Skip to main content

IONPs-Based Treatment Methods

  • Chapter
  • First Online:
Theranostic Iron-Oxide Based Nanoplatforms in Oncology

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

  • 97 Accesses

Abstract

Many IONPs-based nanoplatforms have been created to use for successful cancer treatment. Both traditional chemotherapies based on drug delivery and alternative treatment techniques like photothermal therapy have made use of these nanoplatforms. The crucial and often researched therapy approaches are covered in this chapter. The below figure presents the most popular strategies that are used for treating cancer.

Abstract’s hierarchical chart of the most common strategies for cancer therapy based on iron oxide nanoparticles (discussed in depth in this chapter)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadeer NS, Murphy CJ (2016) Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C 120(9):4691–4716

    Article  Google Scholar 

  • Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang G-M, Choi HY, Cho S-G (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18(1):120

    Article  Google Scholar 

  • Abenojar EC, Wickramasinghe S, Bas-Concepcion J, Samia ACS (2016) Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Prog Nat Sci Mater Int 26(5):440–448

    Article  Google Scholar 

  • Agostinis P, Breyssens H, Buytaert E, Hendrickx N (2004) Regulatory pathways in photodynamic therapy induced apoptosis. Photochem Photobiol Sci 3:721–729

    Article  Google Scholar 

  • Ahmadkhani L, Akbarzadeh A, Abbasian M (2018) Development and characterization dual responsive magnetic nanocomposites for targeted drug delivery systems. Artif Cells Nanomed Biotechnol 46(5):1052–1063

    Article  Google Scholar 

  • Ahn T-G, Lee B-R, Choi E-Y, Kim DW, Han S-J (2012) Photodynamic therapy for breast cancer in a BALB/c mouse model. J Gynecol Oncol 23(2):115–119

    Article  Google Scholar 

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):1–9

    Article  Google Scholar 

  • Akimoto J, Nakayama M, Okano T (2014) Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors. J Control Release 193:2–8

    Article  Google Scholar 

  • Al-Waili, NS, Butler GJ, Beale J, Hamilton RW, Lee BY, Lucas P (2005). Hyperbaric oxygen and malignancies: a potential role in radiotherapy, chemotherapy, tumor surgery and phototherapy. Med Sci Monit 11(9):RA279

    Google Scholar 

  • Alex MA, Nehate C, Veeranarayanan S, Kumar DS, Kulshreshtha R, Koul V (2017) Self assembled dual responsive micelles stabilized with protein for co-delivery of drug and siRNA in cancer therapy. Biomaterials 133:94–106

    Article  Google Scholar 

  • Ali EM, Elashkar AA, El-Kassas HY, Salim EI (2018) Methotrexate loaded on magnetite iron nanoparticles coated with chitosan: Biosynthesis, characterization, and impact on human breast cancer MCF-7 cell line. Int J Biol Macromol 120:1170–1180

    Article  Google Scholar 

  • Aljarrah K, Mhaidat NM, Al-Akhras M-AH, Aldaher AN, Albiss B, Aledealat K, Alsheyab FM (2012) Magnetic nanoparticles sensitize MCF-7 breast cancer cells to doxorubicin-induced apoptosis. World J Surg Oncol 10(1):1–5

    Article  Google Scholar 

  • Allison RR (2014) Photodynamic therapy: oncologic horizons. Future Oncol 10(1):123–124

    Article  Google Scholar 

  • Allison RR, Moghissi K (2013) Oncologic photodynamic therapy: clinical strategies that modulate mechanisms of action. Photodiagn Photodyn Ther 10(4):331–341

    Article  Google Scholar 

  • Allison RR, Sibata CH (2010) Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagn Photodyn Ther 7(2):61–75

    Article  Google Scholar 

  • Alomari M, Jermy BR, Ravinayagam V, Akhtar S, Almofty SA, Rehman S, Bahmdan H, AbdulAzeez S, Borgio JF (2019) Cisplatin-functionalized three-dimensional magnetic SBA-16 for treating breast cancer cells (MCF-7). Artificial Cells Nanomed Biotechnol 47(1):3079–3086

    Article  Google Scholar 

  • Alric C, Hervé-Aubert K, Aubrey N, Melouk S, Lajoie L, Même W, Même S, Courbebaisse Y, Ignatova AA, Feofanov AV (2018) Targeting HER2-breast tumors with scFv-decorated bimodal nanoprobes. J Nanobiotechnol 16:1–13

    Article  Google Scholar 

  • Alvarez-Lorenzo C, Concheiro A (2013) Smart materials for drug delivery. Royal Society of Chemistry.

