fu A, Cheng J, Gao J, Zhao Z (2017) Activated surface charge-reversal manganese oxide nanocubes with high surface-to-volume ratio for accurate magnetic resonance tumor imaging. Adv Func Mater 27(30):1700978

    Article  Google Scholar 

  • Lemaster JE, Chen F, Kim T, Hariri A, Jokerst JV (2018) Development of a trimodal contrast agent for acoustic and magnetic particle imaging of stem cells. ACS Applied Nano Materials 1(3):1321–1331

    Article  Google Scholar 

  • Leung KC-F, Xuan S, Zhu X, Wang D, Chak C-P, Lee S-F, Ho WK-W, Chung BC-T (2012) Gold and iron oxide hybrid nanocomposite materials. Chem Soc Rev 41(5):1911–1928

    Article  Google Scholar 

  • Li C, Chen T, Ocsoy I, Zhu G, Yasun E, You M, Wu C, Zheng J, Song E, Huang CZ (2014) Gold-coated Fe3O4 nanoroses with five unique functions for cancer cell targeting, imaging, and therapy. Adv Func Mater 24(12):1772–1780

    Article  Google Scholar 

  • Li D, Shen M, Xia J, Shi X (2021) Recent developments of cancer nanomedicines based on ultrasmall iron oxide nanoparticles and nanoclusters. Nanomedicine 16(8):609–612

    Article  Google Scholar 

  • Li F, Zhi D, Luo Y, Zhang J, Nan X, Zhang Y, Zhou W, Qiu B, Wen L, Liang G (2016) Core/shell Fe 3 O 4/Gd 2 O 3 nanocubes as T 1–T 2 dual modal MRI contrast agents. Nanoscale 8(25):12826–12833

    Article  ADS  Google Scholar 

  • Li J, Li X, Gong S, Zhang C, Qian C, Qiao H, Sun M (2020) Dual-mode avocado-like all-iron nanoplatform for enhanced T1/T2 MRI-guided cancer theranostic therapy. Nano Lett 20(7):4842–4849

    Article  ADS  Google Scholar 

  • Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X (2013) Facile one-pot synthesis of Fe3O4@ Au composite nanoparticles for dual-mode MR/CT imaging applications. ACS Appl Mater Interfaces 5(20):10357–10366

    Article  Google Scholar 

  • Li L, Wu Y, Wang Z, Jia B, Hu Z, Dong C, Wang F (2017) SPECT/CT imaging of the novel HER2-targeted peptide probe 99mTc-HYNIC-H6F in breast cancer mouse models. J Nucl Med 58(5):821–826

    Article  Google Scholar 

  • Li W-J, Wang Y, Liu Y, Wu T, Cai W-L, Shuai X-T, Hong G-B (2018) Preliminary study of MR and fluorescence dual-mode imaging: Combined macrophage-targeted and superparamagnetic polymeric micelles. Int J Med Sci 15(2):129

    Article  Google Scholar 

  • Li X, Lu S, Xiong Z, Hu Y, Ma D, Lou W, Peng C, Shen M, Shi X (2019) Light-addressable nanoclusters of ultrasmall iron oxide nanoparticles for enhanced and dynamic magnetic resonance imaging of arthritis. Adv Sci 6(19):1901800

    Article  Google Scholar 

  • Liang Z-P, Lauterbur PC (2000) Principles of magnetic resonance imaging. SPIE Optical Engineering Press, Bellingham

    Google Scholar 

  • Lima E Jr, Brandl A, Arelaro A, Goya G (2006) Spin disorder and magnetic anisotropy in Fe 3 O 4 nanoparticles. J Appl Phys 99(8):083908

    Article  ADS  Google Scholar 

  • Lin H, Liu K, Gao J (2019) Surface engineering to boost the performance of nanoparticle-based T1 contrast agents. Eur J Inorg Chem 2019(34):3801–3809

    Article  Google Scholar 

  • Lin J-J, Chen J-S, Huang S-J, Ko J-H, Wang Y-M, Chen T-L, Wang L-F (2009) Folic acid–Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials 30(28):5114–5124

    Article  Google Scholar 

  • Lin LS, Song J, Song L, Ke K, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W (2018) Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew Chem 130(18):4996–5000

    Article  ADS  Google Scholar 

  • Lin Y, Wang S, Zhang Y, Gao J, Hong L, Wang X, Wu W, Jiang X (2015) Ultra-high relaxivity iron oxide nanoparticles confined in polymer nanospheres for tumor MR imaging. Journal of Materials Chemistry B 3(28):5702–5710

    Article  Google Scholar 

  • Ling D, Hackett MJ, Hyeon T (2014a) Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today 9(4):457–477

    Article  Google Scholar 

  • Ling D, Lee N, Hyeon T (2015) Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res 48(5):1276–1285

    Article  Google Scholar 

  • Ling D, Park W, Park S-J, Lu Y, Kim KS, Hackett MJ, Kim BH, Yim H, Jeon YS, Na K (2014b) Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem Soc 136(15):5647–5655

    Article  Google Scholar 

  • Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, Xiong L, Gao Y, Li F, Zhao D (2009a) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed 48(32):5875–5879

    Article  Google Scholar 

  • Liu J, Xu J, Zhou J, Zhang Y, Guo D, Wang Z (2017) Fe3O4-based PLGA nanoparticles as MR contrast agents for the detection of thrombosis. Int J Nanomed 12:1113

    Article  Google Scholar 

  • Liu S (2015) Radiolabeled cyclic RGD peptide bioconjugates as radiotracers targeting multiple integrins. Bioconjug Chem 26(8):1413–1438

    Article  ADS  Google Scholar 

  • Liu S, Jia B, Qiao R, Yang Z, Yu Z, Liu Z, Liu K, Shi J, Ouyang H, Wang F (2009b) A novel type of dual-modality molecular probe for MR and nuclear imaging of tumor: preparation, characterization and in vivo application. Mol Pharm 6(4):1074–1082

    Article  Google Scholar 

  • Liu W, Deng G, Wang D, Chen M, Zhou Z, Yang H, Yang S (2020) Renal-clearable zwitterionic conjugated hollow ultrasmall Fe 3 O 4 nanoparticles for T 1-weighted MR imaging in vivo. J Mat Chem B 8(15):3087–3091

    Article  Google Scholar 

  • Liu X, Jiang H, Ye J, Zhao C, Gao S, Wu C, Li C, Li J, Wang X (2016a) Nitrogen-doped carbon quantum dot stabilized magnetic iron oxide nanoprobe for fluorescence, magnetic resonance, and computed tomography triple-modal in vivo bioimaging. Adv Func Mater 26(47):8694–8706

    Article  Google Scholar 

  • Liu X, Peng M, Li G, Miao Y, Luo H, Jing G, He Y, Zhang C, Zhang F, Fan H (2019) Ultrasonication-triggered ubiquitous assembly of magnetic Janus amphiphilic nanoparticles in cancer theranostic applications. Nano Lett 19(6):4118–4125

    Article  ADS  Google Scholar 

  • Liu Y, Cui T, Li Y, Zhao Y, Ye Y, Wu W, Tong G (2016b) Effects of crystal size and sphere diameter on static magnetic and electromagnetic properties of monodisperse Fe3O4 microspheres. Mater Chem Phys 173:152–160

