Skip to main content
Log in

Synthesis and characterization of 68Ga labeled Fe3O4 nanoparticles for positron emission tomography (PET) and magnetic resonance imaging (MRI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We designed a 68Ga labeled Fe3O4 nano-biocomposite for dual applications as diagnostic imaging agent in positron emission tomography (PET)/magnetic resonance imaging (MRI). The nano-biocomposites (68GaNHFCNP) were fabricated via surface modified iron oxide nanoparticles and NOTA as bi-functional chelating agent with 68Ga isotopes from 68Ge/68Ga generator. The structure and morphological properties of nano-biocomposite was characterized by XRD, TEM and IR analysis. 68GaNHFCNPs exhibits very low cytotoxicity and high cellular uptake upon SK-BR-3 and CT-26 cell lines. The advantages of high biocompatibility, magnetism and cell uptake make this composite promising as a potential probe of PET/MRI for effective detection of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheon J, Lee JH (2008) Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 41:1630–1640

    Article  CAS  Google Scholar 

  2. Nigam S, Barick KC, Bahadur D (2011) Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications. J Magn Magn Mater 323:237–243

    Article  CAS  Google Scholar 

  3. Barick KC, Aslam M, Lin YP, Bahadur D, Prasad PV, Dravid VP (2009) Novel and efficient MR active aqueous colloidal Fe3O4 nanoassemblies. J Mater Chem 19:7023–7029

    Article  CAS  Google Scholar 

  4. Barick KC, Aslam M, Prasad PV, Dravid VP, Bahadur D (2009) Nanoscale assembly of amine functionalized colloidal iron oxide. J Magn Magn Mater 321:1529–1532

    Article  CAS  Google Scholar 

  5. Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 9:941–949

    Article  Google Scholar 

  6. Hu FQ, Wei L, Zhou Z, Ran YL, Li Z, Gao MY (2006) Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater 18:2553–2556

    Article  CAS  Google Scholar 

  7. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175

    Article  CAS  Google Scholar 

  8. Chang Y, Meng X, Zhao Y, Li K, Zhao B, Zhu M, Li Y, Chen X, Wang J (2011) Novel water-soluble and pH-responsive anticancer drug nanocarriers: doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). J Colloid Interface Sci 363:403–409

    Article  CAS  Google Scholar 

  9. Liu Z, Ding J, Xue J (2009) A new family of biocompatible and stable magnetic nanoparticles: silica cross-linked pluronic F127 micelles loaded with iron oxides. New J Chem 33:88–92

    Article  CAS  Google Scholar 

  10. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46:1222–1244

    Article  CAS  Google Scholar 

  11. Barrera C, Herrera AP, Rinaldi C (2009) Colloidal dispersions of monodisperse magnetite nanoparticles modified with poly(ethylene glycol). J Colloid Interface Sci 329:107–113

    Article  CAS  Google Scholar 

  12. Park SI, Kwon BJ, Park JH, Jung H, Yu KH (2011) Synthesis and characterization of 3-[131I]iodo-l-Tyrosine grafted Fe3O4@SiO2 nanocomposite for single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). J Nanosci Nanotechnol 11:1818–1821

    Article  CAS  Google Scholar 

  13. Kobayashi Y, Kakinuma H, Nagao D, Ando Y, Miyazaki T, Konno M (2009) Silica coating of Co–Pt alloy nanoparticles prepared in the presence of poly(vinylpyrrolidone). J Nanopart Res 11:1787–1794

    Article  CAS  Google Scholar 

  14. Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, Xiong L, Gao Y, Li F, Zhao D (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed Engl 48:5875–5879

    Article  CAS  Google Scholar 

  15. Sahoo Y, Goodarzi A, Swihart MT, Ohulchanskyy TY, Kaur N, Furlani EP, Prasad PN (2005) Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control. J Phys Chem B 109:3879–3885

    Article  CAS  Google Scholar 

  16. Mohamad Nor N, Abdul Razak K, Tan SC, Noordin R (2012) Properties of surface functionalized iron oxide nanoparticles (ferrofluid) conjugated antibody for lateral flow immunoassay application. J Alloys Compd 538:100–106

    Article  CAS  Google Scholar 

  17. Kim HM, Lee H, Hong KS, Cho MY, Sung MH, Poo H, Lim YT (2011) Synthesis and high performance of magnetofluorescent polyelectrolyte nanocomposites as MR/near-infrared multimodal cellular imaging nanoprobes. ACS Nano 5:8230–8240

    Article  CAS  Google Scholar 

  18. Pineider F, Campo G, Bonanni V, Fernandez Cde J, Mattei G, Caneschi A, Gatteschi D, Sangregorio C (2013) Circular magnetoplasmonic modes in gold nanoparticles. Nano Lett 13:4785–4789

    Article  CAS  Google Scholar 

  19. Lee J, Kim HY, Zhou H, Hwang S, Koh K, Han D-W, Lee J (2011) Green synthesis of phytochemical-stabilized Au nanoparticles under ambient conditions and their biocompatibility and antioxidative activity. J Mater Chem 21:13316–13326

    Article  CAS  Google Scholar 

  20. Sharma R, Xu Y, Kim SW, Schueller MJ, Alexoff D, Smith SD, Wang W, Schlyer D (2013) Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging. Nanoscale 5:7476–7483

    Article  CAS  Google Scholar 

  21. Hong H, Zhang Y, Sun J, Cai W (2009) Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today 4:399–413

    Article  CAS  Google Scholar 

  22. Turkheimer FE, Boussion N, Anderson AN, Pavese N, Piccini P, Visvikis D (2008) PET image denoising using a synergistic multiresolution analysis of structural (MRI/CT) and functional datasets. J Nucl Med 49:657–666