    Google Scholar 

  • Amirshaghaghi A, Yan L, Miller J, Daniel Y, Stein JM, Busch TM, Cheng Z, Tsourkas A (2019) Chlorin e6-coated superparamagnetic iron oxide nanoparticle (SPION) nanoclusters as a theranostic agent for dual-mode imaging and photodynamic therapy. Sci Rep 9(1):1–9

    Article  Google Scholar 

  • Assikar S, Labrunie A, Kerob D, Couraud A, Bédane C (2020) Daylight photodynamic therapy with methyl aminolevulinate cream is as effective as conventional photodynamic therapy with blue light in the treatment of actinic keratosis: a controlled randomized intra-individual study. J Eur Acad Dermatol Venereol 34(8):1730–1735

    Article  Google Scholar 

  • Attaluri A, Kandala SK, Wabler M, Zhou H, Cornejo C, Armour M, Hedayati M, Zhang Y, DeWeese TL, Herman C (2015) Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer. Int J Hyperth 31(4):359–374

    Article  Google Scholar 

  • Attari E, Nosrati H, Danafar H, Kheiri Manjili H (2019) Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide magnetic based nanocarrier. J Biomed Mater Res, Part A 107(11):2492–2500

    Article  Google Scholar 

  • Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153(3):198

    Article  Google Scholar 

  • Bai F, Zhang X, Hou X, Liu H, Chen J, Yang T (2019) Individual and simultaneous voltammetric determination of Cd (II), Cu (II) and Pb (II) applying amino functionalized Fe3O4@ carbon microspheres modified electrode. Electroanalysis 31(8):1448–1457

    Google Scholar 

  • Baldwin AD, Kiick KL (2013) Reversible maleimide–thiol adducts yield glutathione-sensitive poly (ethylene glycol)–heparin hydrogels. Polym Chem 4(1):133–143

    Article  Google Scholar 

  • Balk SP, Ko Y-J, Bubley GJ (2003) Biology of prostate-specific antigen. J Clin Oncol 21(2):383–391

    Article  Google Scholar 

  • Bañobre-López M, Teijeiro A, Rivas J (2013) Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother 18(6):397–400

    Article  Google Scholar 

  • Barani M, Nematollahi MH, Zaboli M, Mirzaei M, Torkzadeh-Mahani M, Pardakhty A, Karam GA (2019) In silico and in vitro study of magnetic niosomes for gene delivery: the effect of ergosterol and cholesterol. Mater Sci Eng, C 94:234–246

    Article  Google Scholar 

  • Bauer CA, Kim EY, Marangoni F, Carrizosa E, Claudio NM, Mempel TR (2014) Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction. J Clin Investig 124(6):2425–2440

    Article  Google Scholar 

  • Benyettou F, Alhashimi M, O’Connor M, Pasricha R, Brandel J, Traboulsi H, Mazher J, Olsen J-C, Trabolsi A (2017) Sequential delivery of doxorubicin and zoledronic acid to breast cancer cells by CB [7]-modified iron oxide nanoparticles. ACS Appl Mater Interfaces 9(46):40006–40016

    Article  Google Scholar 

  • Bhattacharya D, Behera B, Sahu SK, Ananthakrishnan R, Maiti TK, Pramanik P (2016) Design of dual stimuli responsive polymer modified magnetic nanoparticles for targeted anti-cancer drug delivery and enhanced MR imaging. New J Chem 40(1):545–557

    Article  Google Scholar 

  • Blasi F (1997) UPA, uPAR, PAI-I: Key intersection of proteolytic, adhesive and chemotacfic highways? Immunol Today 18(9):415–417

    Article  Google Scholar 

  • Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11(5):593–600

    Article  Google Scholar 

  • Brancaleon L, Moseley H (2002) Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci 17:173–186

    Article  Google Scholar 

  • Brazel CS (2009) Magnetothermally-responsive nanomaterials: combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release. Pharm Res 26:644–656

    Article  Google Scholar 

  • Bruniaux J, Djemaa SB, Hervé-Aubert K, Marchais H, Chourpa I, David S (2017) Stealth magnetic nanocarriers of siRNA as platform for breast cancer theranostics. Int J Pharm 532(2):660–668