    Article  ADS  Google Scholar 

  • Liu Y, Yang Z, Huang X, Yu G, Wang S, Zhou Z, Shen Z, Fan W, Liu Y, Davisson M (2018) Glutathione-responsive self-assembled magnetic gold nanowreath for enhanced tumor imaging and imaging-guided photothermal therapy. ACS Nano 12(8):8129–8137

    Article  Google Scholar 

  • Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52

    Article  ADS  Google Scholar 

  • Lu B-Q, Zhu Y-J, Ao H-Y, Qi C, Chen F (2012) Synthesis and characterization of magnetic iron oxide/calcium silicate mesoporous nanocomposites as a promising vehicle for drug delivery. ACS Appl Mater Interfaces 4(12):6969–6974

    Article  Google Scholar 

  • Lu C, Dong P, Pi L, Wang Z, Yuan H, Liang H, Ma D, Chai KY (2019) Hydroxyl–PEG–phosphonic acid-stabilized superparamagnetic manganese oxide-doped iron oxide nanoparticles with synergistic effects for dual-mode MR imaging. Langmuir 35(29):9474–9482

    Article  Google Scholar 

  • Lu J, Sun J, Li F, Wang J, Liu J, Kim D, Fan C, Hyeon T, Ling D (2018) Highly sensitive diagnosis of small hepatocellular carcinoma using pH-responsive iron oxide nanocluster assemblies. J Am Chem Soc 140(32):10071–10074

    Article  Google Scholar 

  • Luo Y, Tang Y, Liu T, Chen Q, Zhou X, Wang N, Ma M, Cheng Y, Chen H (2019) Engineering graphene oxide with ultrasmall SPIONs and smart drug release for cancer theranostics. Chem Commun 55(13):1963–1966

    Article  Google Scholar 

  • Luo Y, Yang J, Yan Y, Li J, Shen M, Zhang G, Mignani S, Shi X (2015) RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T 1-weighted MR imaging of gliomas. Nanoscale 7(34):14538–14546

    Article  ADS  Google Scholar 

  • Lyubutin I, Baskakov A, Starchikov S, Shih K-Y, Lin C-R, Tseng Y-T, Yang S-S, Han Z-Y, Ogarkova YL, Nikolaichik V (2018) Synthesis and characterization of graphene modified by iron oxide nanoparticles. Mater Chem Phys 219:411–420

    Article  Google Scholar 

  • Ma D, Shi M, Li X, Zhang J, Fan Y, Sun K, Jiang T, Peng C, Shi X (2019) Redox-sensitive clustered ultrasmall iron oxide nanoparticles for switchable T2/T1-weighted magnetic resonance imaging applications. Bioconjug Chem 31(2):352–359

    Article  Google Scholar 

  • Ma M, Zhu H, Ling J, Gong S, Zhang Y, Xia Y, Tang Z (2020) Quasi-amorphous and hierarchical Fe2O3 supraparticles: active T 1-weighted magnetic resonance imaging in vivo and renal clearance. ACS Nano 14(4):4036–4044

    Article  Google Scholar 

  • Ma Z, Jia X, Bai J, Ruan Y, Wang C, Li J, Zhang M, Jiang X (2017) MnO2 gatekeeper: an intelligent and O2-evolving shell for preventing premature release of high cargo payload core, overcoming tumor hypoxia, and acidic H2O2-sensitive MRI. Adv Func Mater 27(4):1604258

    Article  Google Scholar 

  • Macher T, Totenhagen J, Sherwood J, Qin Y, Gurler D, Bolding MS, Bao Y (2015) Ultrathin iron oxide nanowhiskers as positive contrast agents for magnetic resonance imaging. Adv Func Mater 25(3):490–494

    Article  Google Scholar 

  • Madru R, Kjellman P, Olsson F, Wingårdh K, Ingvar C, Ståhlberg F, Olsrud J, Lätt J, Fredriksson S, Knutsson L (2012) 99mTc-labeled superparamagnetic iron oxide nanoparticles for multimodality SPECT/MRI of sentinel lymph nodes. J Nucl Med 53(3):459–463

    Article  Google Scholar 

  • Martínez-Banderas AI, Aires A, Quintanilla M, Holguín-Lerma JA, Lozano-Pedraza C, Teran FJ, Moreno JA, Perez JE, Ooi BS, Ravasi T (2019) Iron-based core–shell nanowires for combinatorial drug delivery and photothermal and magnetic therapy. ACS Appl Mater Interfaces 11(47):43976–43988

    Article  Google Scholar 

  • Miao Y, Xie Q, Zhang H, Cai J, Liu X, Jiao J, Hu S, Ghosal A, Yang Y, Fan H (2019) Composition-tunable ultrasmall manganese ferrite nanoparticles: insights into their in vivo T1 contrast efficacy. Theranostics 9(6):1764

    Article  Google Scholar 

  • Millan A, Urtizberea A, Silva N, Palacio F, Amaral V, Snoeck E, Serin V (2007) Surface effects in maghemite nanoparticles. J Magn Magn Mater 312(1):L5–L9

    Article  ADS  Google Scholar 

  • Min K, Jo H, Song K, Cho M, Chun Y-S, Jon S, Kim WJ, Ban C (2011) Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (−) prostate cancers. Biomaterials 32(8):2124–2132

    Article  Google Scholar 

  • Mirković M, Radović M, Stanković D, Milanović Z, Janković D, Matović M, Jeremić M, Antić B, Vranješ-Đurić S (2019) 99mTc–bisphosphonate–coated magnetic nanoparticles as potential theranostic nanoagent. Mater Sci Eng, C 102:124–133

    Article  Google Scholar 

  • Misri R, Meier D, Yung AC, Kozlowski P, Häfeli UO (2012) Development and evaluation of a dual-modality (MRI/SPECT) molecular imaging bioprobe. Nanomed Nanotechnol Biol Med 8(6):1007–1016

    Google Scholar 

  • Monopoli MP, Åberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7(12):779–786

    Article  ADS  Google Scholar 

  • Moon S-H, Yang BY, Kim YJ, Hong MK, Lee Y-S, Lee DS, Chung J-K, Jeong JM (2016) Development of a complementary PET/MR dual-modal imaging probe for targeting prostate-specific membrane antigen (PSMA). Nanomed Nanotechnol Biol Med 12(4):871–879

    Google Scholar 

  • Morales M, Serna C, Bødker F, Mørup S (1997) Spin canting due to structural disorder in maghemite. J Phys Condens Matter 9(25):5461

    Article  ADS  Google Scholar 

  • Morales MdP, Veintemillas-Verdaguer S, Montero M, Serna C, Roig A, Casas L, Martinez B, Sandiumenge F (1999) Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem Mater 11(11):3058–3064

    Google Scholar 

  • Mørup S (2003) Spin-canting and transverse relaxation at surfaces and in the interior of ferrimagnetic particles. J Magn Magn Mater 266(1–2):110–118

    Article  ADS  Google Scholar 

  • Mou J, Liu C, Li P, Chen Y, Xu H, Wei C, Song L, Shi J, Chen H (2015) A facile synthesis of versatile Cu2−xS nanoprobe for enhanced MRI and infrared thermal/photoacoustic multimodal imaging. Biomaterials 57:12–21