    Article  Google Scholar 

  23. Welch MJ, Hawker CJ, Wooley KL (2009) The advantages of nanoparticles for PET. J Nucl Med 50:1743–1746

    Article  CAS  Google Scholar 

  24. Liu Y, Welch MJ (2012) Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug Chem 23:671–682

    Article  CAS  Google Scholar 

  25. Kim HJ, Kim DY, Park JH, Yang SD, Hur MG, Min JJ, Yu KH (2012) Synthesis and characterization of a 68Ga-labeled N-(2-diethylaminoethyl)benzamide derivative as potential PET probe for malignant melanoma. Bioorg Med Chem 20:4915–4920

    Article  CAS  Google Scholar 

  26. Kim HJ, Kim DY, Park JH, Yang SD, Hur MG, Min JJ, Yu KH (2012) Synthesis and evaluation of a novel 68Ga-labeled DOTA-benzamide derivative for malignant melanoma imaging. Bioorg Med Chem Lett 22:5288–5292

    Article  CAS  Google Scholar 

  27. Renata Madru TAT, Axelsson Johan, Ingvar Christian, Bibic Adnan, Ståhlberg Freddy, Knutsson Linda, Strand Sven-Erik (2014) 68Ga-labeled superparamagnetic iron oxide nanoparticles (SPIONs) for multi-modality PET/MR/Cherenkov luminescence imaging of sentinel lymph nodes. Am J Nucl Med Mol Imaging 4:60–69

    Google Scholar 

  28. Madru R, Kjellman P, Olsson F, Wingardh K, Ingvar C, Stahlberg F, Olsrud J, Latt J, Fredriksson S, Knutsson L, Strand SE (2012) 99mTc-labeled superparamagnetic iron oxide nanoparticles for multimodality SPECT/MRI of sentinel lymph nodes. J Nucl Med 53:459–463

    Article  CAS  Google Scholar 

  29. Bumb A, Brechbiel MW, Choyke PL, Fugger L, Eggeman A, Prabhakaran D, Hutchinson J, Dobson PJ (2008) Synthesis and characterization of ultra-small superparamagnetic iron oxide nanoparticles thinly coated with silica. Nanotechnology 19:335601

    Article  CAS  Google Scholar 

  30. Borchhardt DM, Mascarello A, Chiaradia LD, Nunes RJ, Oliva G, Yunes RA, Andricopulo AD (2010) Biochemical evaluation of a series of synthetic chalcone and hydrazide derivatives as novel inhibitors of cruzain from Trypanosoma cruzi. J Braz Chem Soc 21:142–150

    Article  CAS  Google Scholar 

  31. Lee YK, Jeong JM, Hoigebazar L, Yang BY, Lee YS, Lee BC, Youn H, Lee DS, Chung JK, Lee MC (2012) Nanoparticles modified by encapsulation of ligands with a long alkyl chain to affect multispecific and multimodal imaging. J Nucl Med 53:1–9

    Article  CAS  Google Scholar 

  32. Zhu J, Liao L, Zhu L, Zhang P, Guo K, Kong J, Ji C, Liu B (2013) Size-dependent cellular uptake efficiency, mechanism, and cytotoxicity of silica nanoparticles toward HeLa cells. Talanta 107:408–415

    Article  CAS  Google Scholar 

  33. Kang M, Kim JH, Yang W, Jung H (2014) Synthesis and Characterization of Mn3O4-graphene nanocomposite thin film by an ex situ approach. Bull Korean Chem Soc 35:1067–1072

    Article  CAS  Google Scholar 

  34. Max JJ, Chapados C (2004) Infrared spectroscopy of aqueous carboxylic acids: comparison between different acidsand their salts. J Phys Chem A 108:3324–3337

    Article  CAS  Google Scholar 

  35. Peng GW, Ding DX, Xiao FZ, Wang XL, Hun N, Wang YD, Dai YM, Cao Z (2014) Adsorption of uranium ions from aqueous solution by amine-group functionalized magnetic Fe3O4 nanoparticle. J Radioanal Nucl Chem 301:781–788

    Article  CAS  Google Scholar 

  36. Silverstein RM, Webster FX (1998) Spectrometric identification of organic compounds, 6th edn. Wiley, New York

    Google Scholar 

  37. Wilhelm C, Billotey C, Rogerc J, Pons JN, Bacria J-C, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24:1001–1011

    Article  CAS  Google Scholar 

  38. Ahn S, Seo E, Kim K, Lee SJ (2013) Controlled cellular uptake and drug efficacy of nanotherapeutics. Sci Rep 3:1997

    Google Scholar 

  39. Hillaireau H, Couvreur P (2009) Nanocarriers entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66:2873–2896

    Article  CAS  Google Scholar 

  40. Yang R, Shim WS, Cui FD, Cheng G, Han X, Jin QR, Kim DD, Chung SJ, Shim CK (2009) Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor. Int J Pharm 371:142–147

    Article  CAS  Google Scholar 

  41. Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–4607

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Nuclear R&D Program (2012M2A2A7035, 2010-0025899) and the Converging Research Center Program (2013K000339) and National Research Foundation of Korea (NRF) (20142M2A2A6043061) through the Ministry of Science, ICT and Future Planning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kook-Hyun Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, BB., Park, J.H., Jung, S.J. et al. Synthesis and characterization of 68Ga labeled Fe3O4 nanoparticles for positron emission tomography (PET) and magnetic resonance imaging (MRI). J Radioanal Nucl Chem 305, 169–178 (2015). https://doi.org/10.1007/s10967-015-4026-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4026-4

Keywords

Navigation