    Article  Google Scholar 

  • Bruniaux, J, Allard-Vannier E, Aubrey N, Lakhrif Z, Djemaa SB, Eljack S, Marchais H, Hervé-Aubert K, Chourpa I, David S (2019) Magnetic nanocarriers for the specific delivery of siRNA: contribution of breast cancer cells active targeting for down-regulation efficiency. Int J Pharm 569:118572

    Google Scholar 

  • Bui QN, Li Y, Jang M-S, Huynh DP, Lee JH, Lee DS (2015) Redox-and pH-sensitive polymeric micelles based on poly (β-amino ester)-grafted disulfide methylene oxide poly (ethylene glycol) for anticancer drug delivery. Macromolecules 48(12):4046–4054

    Article  Google Scholar 

  • Burdon RH (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radical Biol Med 18(4):775–794

    Article  Google Scholar 

  • Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626

    Article  Google Scholar 

  • Cabral Filho PE, Cabrera MP, Cardoso AL, Santana OA, Geraldes CF, Santos BS, de Lima MCP, Pereira GA, Fontes A (2018) Multimodal highly fluorescent-magnetic nanoplatform to target transferrin receptors in cancer cells. Biochim Biophys Acta (BBA)-Gen Subj 1862(12):2788–2796

    Google Scholar 

  • Canavese G, Ancona A, Racca L, Canta M, Dumontel B, Barbaresco F, Limongi T, Cauda V (2018) Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chem Eng J 340:155–172

    Article  Google Scholar 

  • Cantisani C, Paolino G, Bottoni U, Calvieri S (2015) Daylight-photodynamic therapy for the treatment of actinic keratosis in different seasons. J Drugs Dermatol 14(11):1349–1353

    Google Scholar 

  • Carroll L, Humphreys TR (2006) LASER-tissue interactions. Clin Dermatol 24(1):2–7

    Article  Google Scholar 

  • Casas A, Di Venosa G, Hasan T, Batlle A (2011) Mechanisms of resistance to photodynamic therapy. Curr Med Chem 18(16):2486–2515

    Article  Google Scholar 

  • Catalona WJ, Richie JP, Ahmann FR, M’Liss AH, Scardino PT, Flanigan RC, Dekernion JB, Ratliff TL, Kavoussi LR, Dalkin BL (1994) Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol 151(5):1283–1290

    Article  Google Scholar 

  • Catalona WJ, Richie JP, Ahmann FR, Hudson MLA, Scardino PT, Flanigan RC, DeKernion JB, Ratliff TL, Kavoussi LR, Dalkin BL (2017) Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol 197(2S):S200–S207

    Article  Google Scholar 

  • Cędrowska E, Pruszyński M, Gawęda W, Żuk M, Krysiński P, Bruchertseifer F, Morgenstern A, Karageorgou M-A, Bouziotis P, Bilewicz A (2020) Trastuzumab conjugated superparamagnetic iron oxide nanoparticles labeled with 225AC as a perspective tool for combined α-radioimmunotherapy and magnetic hyperthermia of HER2-positive breast cancer. Molecules 25(5):1025

    Article  Google Scholar 

  • Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864

    Article  Google Scholar 

  • Ceylan H, Yasa IC, Yasa O, Tabak AF, Giltinan J, Sitti M (2019) 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 13(3):3353–3362

    Article  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605

    Article  Google Scholar 

  • Chang D, Lim M, Goos JA, Qiao R, Ng YY, Mansfeld FM, Jackson M, Davis TP, Kavallaris M (2018) Biologically targeted magnetic hyperthermia: potential and limitations. Front Pharmacol 9:831

    Article  Google Scholar 

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  Google Scholar 

  • Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    Google Scholar 

  • Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer–immune set point. Nature 541(7637):321–330

    Article  Google Scholar 

  • Chen Q, Chen H, Hetzel F (1996) Tumor oxygenation changes post-photodynamic therapy. Photochem Photobiol 63(1):128–131

    Article  Google Scholar 

  • Chen J, Keltner L, Christophersen J, Zheng F, Krouse M, Singhal A, Wang S-S (2002a) New technology for deep light distribution in tissue for phototherapy. Cancer J 8(2):154–163