    Article  Google Scholar 

  • Müller K, Skepper JN, Tang TY, Graves MJ, Patterson AJ, Corot C, Lancelot E, Thompson PW, Brown AP, Gillard JH (2008) Atorvastatin and uptake of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) in human monocyte–macrophages: Implications for magnetic resonance imaging. Biomaterials 29(17):2656–2662

    Article  Google Scholar 

  • Mustafa R, Zhou B, Yang J, Zheng L, Zhang G, Shi X (2016) Dendrimer-functionalized LAPONITE® nanodisks loaded with gadolinium for T 1-weighted MR imaging applications. RSC Adv 6(97):95112–95119

    Article  ADS  Google Scholar 

  • Muthiah M, Park I-K, Cho C-S (2013) Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol Adv 31(8):1224–1236

    Article  Google Scholar 

  • Nafiujjaman M, Revuri V, Nurunnabi M, Cho KJ, Lee Y-K (2015) Photosensitizer conjugated iron oxide nanoparticles for simultaneous in vitro magneto-fluorescent imaging guided photodynamic therapy. Chem Commun 51(26):5687–5690

    Article  Google Scholar 

  • Naha PC, Al Zaki A, Hecht E, Chorny M, Chhour P, Blankemeyer E, Yates DM, Witschey WR, Litt HI, Tsourkas A (2014) Dextran coated bismuth–iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging. Journal of Materials Chemistry B 2(46):8239–8248

    Article  Google Scholar 

  • Ni D, Bu W, Ehlerding EB, Cai W, Shi J (2017) Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev 46(23):7438–7468

    Article  Google Scholar 

  • Noh S-H, Na W, Jang J-T, Lee J-H, Lee EJ, Moon SH, Lim Y, Shin J-S, Cheon J (2012) Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12(7):3716–3721

    Article  ADS  Google Scholar 

  • Okada S, Bartelle BB, Li N, Breton-Provencher V, Lee JJ, Rodriguez E, Melican J, Sur M, Jasanoff A (2018) Calcium-dependent molecular fMRI using a magnetic nanosensor. Nat Nanotechnol 13(6):473–477

    Article  ADS  Google Scholar 

  • Pan Y, Du X, Zhao F, Xu B (2012) Magnetic nanoparticles for the manipulation of proteins and cells. Chem Soc Rev 41(7):2912–2942

    Article  Google Scholar 

  • Papadopoulou S, Kolokithas-Ntoukas A, Salvanou E-A, Gaitanis A, Xanthopoulos S, Avgoustakis K, Gazouli M, Paravatou-Petsotas M, Tsoukalas C, Bakandritsos A (2021) Chelator-free/chelator-mediated radiolabeling of colloidally stabilized iron oxide nanoparticles for biomedical imaging. Nanomaterials 11(7):1677

    Article  Google Scholar 

  • Park JC, Lee GT, Kim H-K, Sung B, Lee Y, Kim M, Chang Y, Seo JH (2018) Surface design of Eu-doped iron oxide nanoparticles for tuning the magnetic relaxivity. ACS Appl Mater Interfaces 10(30):25080–25089

    Article  Google Scholar 

  • Park JH, von Maltzahn G, Zhang L, Schwartz MP, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20(9):1630–1635

    Article  Google Scholar 

  • Pellico J, Gawne PJ, de Rosales RT (2021) Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 50(5):3355–3423

    Article  Google Scholar 

  • Peng Y-K, Lui CN, Chen Y-W, Chou S-W, Raine E, Chou P-T, Yung KK, Tsang SE (2017) Engineering of single magnetic particle carrier for living brain cell imaging: a tunable T1-/T2-/dual-modal contrast agent for magnetic resonance imaging application. Chem Mater 29(10):4411–4417

    Article  Google Scholar 

  • Peng Y, Wang X, Wang Y, Gao Y, Guo R, Shi X, Cao X (2021) Macrophage-laden gold nanoflowers embedded with ultrasmall iron oxide nanoparticles for enhanced dual-mode CT/MR imaging of tumors. Pharmaceutics 13(7):995

    Article  Google Scholar 

  • Pereira C, Pereira AM, Fernandes C, Rocha M, Mendes R, Fernández-García MP, Guedes A, Tavares PB, Grenèche J-M, Araújo JoP (2012) Superparamagnetic MFe2O4 (M= Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24(8):1496–1504

    Google Scholar 

  • Perlman O, Borodetsky A, Kauffmann Y, Shamay Y, Azhari H, Weitz IS (2019) Gold/Copper@ Polydopamine nanocomposite for contrast-enhanced dual modal computed tomography–magnetic resonance imaging. ACS Applied Nano Materials 2(10):6124–6134

    Article  Google Scholar 

  • Perlman O, Weitz IS, Azhari H (2015) Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging. Phys Med Biol 60(15):5767

    Article  Google Scholar 

  • Pinho SL, Sereno J, Abrunhosa AJ, Delville M-H, Rocha J, Carlos LD, Geraldes CF (2019) Gd-and Eu-loaded iron oxide@ silica core–shell nanocomposites as trimodal contrast agents for magnetic resonance imaging and optical imaging. Inorg Chem 58(24):16618–16628

    Article  Google Scholar 

  • Pöselt E, Kloust H, Tromsdorf U, Janschel M, Hahn C, Maßlo C, Weller H (2012) Relaxivity optimization of a PEGylated iron-oxide-based negative magnetic resonance contrast agent for T 2-weighted spin–echo imaging. ACS Nano 6(2):1619–1624

    Article  Google Scholar 

  • Quan Q, Xie J, Gao H, Yang M, Zhang F, Liu G, Lin X, Wang A, Eden HS, Lee S (2011) HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol Pharm 8(5):1669–1676

    Article  Google Scholar 

  • Ray S, Li Z, Hsu C-H, Hwang L-P, Lin Y-C, Chou P-T, Lin Y-Y (2018) Dendrimer-and copolymer-based nanoparticles for magnetic resonance cancer theranostics. Theranostics 8(22):6322

    Article  Google Scholar 

  • Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878

    Article  Google Scholar 

  • Reguera J, de Aberasturi DJ, Henriksen-Lacey M, Langer J, Espinosa A, Szczupak B, Wilhelm C, Liz-Marzán LM (2017) Janus plasmonic–magnetic gold–iron oxide nanoparticles as contrast agents for multimodal imaging. Nanoscale 9(27):9467–9480

    Article  Google Scholar 

  • Reynolds F, O'loughlin T, Weissleder R, Josephson L (2005) Method of determining nanoparticle core weight. Anal Chem 77(3):814–817

    Google Scholar 

  • Roca AG, Gutiérrez L, Gavilán H, Brollo MEF, Veintemillas-Verdaguer S, del Puerto Morales M (2019) Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv Drug Deliv Rev 138:68–104

    Article  Google Scholar 

  • Roca AG, Marco JF, Morales MdP, and Serna CJ (2007) Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles. J Phys Chem C 111(50):18577–18584

    Google Scholar 

  • Roch A, Gossuin Y, Muller RN, Gillis P (2005) Superparamagnetic colloid suspensions: water magnetic relaxation and clustering. J Magn Magn Mater 293(1):532–539

    Article  ADS  Google Scholar 

  • Roch A, Muller RN, Gillis P (1999) Theory of proton relaxation induced by superparamagnetic particles. J Chem Phys 110(11):5403–5411

    Article  ADS  Google Scholar 

  • Rubinstein M, Baram A, Luz Z (1971) Electronic and nuclear relaxation in solutions of transition metal ions with spin S= 3/2 and 5/2. Mol Phys 20(1):67–80