    Article  Google Scholar 

  • Chen Q, Huang Z, Chen H, Shapiro H, Beckers J, Hetzel FW (2002b) Improvement of tumor response by manipulation of tumor oxygenation during photodynamic therapy¶. Photochem Photobiol 76(2):197–203

    Article  Google Scholar 

  • Chen F-H, Zhang L-M, Chen Q-T, Zhang Y, Zhang Z-J (2010) Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell. Chem Commun 46(45):8633–8635

    Article  Google Scholar 

  • Chen J, Qiu X, Ouyang J, Kong J, Zhong W, Xing MM (2011) PH and reduction dual-sensitive copolymeric micelles for intracellular doxorubicin delivery. Biomacromolecules 12(10):3601–3611

    Article  Google Scholar 

  • Chen J, Guo Z, Wang H-B, Gong M, Kong X-K, Xia P, Chen Q-W (2013) Multifunctional Fe3O4@ C@ Ag hybrid nanoparticles as dual modal imaging probes and near-infrared light-responsive drug delivery platform. Biomaterials 34(2):571–581

    Article  Google Scholar 

  • Chen J, Huang L, Lai H, Lu C, Fang M, Zhang Q, Luo X (2014a) Methotrexate-loaded PEGylated chitosan nanoparticles: synthesis, characterization, and in vitro and in vivo antitumoral activity. Mol Pharm 11(7):2213–2223

    Article  Google Scholar 

  • Chen J, Shi M, Liu P, Ko A, Zhong W, Liao W, Xing MM (2014b) Reducible polyamidoamine-magnetic iron oxide self-assembled nanoparticles for doxorubicin delivery. Biomaterials 35(4):1240–1248

    Article  Google Scholar 

  • Chen S, Guo CX, Zhao Q, Lu X (2014c) One‐pot synthesis of CO2‐responsive magnetic nanoparticles with switchable hydrophilicity. Chemistry–A Eur J 20(43):14057–14062

    Google Scholar 

  • Chen Y-W, Liu T-Y, Chang P-H, Hsu P-H, Liu H-L, Lin H-C, Chen S-Y (2016) A theranostic nrGO@ MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale 8(25):12648–12657

    Article  Google Scholar 

  • Chen H, Luan X, Paholak HJ, Burnett JP, Stevers NO, Sansanaphongpricha K, He M, Chang AE, Li Q, Sun D (2020) Depleting tumor-associated Tregs via nanoparticle-mediated hyperthermia to enhance anti-CTLA-4 immunotherapy. Nanomedicine 15(1):77–92

    Article  Google Scholar 

  • Chen X, Cheng D, Ding M, Yu N, Liu J, Li J, Lin L (2022) Tumor-targeting biomimetic sonosensitizer-conjugated iron oxide nanocatalysts for combinational chemodynamic–sonodynamic therapy of colorectal cancer. J Mater Chem B 10(24):4595–4604

    Article  Google Scholar 

  • Cheng Y-J, Luo G-F, Zhu J-Y, Xu X-D, Zeng X, Cheng D-B, Li Y-M, Wu Y, Zhang X-Z, Zhuo R-X (2015) Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. ACS Appl Mater Interfaces 7(17):9078–9087

    Article  Google Scholar 

  • Chiang C-S, Lin Y-J, Lee R, Lai Y-H, Cheng H-W, Hsieh C-H, Shyu W-C, Chen S-Y (2018) Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat Nanotechnol 13(8):746–754

    Article  Google Scholar 

  • Chinnappan R, Al Faraj A, Abdel Rahman AM, Abu-Salah KM, Mouffouk F, Zourob M (2020) Anti-VCAM-1 and anti-IL4Rα aptamer-conjugated super paramagnetic iron oxide nanoparticles for enhanced breast cancer diagnosis and therapy. Molecules 25(15):3437

    Article  Google Scholar 

  • Chivate A, Garkal A, Dhas N, Mehta T (2021) Hot-Melt Extrusion: An Emerging Technique for Solubility Enhancement of Poorly Water-Soluble Drugs. PDA J Pharm Sci Technol 75(4):357–373

    Article  Google Scholar 

  • Cho N-H, Cheong T-C, Min JH, Wu JH, Lee SJ, Kim D, Yang J-S, Kim S, Kim YK, Seong S-Y (2011) A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 6(10):675–682

    Article  Google Scholar 

  • Cho M, Cervadoro A, Ramirez MR, Stigliano C, Brazdeikis A, Colvin VL, Civera P, Key J, Decuzzi P (2017) Assembly of iron oxide nanocubes for enhanced cancer hyperthermia and magnetic resonance imaging. Nanomaterials 7(4):72

    Article  Google Scholar 

  • Chong ZX, Yeap SK, Ho WY (2021) Transfection types, methods and strategies: a technical review. PeerJ 9:e11165

    Google Scholar 

  • Chouly C, Pouliquen D, Lucet I, Jeune J, Jallet P (1996) Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13(3):245–255

    Article  Google Scholar 

  • Ciechanover A, Schwartz A, Dautry-Varsat A, Lodish HF (1983) Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. Effect of lysosomotropic agents. J Biol Chem 258(16):9681–9689

    Article  Google Scholar 

  • Cotin G, Blanco-Andujar C, Perton F, Asín L, de La Fuente JM, Reichardt W, Schaffner D, Ngyen D-V, Mertz D, Kiefer C (2021) Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications. Nanoscale 13(34):14552–14571

    Article  Google Scholar 

  • Cowman MK, Lee H-G, Schwertfeger KL, McCarthy JB, Turley EA (2015) The content and size of hyaluronan in biological fluids and tissues. Front Immunol 6:261

    Article  Google Scholar 

  • Cui Y-N, Xu Q-X, Davoodi P, Wang D-P, Wang C-H (2017) Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin. Acta Pharmacol Sin 38(6):943–953

    Article  Google Scholar 

  • Dähring H, Grandke J, Teichgräber U, Hilger I (2015) Improved hyperthermia treatment of tumors under consideration of magnetic nanoparticle distribution using micro-CT imaging. Mol Imag Biol 17:763–769

    Article  Google Scholar 

  • Dalmina M, Pittella F, Sierra JA, Souza GRR, Silva AH, Pasa AA, Creczynski-Pasa TB (2019) Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells. Mater Sci Eng C 99:1182–1190

    Article  Google Scholar 

  • Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146

    Article  Google Scholar 

  • Dani RK, Schumann C, Taratula O, Taratula O (2014) Temperature-tunable iron oxide nanoparticles for remote-controlled drug release. AAPS Pharmscitech 15:963–972

    Article  Google Scholar 

  • Daniels TR, Delgado T, Helguera G, Penichet ML (2006a) The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol 121(2):159–176

    Article  Google Scholar 

  • Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML (2006b) The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 121(2):144–158

    Article  Google Scholar 

  • Das P, Colombo M, Prosperi D (2019) Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf B Biointerfaces 174:42–55

    Article  Google Scholar 

  • Dawar S, Singh N, Kanwar RK, Kennedy RL, Veedu RN, Zhou S-F, Krishnakumar S, Hazra S, Sasidharan S, Duan W (2013) Multifunctional and multitargeted nanoparticles for drug delivery to overcome barriers of drug resistance in human cancers. Drug Discovery Today 18(23–24):1292–1300

    Article  Google Scholar 

  • de Bruijn HS, Brooks S, van der Ploeg-van den Heuvel A, ten Hagen TL, de Haas ER, Robinson DJ (2016) Light fractionation significantly increases the efficacy of photodynamic therapy using BF-200 ALA in normal mouse skin. PLoS One 11(2):e0148850

    Google Scholar 

  • Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172

    Article  Google Scholar 

  • Debbage P, Jaschke W (2008) Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem Cell Biol 130:845–875

    Article  Google Scholar 

  • Deng L, Li Q, Al-Rehili SA, Omar H, Almalik A, Alshamsan A, Zhang J, Khashab NM (2016) Hybrid iron oxide–graphene oxide–polysaccharides microcapsule: a micro-matryoshka for on-demand drug release and antitumor therapy in vivo. ACS Appl Mater Interfaces 8(11):6859–6868

    Google Scholar 

  • Deng K, Chen Y, Li C, Deng X, Hou Z, Cheng Z, Han Y, Xing B, Lin J (2017) 808 nm light responsive nanotheranostic agents based on near-infrared dye functionalized manganese ferrite for magnetic-targeted and imaging-guided photodynamic/photothermal therapy. J Mater Chem B 5(9):1803–1814

    Article  Google Scholar 

  • Deng S, Zhang W, Zhang B, Hong R, Chen Q, Dong J, Chen Y, Chen Z, Wu Y (2015) Radiolabeled cyclic arginine-glycine-aspartic (RGD)-conjugated iron oxide nanoparticles as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer. J Nanopart Res 17:1–11