    Article  ADS  Google Scholar 

  • Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  Google Scholar 

  • Sandiford L, Phinikaridou A, Protti A, Meszaros LK, Cui X, Yan Y, Frodsham G, Williamson PA, Gaddum N, Botnar RM (2013) Bisphosphonate-anchored PEGylation and radiolabeling of superparamagnetic iron oxide: long-circulating nanoparticles for in vivo multimodal (T1 MRI-SPECT) imaging. ACS Nano 7(1):500–512

    Article  Google Scholar 

  • Santra S, Jativa SD, Kaittanis C, Normand G, Grimm J, Perez JM (2012) Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent. ACS Nano 6(8):7281–7294

    Article  Google Scholar 

  • Schellenberger E, Schnorr J, Reutelingsperger C, Ungethüm L, Meyer W, Taupitz M, Hamm B (2008) Linking proteins with anionic nanoparticles via protamine: ultrasmall protein-coupled probes for magnetic resonance imaging of apoptosis. Small 4(2):225–230

    Article  Google Scholar 

  • Selim KK, Ha Y-S, Kim S-J, Chang Y, Kim T-J, Lee GH, Kang I-K (2007) Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes. Biomaterials 28(4):710–716

    Article  Google Scholar 

  • Seo WS, Lee JH, Sun X, Suzuki Y, Mann D, Liu Z, Terashima M, Yang PC, McConnell MV, Nishimura DG (2006) FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater 5(12):971–976

    Article  ADS  Google Scholar 

  • Shanehsazzadeh S, Gruettner C, Lahooti A, Mahmoudi M, Allen BJ, Ghavami M, Daha FJ, Oghabian MA (2015) Monoclonal antibody conjugated magnetic nanoparticles could target MUC-1-positive cells in vitro but not in vivo. Contrast Media Mol Imaging 10(3):225–236

    Article  Google Scholar 

  • Shanehsazzadeh S, Gruettner C, Yousefnia H, Lahooti A, Gholami A, Nosrati S, Zolghadri S, Anijdan SHM, Lotfabadi A, Shiri Varnamkhasti B (2016) Development of 177Lu-DTPA-SPIO conjugates for potential use as a dual contrast SPECT/MRI imaging agent. Radiochim Acta 104(5):337–344

    Article  Google Scholar 

  • Sharma R, Xu Y, Kim SW, Schueller MJ, Alexoff D, Smith SD, Wang W, Schlyer D (2013) Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging. Nanoscale 5(16):7476–7483

    Article  ADS  Google Scholar 

  • Sharma VK, Alipour A, Soran-Erdem Z, Aykut Z, Demir HV (2015) Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T 1–T 2 MRI contrast agents. Nanoscale 7(23):10519–10526

    Article  ADS  Google Scholar 

  • Shen J, Li Y, Zhu Y, Yang X, Yao X, Li J, Huang G, Li C (2015) Multifunctional gadolinium-labeled silica-coated Fe 3 O 4 and CuInS 2 nanoparticles as a platform for in vivo tri-modality magnetic resonance and fluorescence imaging. Journal of Materials Chemistry B 3(14):2873–2882

    Article  Google Scholar 

  • Shen Z, Chen T, Ma X, Ren W, Zhou Z, Zhu G, Zhang A, Liu Y, Song J, Li Z (2017a) Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T 1-weighted magnetic resonance imaging and chemotherapy. ACS Nano 11(11):10992–11004

    Article  Google Scholar 

  • Shen Z, Song J, Zhou Z, Yung BC, Aronova MA, Li Y, Dai Y, Fan W, Liu Y, Li Z (2018) Dotted core–shell nanoparticles for T1-weighted MRI of tumors. Adv Mater 30(33):1803163

    Article  Google Scholar 

  • Shen Z, Wu A, Chen X (2017b) Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm 14(5):1352–1364

    Article  Google Scholar 

  • Sherwood J, Rich M, Lovas K, Warram J, Bolding M, Bao Y (2017) T 1-Enhanced MRI-visible nanoclusters for imaging-guided drug delivery. Nanoscale 9(32):11785–11792

    Article  Google Scholar 

  • Shi X, Shen L (2018) Integrin αvβ3 receptor targeting PET/MRI dual-modal imaging probe based on the 64Cu labeled manganese ferrite nanoparticles. J Inorg Biochem 186:257–263

    Article  Google Scholar 

  • Shin T-H, Choi J-S, Yun S, Kim I-S, Song H-T, Kim Y, Park KI, Cheon J (2014) T 1 and T 2 dual-mode MRI contrast agent for enhancing accuracy by engineered nanomaterials. ACS Nano 8(4):3393–3401

    Article  Google Scholar 

  • Si Y, Zhang G, Wang D, Zhang C, Yang C, Bai G, Qian J, Chen Q, Zhang Z, Wu Z (2019) Nanostructure-enhanced water interaction to increase the dual-mode MR contrast performance of gadolinium-doped iron oxide nanoclusters. Chem Eng J 360:289–298

    Article  Google Scholar 

  • Situ-Loewenstein SF, Wickramasinghe S, Abenojar EC, Erokwu BO, Flask CA, Lee Z, Samia ACS (2018) A novel synthetic route for high-index faceted iron oxide concave nanocubes with high T 2 relaxivity for in vivo MRI applications. J Mater Sci Mater Med 29:1–10

    Article  Google Scholar 

  • Skjold A, Amundsen BH, Wiseth R, Støylen A, Haraldseth O, Larsson HB, Jynge P (2007) Manganese dipyridoxyl-diphosphate (MnDPDP) as a viability marker in patients with myocardial infarction. J Magn Reson Imag Offic J Int Soc Magn Reson Med 26(3):720–727

    Google Scholar 

  • Smith JE, Medley CD, Tang Z, Shangguan D, Lofton C, Tan W (2007) Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem 79(8):3075–3082

    Article  Google Scholar 

  • Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R (2020) Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Adv Drug Deliv Rev 163:65–83

    Article  Google Scholar 

  • Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99(2):559

    Article  ADS  Google Scholar 

  • Song S, Guo H, Jiang Z, Jin Y, Zhang Z, Sun K, Dou H (2014a) Self-assembled Fe3O4/polymer hybrid microbubble with MRI/ultrasound dual-imaging enhancement. Langmuir 30(35):10557–10561

    Article  Google Scholar 

  • Song X, Gong H, Yin S, Cheng L, Wang C, Li Z, Li Y, Wang X, Liu G, Liu Z (2014b) Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv Func Mater 24(9):1194–1201

    Article  Google Scholar 

  • Song Y, Wei W, Qu X (2011) Colorimetric biosensing using smart materials. Adv Mater 23(37):4215–4236

    Article  Google Scholar 

  • Sood A, Arora V, Shah J, Kotnala R, Jain TK (2017) Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications. Mater Sci Eng C 80:274–281

    Article  Google Scholar 

  • Sruthi PD, Sahithya CS, Justin C, SaiPriya C, Bhavya KS, Senthilkumar P, Samrot AV (2019) Utilization of chemically synthesized super paramagnetic iron oxide nanoparticles in drug delivery, imaging and heavy metal removal. J Cluster Sci 30:11–24

    Article  Google Scholar 

  • Stockhofe K, Postema JM, Schieferstein H, Ross TL (2014) Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals 7(4):392–418

    Article  Google Scholar 

  • Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265

    Article  Google Scholar 

  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53(46):12320–12364

    Article  Google Scholar 

  • Sun X, Du R, Zhang L, Zhang G, Zheng X, Qian J, Tian X, Zhou J, He J, Wang Y (2017) A pH-responsive yolk-like nanoplatform for tumor targeted dual-mode magnetic resonance imaging and chemotherapy. ACS Nano 11(7):7049–7059

    Article  Google Scholar 

  • Tang Y, Zhang C, Wang J, Lin X, Zhang L, Yang Y, Wang Y, Zhang Z, Bulte JW, Yang GY (2015) MRI/SPECT/fluorescent tri-modal probe for evaluating the homing and therapeutic efficacy of transplanted mesenchymal stem cells in a rat ischemic stroke model. Adv Func Mater 25(7):1024–1034

    Article  Google Scholar 

  • Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44(10):842–852

    Article  Google Scholar 

  • Taylor A, Wilson KM, Murray P, Fernig DG, Levy R (2012) Long-term tracking of cells using inorganic nanoparticles as contrast agents: are we there yet? Chem Soc Rev 41(7):2707–2717

    Article  Google Scholar 

  • Terreno E, Castelli DD, Viale A, Aime S (2010) Challenges for molecular magnetic resonance imaging. Chem Rev 110(5):3019–3042

    Article  Google Scholar 

  • Thawani JP, Amirshaghaghi A, Yan L, Stein JM, Liu J, Tsourkas A (2017) Photoacoustic-guided surgery with indocyanine green-coated superparamagnetic iron oxide nanoparticle clusters. Small 13(37):1701300

    Article  Google Scholar 

  • Thorat ND, Bohara RA, Tofail SA, Alothman ZA, Shiddiky MJ, Hossain MSA, Yamauchi Y, Wu* KCW (2016) Superparamagnetic gadolinium ferrite nanoparticles with controllable curie temperature–cancer theranostics for MR‐imaging‐guided magneto‐chemotherapy. Eur J Inorg Chem 2016(28):4586–4597

    Google Scholar 

  • Thorek DL, Ulmert D, Diop N-FM, Lupu ME, Doran MG, Huang R, Abou DS, Larson SM, Grimm J (2014) Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle. Nat Commun 5(1):3097

    Article  ADS  Google Scholar 

  • Tong S, Hou S, Zheng Z, Zhou J, Bao G (2010) Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett 10(11):4607–4613

    Article  ADS  Google Scholar 

  • Martin T, de Rosales R, Tavaré R, Glaria A, Varma G, Protti A, Blower PJ (2011) 99mTc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem 22(3):455–465

    Article  Google Scholar 

  • Tromsdorf UI, Bigall NC, Kaul MG, Bruns OT, Nikolic MS, Mollwitz B, Sperling RA, Reimer R, Hohenberg H, Parak WJ (2007) Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett 7(8):2422–2427

    Article  ADS  Google Scholar 

  • Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H (2009) A highly effective, nontoxic T 1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9(12):4434–4440

    Article  ADS  Google Scholar 

  • Tsiapa I, Efthimiadou EK, Fragogeorgi E, Loudos G, Varvarigou AD, Bouziotis P, Kordas GC, Mihailidis D, Nikiforidis GC, Xanthopoulos S (2014) 99mTc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ανβ3-mediated tumor expression and feasibility for hyperthermia treatment. J Colloid Interface Sci 433:163–175

    Article  ADS  Google Scholar 

  • Tsoukalas C, Psimadas D, Kastis GA, Koutoulidis V, Harris AL, Paravatou-Petsotas M, Karageorgou M, Furenlid LR, Moulopoulos LA, Stamopoulos D (2018) A novel metal-based imaging probe for targeted dual-modality SPECT/MR imaging of angiogenesis. Front Chem 6:224

    Article  ADS  Google Scholar 

  • Unak P, Tekin V, Guldu OK, Aras O (2020) 89Zr Labeled Fe3O4@ TiO2 nanoparticles: in vitro afffinities with breast and prostate cancer cells. Appl Organomet Chem 34(5):e5616

    Article  Google Scholar 

  • Unni M, Uhl AM, Savliwala S, Savitzky BH, Dhavalikar R, Garraud N, Arnold DP, Kourkoutis LF, Andrew JS, Rinaldi C (2017) Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano 11(2):2284–2303

    Article  Google Scholar 

  • Vargo KB, Zaki AA, Warden-Rothman R, Tsourkas A, Hammer DA (2015) Superparamagnetic iron oxide nanoparticle micelles stabilized by recombinant oleosin for targeted magnetic resonance imaging. Small 11(12):1409–1413

    Article  Google Scholar 

  • Veintemillas-Verdaguer S, Luengo Y, Serna C, Andrés-Vergés M, Varela M, Calero M, Lazaro-Carrillo A, Villanueva A, Sisniega A, Montesinos P (2015) Bismuth labeling for the CT assessment of local administration of magnetic nanoparticles. Nanotechnology 26(13):135101

    Article  ADS  Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    Article  Google Scholar 

  • Verma A and Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6(1):12–21

    Google Scholar 

  • Vuong QL, Gillis P, Gossuin Y (2011) Monte Carlo simulation and theory of proton NMR transverse relaxation induced by aggregation of magnetic particles used as MRI contrast agents. J Magn Reson 212(1):139–148

    Article  ADS  Google Scholar 

  • Vuong QL, Gossuin Y, Gillis P, Delangre S (2012) New simulation approach using classical formalism to water nuclear magnetic relaxation dispersions in presence of superparamagnetic particles used as MRI contrast agents. J Chem Phys 137(11):114505

    Article  ADS  Google Scholar 

  • Walkey CD, Olsen JB, Guo H, Emili A, Chan WC (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134(4):2139–2147

    Article  Google Scholar 

  • Wang G, Gao W, Zhang X, Mei X (2016a) Au nanocage functionalized with Ultra-small Fe3O4 nanoparticles for targeting T1–T2Dual MRI and CT imaging of tumor. Sci Rep 6(1):1–10

    Google Scholar 

  • Wang J, Zhao H, Zhou Z, Zhou P, Yan Y, Wang M, Yang H, Zhang Y, Yang S (2016b) MR/SPECT imaging guided photothermal therapy of tumor-targeting Fe@ Fe3O4 nanoparticles in vivo with low mononuclear phagocyte uptake. ACS Appl Mater Interfaces 8(31):19872–19882

    Article  Google Scholar 

  • Wang JTW, Cabana L, Bourgognon M, Kafa H, Protti A, Venner K, Shah AM, Sosabowski JK, Mather SJ, Roig A (2014a) Magnetically decorated multiwalled carbon nanotubes as dual MRI and SPECT contrast agents. Adv Func Mater 24(13):1880–1894

    Article  Google Scholar 

  • Wang L, Huang J, Chen H, Wu H, Xu Y, Li Y, Yi H, Wang YA, Yang L, Mao H (2017a) Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T 1–T 2 switchable magnetic resonance imaging contrast. ACS Nano 11(5):4582–4592

    Article  Google Scholar 

  • Wang L, Lin H, Ma L, Jin J, Shen T, Wei R, Wang X, Ai H, Chen Z, Gao J (2017b) Albumin-based nanoparticles loaded with hydrophobic gadolinium chelates as T 1–T 2 dual-mode contrast agents for accurate liver tumor imaging. Nanoscale 9(13):4516–4523