    Article  Google Scholar 

  • Deshmukh S, Avachat A, Garkal A, Khurana N, Cardot J-M (2016) Optimization of a dissolution method in early development based on IVIVC using small animals: application to a BCS class II drug. Dissolution Technol 23(4):34–41

    Article  Google Scholar 

  • Dey C, Ghosh A, Ahir M, Ghosh A, Goswami MM (2018) Improvement of anticancer drug release by cobalt ferrite magnetic nanoparticles through combined pH and temperature responsive technique. ChemPhysChem 19(21):2872–2878

    Article  Google Scholar 

  • Dhas N, Mehta T (2020) Cationic biopolymer functionalized nanoparticles encapsulating lutein to attenuate oxidative stress in effective treatment of Alzheimer’s disease: a non-invasive approach. Int J Pharma 586:119553

    Google Scholar 

  • Dhas N, Parekh K, Pandey A, Kudarha R, Mutalik S, Mehta T (2019a) Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: a biomedical and toxicological perspective. J Control Release 308:130–161

    Article  Google Scholar 

  • Dhas NL, Kudarha RR, Mehta TA (2019b) Intranasal delivery of nanotherapeutics/nanobiotherapeutics for the treatment of Alzheimer's disease: a proficient approach. Critical Reviews™ Ther Drug Carr Syst 36(5)

    Google Scholar 

  • Dhas N, Kudarha R, Garkal A, Ghate V, Sharma S, Panzade P, Khot S, Chaudhari P, Singh A, Paryani M (2021) Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: current advancement and future breakthroughs. J Control Release 330:257–283

    Article  Google Scholar 

  • Dilnawaz F, Singh A, Mohanty C, Sahoo SK (2010) Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31(13):3694–3706

    Article  Google Scholar 

  • Ding Z, Liu P, Hu D, Sheng Z, Yi H, Gao G, Wu Y, Zhang P, Ling S, Cai L (2017) Redox-responsive dextran based theranostic nanoparticles for near-infrared/magnetic resonance imaging and magnetically targeted photodynamic therapy. Biomater Sci 5(4):762–771

    Article  Google Scholar 

  • Djemaa SB, David S, Hervé-Aubert K, Falanga A, Galdiero S, Allard-Vannier E, Chourpa I, Munnier E (2018) Formulation and in vitro evaluation of a siRNA delivery nanosystem decorated with gH625 peptide for triple negative breast cancer theranosis. Eur J Pharm Biopharm 131:99–108

    Article  Google Scholar 

  • Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    Article  Google Scholar 

  • Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800

    Article  Google Scholar 

  • dos Santos AlF, De Almeida DRQ, Terra LF, Baptista MS, Labriola L (2019) Photodynamic therapy in cancer treatment-an update review. J Cancer Metastasis Treat 5: 25

    Google Scholar 

  • Doughty AC, Hoover AR, Layton E, Murray CK, Howard EW, Chen WR (2019) Nanomaterial applications in photothermal therapy for cancer. Materials 12(5):779

    Article  Google Scholar 

  • Du B, Liu J, Ding G, Han X, Li D, Wang E, Wang J (2017) Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy. Nano Res 10:2280–2295

    Article  Google Scholar 

  • Du J, Lane LA, Nie S (2015) Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release 219:205–214

    Article  Google Scholar 

  • Duan X, Li Y (2013) Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9(9–10):1521–1532

    Article  Google Scholar 

  • Duan M, Xia F, Li T, Shapter JG, Yang S, Li Y, Gao G, Cui D (2019) Matrix metalloproteinase-2-targeted superparamagnetic Fe3O4-PEG-G5-MMP2@ Ce6 nanoprobes for dual-mode imaging and photodynamic therapy. Nanoscale 11(39):18426–18435

    Article  Google Scholar 

  • Dubuc C, Langlois R, Bénard F, Cauchon N, Klarskov K, Tone P, van Lier JE (2008) Targeting gastrin-releasing peptide receptors of prostate cancer cells for photodynamic therapy with a phthalocyanine–bombesin conjugate. Bioorg Med Chem Lett 18(7):2424–2427

    Article  Google Scholar 

  • Dumoulin F, Durmuş M, Ahsen V, Nyokong T (2010) Synthetic pathways to water-soluble phthalocyanines and close analogs. Coord Chem Rev 254(23–24):2792–2847

    Article  Google Scholar 

  • Dunn MR, Jimenez RM, Chaput JC (2017) Analysis of aptamer discovery and technology. Nat Rev Chem 1(10):0076

    Article  Google Scholar 

  • Ebrahimi E, Akbarzadeh A, Abbasi E, Khandaghi AA, Abasalizadeh F, Davaran S (2016) RETRACTED ARTICLE: Novel drug delivery system based on doxorubicin-encapsulated magnetic nanoparticles modified with PLGA-PEG1000 copolymer. Artif Cells Nanomed Biotechnol 44(1):290–297

    Article  Google Scholar 

  • Edjekouane L, Benhadjeba S, Jangal M, Fleury H, Gévry N, Carmona E, Tremblay A (2016) Proximal and distal regulation of the HYAL1 gene cluster by the estrogen receptor α in breast cancer cells. Oncotarget 7(47):77276

    Article  Google Scholar 

  • El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP (2018) Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. ACS Nano 12(11):10636–10664

    Article  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Google Scholar 

  • Endo T, Nagai D, Monma T, Yamaguchi H, Ochiai B (2004) A novel construction of a reversible fixation—release system of carbon dioxide by amidines and their polymers. Macromolecules 37(6):2007–2009

    Article  Google Scholar 

  • Erbas-Cakmak S, Akkaya EU (2013) Cascading of molecular logic gates for advanced functions: a self-reporting, activatable photosensitizer. Angew Chem 125(43):11574–11578

    Article  Google Scholar 

  • Erkiert-Polguj A, Halbina A, Polak-Pacholczyk I, Rotsztejn H (2016) Light-emitting diodes in photodynamic therapy in non-melanoma skin cancers–own observations and literature review. J Cosmet Laser Ther 18(2):105–110

    Article  Google Scholar 

  • Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43(2):143–181

    Article  Google Scholar 

  • Etheridge M, Bischof J (2013) Optimizing magnetic nanoparticle based thermal therapies within the physical limits of heating. Ann Biomed Eng 41:78–88

    Article  Google Scholar 

  • Etheridge ML, Hurley KR, Zhang J, Jeon S, Ring HL, Hogan C, Haynes CL, Garwood M, Bischof JC (2014) Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. Technology 2(3):214–228

    Article  Google Scholar 

  • Fan JH, Fan GL, Yuan P, Deng FA, Liu LS, Zhou X, Yu XY, Cheng H, Li SY (2019) A theranostic nanoprobe for hypoxia imaging and photodynamic tumor therapy. Front Chem 7:868

    Article  Google Scholar 

  • Fang C, Wang K, Stephen ZR, Mu Q, Kievit FM, Chiu DT, Press OW, Zhang M (2015) Temozolomide nanoparticles for targeted glioblastoma therapy. ACS Appl Mater Interfaces 7(12):6674–6682

    Article  Google Scholar 

  • Fang Z, Li X, Xu Z, Du F, Wang W, Shi R, Gao D (2019) Hyaluronic acid-modified mesoporous silica-coated superparamagnetic Fe3O4 nanoparticles for targeted drug delivery. Int J Nanomed 5785–5797

    Google Scholar 

  • Fard AE, Zarepour A, Zarrabi A, Shanei A, Salehi H (2015) Synergistic effect of the combination of triethylene-glycol modified Fe3O4 nanoparticles and ultrasound wave on MCF-7 cells. J Magn Magn Mater 394:44–49

    Article  Google Scholar 

  • Feng Q, Zhang Y, Zhang W, Hao Y, Wang Y, Zhang H, Hou L, Zhang Z (2017) Programmed near-infrared light-responsive drug delivery system for combined magnetic tumor-targeting magnetic resonance imaging and chemo-phototherapy. Acta Biomater 49:402–413

    Article  Google Scholar 

  • Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K (2018) Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 8(1):1–13

    Google Scholar 

  • Filippousi M, Angelakeris M, Katsikini M, Paloura E, Efthimiopoulos I, Wang Y, Zamboulis D, Van Tendeloo G (2014) Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles. J Phys Chem C 118(29):16209–16217

    Article  Google Scholar 

  • Fingar VH, Wieman TJ, Park YJ, Henderson BW (1992) Implications of a pre-existing tumor hypoxic fraction on photodynamic therapy. J Surg Res 53(5):524–528