    Article  Google Scholar 

  • Wang P, Shi Y, Zhang S, Huang X, Zhang J, Zhang Y, Si W, Dong X (2019) Hydrogen peroxide responsive iron–based nanoplatform for multimodal imaging–guided cancer therapy. Small 15(4):1803791

    Article  Google Scholar 

  • Wang Y, Ng YW, Chen Y, Shuter B, Yi J, Ding J, Wang Sc, Feng S-S (2008) Formulation of superparamagnetic iron oxides by nanoparticles of biodegradable polymers for magnetic resonance imaging. Adv Funct Mater 18(2):308–318

    Google Scholar 

  • Wang Z, Liu J, Li T, Liu J, Wang B (2014b) Controlled synthesis of MnFe 2 O 4 nanoparticles and Gd complex-based nanocomposites as tunable and enhanced T 1/T 2-weighted MRI contrast agents. Journal of Materials Chemistry B 2(29):4748–4753

    Article  Google Scholar 

  • Wei H, Bruns OT, Kaul MG, Hansen EC, Barch M, Wiśniowska A, Chen O, Chen Y, Li N, Okada S (2017) Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci 114(9):2325–2330

    Article  ADS  Google Scholar 

  • Wei H, Insin N, Lee J, Han H-S, Cordero JM, Liu W, Bawendi MG (2012) Compact zwitterion-coated iron oxide nanoparticles for biological applications. Nano Lett 12(1):22–25

    Article  ADS  Google Scholar 

  • Wei R, Cai Z, Ren BW, Li A, Lin H, Zhang K, Chen H, Shan H, Ai H, Gao J (2018a) Biodegradable and renal-clearable hollow porous iron oxide nanoboxes for in vivo imaging. Chem Mater 30(21):7950–7961

    Article  Google Scholar 

  • Wei R, Xu Y, Xue M (2021) Hollow iron oxide nanomaterials: Synthesis, functionalization, and biomedical applications. Journal of Materials Chemistry B 9(8):1965–1979

    Article  Google Scholar 

  • Wei R, Zhou T, Sun C, Lin H, Yang L, Ren BW, Chen Z, Gao J (2018b) Iron-oxide-based twin nanoplates with strong T 2 relaxation shortening for contrast-enhanced magnetic resonance imaging. Nanoscale 10(38):18398–18406

    Article  Google Scholar 

  • Wei X, Zhao H, Huang G, Liu J, He W, Huang Q (2022) ES-MION-based dual-modality PET/MRI probes for acidic tumor microenvironment imaging. ACS Omega 7(4):3442–3451

    Article  Google Scholar 

  • Werner EJ, Datta A, Jocher CJ, Raymond KN (2008) High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging. Angew Chem Int Ed 47(45):8568–8580

    Article  Google Scholar 

  • Wu B, Deng K, Lu S-T, Zhang C-J, Ao Y-W, Wang H, Mei H, Wang C-X, Xu H, Hu B (2021) Reduction-active Fe3O4-loaded micelles with aggregation-enhanced MRI contrast for differential diagnosis of Neroglioma. Biomaterials 268:120531

    Article  Google Scholar 

  • Wu LC, Zhang Y, Steinberg G, Qu H, Huang S, Cheng M, Bliss T, Du F, Rao J, Song G (2019a) A review of magnetic particle imaging and perspectives on neuroimaging. Am J Neuroradiol 40(2):206–212

    Article  Google Scholar 

  • Wu M, Meng Q, Chen Y, Xu P, Zhang S, Li Y, Zhang L, Wang M, Yao H, Shi J (2014) Ultrasmall Confined Iron Oxide Nanoparticle MSNs as a pH-Responsive Theranostic Platform. Adv Func Mater 24(27):4273–4283

    Article  Google Scholar 

  • Wu Q, Chen G, Gong K, Wang J, Ge X, Liu X, Guo S, Wang F (2019b) MnO2-laden black phosphorus for MRI-guided synergistic PDT, PTT, and chemotherapy. Matter 1(2):496–512

    Article  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    Article  ADS  Google Scholar 

  • Wu W, Jiang CZ, Roy VA (2016) Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale 8(47):19421–19474

    Article  Google Scholar 

  • Wyss PP, Lamichhane S, Rauber M, Thomann R, Krämer KW, Shastri VP (2016) Tripod USPIONs with high aspect ratio show enhanced T2 relaxation and cytocompatibility. Nanomedicine 11(9):1017–1030

    Article  Google Scholar 

  • Xia D-L, Chen Y-P, Chen C, Wang Y-F, Li X-D, He H, Gu H-Y (2015) Comparative study of biosafety, DNA, and chromosome damage of different-materials-modified Fe 3 O 4 in rats. Appl Biochem Biotechnol 177:1069–1082

    Article  Google Scholar 

  • Xiao N, Gu W, Wang H, Deng Y, Shi X, Ye L (2014) T1–T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles. J Colloid Interface Sci 417:159–165

    Article  ADS  Google Scholar 

  • Xiao S, Yu X, Zhang L, Zhang Y, Fan W, Sun T, Zhou C, Liu Y, Liu Y, Gong M (2019) Synthesis of PEG-coated, ultrasmall, manganese-doped iron oxide nanoparticles with high relaxivity for T1/T2 dual-contrast magnetic resonance imaging. Int J Nanomed 14:8499–8507

    Google Scholar 

  • Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, Li X, Chen X (2010) PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31(11):3016–3022

    Article  Google Scholar 

  • Xie J, Liu G, Eden HS, Ai H, Chen X (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44(10):883–892

    Article  Google Scholar 

  • Xie J, Xu C, Kohler N, Hou Y, Sun S (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163–3166

    Article  Google Scholar 

  • Xie W, Guo Z, Gao F, Gao Q, Wang D, Liaw B-S, Cai Q, Sun X, Wang X, Zhao L (2018a) Shape-, size-and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 8(12):3284

    Article  Google Scholar 

  • Xie Y, Wang J, Wang Z, Krug KA, Rinehart JD (2018b) Perfluorocarbon-loaded polydopamine nanoparticles as ultrasound contrast agents. Nanoscale 10(26):12813–12819

    Article  Google Scholar 

  • Xing R, Bhirde AA, Wang S, Sun X, Liu G, Hou Y, Chen X (2013) Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res 6:1–9

    Article  Google Scholar 

  • Xing Y, Zhao J, Conti PS, Chen K (2014) Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 4(3):290

    Article  Google Scholar 

  • Xu C, Nam J, Hong H, Xu Y, Moon JJ (2019) Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy. ACS Nano 13(10):12148–12161

    Article  Google Scholar 

  • Xu X, Li H, Zhang Q, Hu H, Zhao Z, Li J, Li J, Qiao Y, Gogotsi Y (2015) Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field. ACS Nano 9(4):3969–3977

    Article  Google Scholar 

  • Xu X, Zhou X, Xiao B, Xu H, Hu D, Qian Y, Hu H, Zhou Z, Liu X, Gao J (2021) Glutathione-responsive magnetic nanoparticles for highly sensitive diagnosis of liver metastases. Nano Lett 21(5):2199–2206

    Article  ADS  Google Scholar 

  • Xu Y, Baiu DC, Sherwood JA, McElreath MR, Qin Y, Lackey KH, Otto M, Bao Y (2014) Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles. Journal of Materials Chemistry B 2(37):6198–6206

    Article  Google Scholar 

  • Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32(6):749–763

    Article  Google Scholar 

  • Yang C-T, Ghosh KK, Padmanabhan P, Langer O, Liu J, Eng DNC, Halldin C, Gulyás B (2018a) PET-MR and SPECT-MR multimodality probes: development and challenges. Theranostics 8(22):6210

    Article  Google Scholar 

  • Yang C, Wu J, Hou Y (2011a) Fe 3 O 4 nanostructures: synthesis, growth mechanism, properties and applications. Chem Commun 47(18):5130–5141

    Article  Google Scholar 

  • Yang H-M, Park CW, Woo M-A, Kim MI, Jo YM, Park HG, Kim J-D (2010) HER2/neu antibody conjugated poly (amino acid)-coated iron oxide nanoparticles for breast cancer MR imaging. Biomacromol 11(11):2866–2872

    Article  Google Scholar 

  • Yang L, Ma L, Xin J, Li A, Sun C, Wei R, Ren BW, Chen Z, Lin H, Gao J (2017) Composition tunable manganese ferrite nanoparticles for optimized T 2 contrast ability. Chem Mater 29(7):3038–3047

    Article  Google Scholar 

  • Yang L, Sun C, Lin H, Gong X, Zhou T, Deng W-T, Chen Z, Gao J (2019a) Sensitive contrast-enhanced magnetic resonance imaging of orthotopic and metastatic hepatic tumors by ultralow doses of zinc ferrite octapods. Chem Mater 31(4):1381–1390

    Article  Google Scholar 

  • Yang L, Wang Z, Ma L, Li A, Xin J, Wei R, Lin H, Wang R, Chen Z, Gao J (2018b) The roles of morphology on the relaxation rates of magnetic nanoparticles. ACS Nano 12(5):4605–4614

    Article  Google Scholar 

  • Yang L, Zhang X, Ye M, Jiang J, Yang R, Fu T, Chen Y, Wang K, Liu C, Tan W (2011b) Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev 63(14–15):1361–1370

    Article  Google Scholar 

  • Yang L, Zhou Z, Liu H, Wu C, Zhang H, Huang G, Ai H, Gao J (2015a) Europium-engineered iron oxide nanocubes with high T1 and T2 contrast abilities for MRI in living subjects. Nanoscale 7(15):6843–6850

    Article  ADS  Google Scholar 

  • Yang L, Zhou Z, Song J, Chen X (2019b) Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chem Soc Rev 48(19):5140–5176

    Article  Google Scholar 

  • Yang M, Cheng K, Qi S, Liu H, Jiang Y, Jiang H, Li J, Chen K, Zhang H, Cheng Z (2013) Affibody modified and radiolabeled gold–iron oxide hetero-nanostructures for tumor PET, optical and MR imaging. Biomaterials 34(11):2796–2806

    Article  Google Scholar 

  • Yang M, Gao L, Liu K, Luo C, Wang Y, Yu L, Peng H, Zhang W (2015b) Characterization of Fe3O4/SiO2/Gd2O (CO3) 2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent. Talanta 131:661–665

    Article  Google Scholar 

  • Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Xiao Y, Yang Y, Zhang Y, Nickles RJ (2011c) CRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32(17):4151–4160

    Article  Google Scholar 

  • Yigit MV, Mazumdar D, Lu Y (2008) MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug Chem 19(2):412–417

    Article  Google Scholar 

  • Yoon T-J, Lee H, Shao H, Weissleder R (2011) Highly magnetic core-shell nanoparticles with unique magnetization mechanism. Angew Chem (Int Ed. in English) 50(20):4663

    Google Scholar 

  • Yoon TJ, Lee H, Shao H, Hilderbrand SA, Weissleder R (2011b) Multicore assemblies potentiate magnetic properties of biomagnetic nanoparticles. Adv Mater 23(41):4793–4797

    Article  Google Scholar 

  • Yu J, Zhao F, Gao W, Yang X, Ju Y, Zhao L, Guo W, Xie J, Liang X-J, Tao X (2019a) Magnetic reactive oxygen species nanoreactor for switchable magnetic resonance imaging guided cancer therapy based on pH-sensitive Fe5C2@ Fe3O4 nanoparticles. ACS Nano 13(9):10002–10014

    Article  Google Scholar 

  • Yu M, Niu Y, Zhou D, Jiang R, Zhang L, Ju H, Gong A, Zou S, Zhang M, Du F (2019b) Hyaluronic acid-functionalized gadolinium doped iron oxide nanoparticles for atherosclerosis-targeted Mr imaging. J Biomed Nanotechnol 15(1):127–137

    Article  Google Scholar 

  • Yu S-M, Gonzalez-Moragas L, Milla M, Kolovou A, Santarella-Mellwig R, Schwab Y, Laromaine A, Roig A (2016) Bio-identity and fate of albumin-coated SPIONs evaluated in cells and by the C. elegans model. Acta Biomater 43:348–357

    Article  Google Scholar 

  • Yuan YY, Mao CQ, Du XJ, Du JZ, Wang F, Wang J (2012) Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Adv Mater 24(40):5476–5480

    Article  Google Scholar 

  • Zeng J, Jing L, Hou Y, Jiao M, Qiao R, Jia Q, Liu C, Fang F, Lei H, Gao M (2014) Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: towards high performance MRI contrast agents. Adv Mater 26(17):2694–2698

    Article  ADS  Google Scholar 

  • Zhang G, Du R, Zhang L, Cai D, Sun X, Zhou Y, Zhou J, Qian J, Zhong K, Zheng K (2015a) Gadolinium-doped iron oxide nanoprobe as multifunctional bioimaging agent and drug delivery system. Adv Func Mater 25(38):6101–6111

    Article  Google Scholar 

  • Zhang H, Li L, Liu XL, Jiao J, Ng C-T, Yi JB, Luo YE, Bay B-H, Zhao LY, Peng ML (2017) Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T 1 magnetic resonance imaging contrast agent. ACS Nano 11(4):3614–3631

    Article  Google Scholar 

  • Zhang M, Cao Y, Wang L, Ma Y, Tu X, Zhang Z (2015b) Manganese doped iron oxide theranostic nanoparticles for combined T 1 magnetic resonance imaging and photothermal therapy. ACS Appl Mater Interfaces 7(8):4650–4658

    Article  Google Scholar 

  • Zhang M, Gao S, Yang D, Fang Y, Lin X, Jin X, Liu Y, Liu X, Su K, Shi K (2021a) Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharmaceutica Sinica B 11(8):2265–2285

    Article  Google Scholar 

  • Zhang P, Zeng J, Li Y, Yang C, Meng J, Hou Y, Gao M (2021b) Quantitative mapping of glutathione within intracranial tumors through interlocked MRI signals of a responsive nanoprobe. Angew Chem 133(15):8211–8219

    Article  ADS  Google Scholar 

  • Zhang W, Liu L, Chen H, Hu K, Delahunty I, Gao S, Xie J (2018) Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 8(9):2521

    Article  Google Scholar 

  • Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561

    Article  Google Scholar 

  • Zhao HY, Liu S, He J, Pan CC, Li H, Zhou ZY, Ding Y, Huo D, Hu Y (2015) Synthesis and application of strawberry-like Fe3O4-Au nanoparticles as CT-MR dual-modality contrast agents in accurate detection of the progressive liver disease. Biomaterials 51:194–207

    Article  Google Scholar 

  • Zhao S, Yu X, Qian Y, Chen W, Shen J (2020) Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics 10(14):6278

    Article  Google Scholar 

  • Zhao Y, Yao Q, Tan H, Wu B, Hu P, Wu P, Gu Y, Zhang C, Cheng D, Shi H (2014) Design and preliminary assessment of 99m Tc-labeled ultrasmall superparamagnetic iron oxide-conjugated bevacizumab for single photon emission computed tomography/magnetic resonance imaging of hepatocellular carcinoma. J Radioanal Nucl Chem 299:1273–1280

    Article  Google Scholar 

  • Zhao Z, Bao J, Fu C, Lei M, Cheng J (2017) Controllable synthesis of manganese oxide nanostructures from 0-D to 3-D and mechanistic investigation of internal relation between structure and T 1 relaxivity. Chem Mater 29(24):10455–10468

    Article  Google Scholar 

  • Zhao Z, Chi X, Yang L, Yang R, Ren BW, Zhu X, Zhang P, Gao J (2016) Cation exchange of anisotropic-shaped magnetite nanoparticles generates high-relaxivity contrast agents for liver tumor imaging. Chem Mater 28(10):3497–3506

    Article  Google Scholar 

  • Zhao Z, Li M, Zeng J, Huo L, Liu K, Wei R, Ni K, Gao J (2022) Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioactive Materials 12:214–245

    Article  Google Scholar 

  • Zhao Z, Sun C, Bao J, Yang L, Wei R, Cheng J, Lin H, Gao J (2018) Surface manganese substitution in magnetite nanocrystals enhances T 1 contrast ability by increasing electron spin relaxation. J Mater Chem B 6(3):401–413

    Article  Google Scholar 

  • Zhao Z, Zhou Z, Bao J, Wang Z, Hu J, Chi X, Ni K, Wang R, Chen X, Chen Z (2013) Octapod iron oxide nanoparticles as high-performance T 2 contrast agents for magnetic resonance imaging. Nat Commun 4(1):2266

    Article  ADS  Google Scholar 

  • Zhou H, Guo M, Li J, Qin F, Wang Y, Liu T, Liu J, Sabet ZF, Wang Y, Liu Y (2021) Hypoxia-triggered self-assembly of ultrasmall iron oxide nanoparticles to amplify the imaging signal of a tumor. J Am Chem Soc 143(4):1846–1853

    Article  Google Scholar 

  • Zhou M, Tian M, Li C (2016) Copper-based nanomaterials for cancer imaging and therapy. Bioconjug Chem 27(5):1188–1199

    Article  Google Scholar 

  • Zhou T, Cai W, Yang H, Zhang H, Hao M, Yuan L, Liu J, Zhang L, Yang Y, Liu X (2018) Annexin V conjugated nanobubbles: A novel ultrasound contrast agent for in vivo assessment of the apoptotic response in cancer therapy. J Control Release 276:113–124

    Article  Google Scholar 

  • Zhou Z, Bai R, Munasinghe J, Shen Z, Nie L, Chen X (2017a) T 1–T 2 dual-modal magnetic resonance imaging: from molecular basis to contrast agents. ACS Nano 11(6):5227–5232

    Article  Google Scholar 

  • Zhou Z, Huang D, Bao J, Chen Q, Liu G, Chen Z, Chen X, Gao J (2012) A synergistically enhanced T1–T2 dual-modal contrast agent. Adv Mater 24(46):6223–6228

    Article  Google Scholar 

  • Zhou Z, Sun Y, Shen J, Wei J, Yu C, Kong B, Liu W, Yang H, Yang S, Wang W (2014a) Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35(26):7470–7478

    Article  Google Scholar 

  • Zhou Z, Tian R, Wang Z, Yang Z, Liu Y, Liu G, Wang R, Gao J, Song J, Nie L (2017b) Artificial local magnetic field inhomogeneity enhances T 2 relaxivity. Nat Commun 8(1):15468

    Article  ADS  Google Scholar 

  • Zhou Z, Wang L, Chi X, Bao J, Yang L, Zhao W, Chen Z, Wang X, Chen X, Gao J (2013) Engineered iron-oxide-based nanoparticles as enhanced T 1 contrast agents for efficient tumor imaging. ACS Nano 7(4):3287–3296

    Article  ADS  Google Scholar 

  • Zhou Z, Wu C, Liu H, Zhu X, Zhao Z, Wang L, Xu Y, Ai H, Gao J (2015a) Surface and interfacial engineering of iron oxide nanoplates for highly efficient magnetic resonance angiography. ACS Nano 9(3):3012–3022

    Article  ADS  Google Scholar 

  • Zhou Z, Yang L, Gao J, Chen X (2019) Structure–relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv Mater 31(8):1804567

    Article  Google Scholar 

  • Zhou Z, Zhao Z, Zhang H, Wang Z, Chen X, Wang R, Chen Z, Gao J (2014b) Interplay between longitudinal and transverse contrasts in Fe3O4 nanoplates with (111) exposed surfaces. ACS Nano 8(8):7976–7985

    Article  Google Scholar 

  • Zhou Z, Zhu X, Wu D, Chen Q, Huang D, Sun C, Xin J, Ni K, Gao J (2015b) Anisotropic shaped iron oxide nanostructures: controlled synthesis and proton relaxation shortening effects. Chem Mater 27(9):3505–3515

    Article  Google Scholar 

  • Zhu J, Lu Y, Li Y, Jiang J, Cheng L, Liu Z, Guo L, Pan Y, Gu H (2014) Synthesis of Au–Fe 3 O 4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging. Nanoscale 6(1):199–202

    Article  ADS  Google Scholar 

  • Zhu J, Zhang B, Tian J, Wang J, Chong Y, Wang X, Deng Y, Tang M, Li Y, Ge C (2015) Synthesis of heterodimer radionuclide nanoparticles for magnetic resonance and single-photon emission computed tomography dual-modality imaging. Nanoscale 7(8):3392–3395

    Article  ADS  Google Scholar 

  • Zhu X, Lin H, Wang L, Tang X, Ma L, Chen Z, Gao J (2017) Activatable T 1 relaxivity recovery nanoconjugates for kinetic and sensitive analysis of matrix metalloprotease 2. ACS Appl Mater Interfaces 9(26):21688–21696

    Article  Google Scholar 

  • Zhu X, Zhou J, Chen M, Shi M, Feng W, Li F (2012) Core–shell Fe3O4@ NaLuF4: Yb, Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 33(18):4618–4627

    Article  Google Scholar 

  • Zolata H, Davani FA, Afarideh H (2015) Synthesis, characterization and theranostic evaluation of Indium-111 labeled multifunctional superparamagnetic iron oxide nanoparticles. Nucl Med Biol 42(2):164–170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Nabil Savari .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savari, MN., Jabali, A. (2023). Diagnosis. In: Theranostic Iron-Oxide Based Nanoplatforms in Oncology. Nanomedicine and Nanotoxicology. Springer, Singapore. https://doi.org/10.1007/978-981-99-6507-6_8

Download citation

Publish with us

Policies and ethics