    Article  Google Scholar 

  • Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64(9):866–884

    Article  Google Scholar 

  • Fonović M, Turk B (2014) Cysteine cathepsins and extracellular matrix degradation. Biochim Biophy Acta (BBA)-Gen Subj 1840(8): 2560–2570

    Google Scholar 

  • Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129(9):2628–2635

    Article  Google Scholar 

  • Fowler CI, Jessop PG, Cunningham MF (2012) Aryl amidine and tertiary amine switchable surfactants and their application in the emulsion polymerization of methyl methacrylate. Macromolecules 45(7):2955–2962

    Article  Google Scholar 

  • Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Article  Google Scholar 

  • Fu S, Xu X, Ma Y, Zhang S, Zhang S (2019) RGD peptide-based non-viral gene delivery vectors targeting integrin αvβ3 for cancer therapy. J Drug Target 27(1):1–11

    Article  Google Scholar 

  • Fuchs J, Thiele J (1998) The role of oxygen in cutaneous photodynamic therapy. Free Radical Biol Med 24(5):835–847

    Article  Google Scholar 

  • Gadde S (2015) Multi-drug delivery nanocarriers for combination therapy. MedChemComm 6(11):1916–1929

    Article  MathSciNet  Google Scholar 

  • Gao GH, Li Y, Lee DS (2013) Environmental pH-sensitive polymeric micelles for cancer diagnosis and targeted therapy. J Control Release 169(3):180–184

    Article  Google Scholar 

  • Gao P, Zhang X, Wang H, Zhang Q, Li H, Li Y, Duan Y (2016) Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors. Oncotarget 7(3):2855

    Article  Google Scholar 

  • Gao C, Lin Z, Wang D, Wu Z, Xie H, He Q (2019) Red blood cell-mimicking micromotor for active photodynamic cancer therapy. ACS Appl Mater Interfaces 11(26):23392–23400

    Article  Google Scholar 

  • García-García G, Fernández-Álvarez F, Cabeza L, Delgado ÁV, Melguizo C, Prados JC, Arias JL (2020) Gemcitabine-loaded magnetically responsive poly (ε-caprolactone) nanoparticles against breast cancer. Polymers 12(12):2790

    Article  Google Scholar 

  • Gewirtz DA, Holt SE, Grant S (2007) Apoptosis, senescence and cancer. Springer Science & Business Media

    Google Scholar 

  • Ghamkhari A, Ghorbani M, Aghbolaghi S (2018) A perfect stimuli-responsive magnetic nanocomposite for intracellular delivery of doxorubicin. Artif Cells Nanomed Biotechnol 46(Sup 3):911–921

    Article  Google Scholar 

  • Gibson K, Kernohant W (1993) Lasers in medicine-a review. J Med Eng Technol 17(2):51–57

    Article  Google Scholar 

  • Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I, Hoopes PJ (2010) Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life 1(01n02):17–32

    Google Scholar 

  • Gneveckow U, Jordan A, Scholz R, Brüß V, Waldöfner N, Ricke J, Feussner A, Hildebrandt B, Rau B, Wust P (2004) Description and characterization of the novel hyperthermia-and thermoablation-system for clinical magnetic fluid hyperthermia. Med Phys 31(6):1444–1451

    Article  Google Scholar 

  • Gong F, Cheng L, Yang N, Jin Q, Tian L, Wang M, Li Y, Liu Z (2018) Bimetallic oxide MnMoOX nanorods for in vivo photoacoustic imaging of GSH and tumor-specific photothermal therapy. Nano Lett 18(9):6037–6044

    Article  Google Scholar 

  • Grauer O, Jaber M, Hess K, Weckesser M, Schwindt W, Maring S, Wölfer J, Stummer W (2019) Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local treatment modality in recurrent glioblastoma patients. J Neurooncol 141:83–94

    Article  Google Scholar 

  • Gu FX, Karnik R, Wang AZ, Alexis F, Levy-Nissenbaum E, Hong S, Langer RS, Farokhzad OC (2007) Targeted nanoparticles for cancer therapy. Nano Today 2(3):14–21

    Article  Google Scholar 

  • Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6(4):3080–3091

    Article  Google Scholar 

  • Guisasola E, Asín L, Beola L, de la Fuente JM, Baeza A, Vallet-Regí M (2018) Beyond traditional hyperthermia: in vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers. ACS Appl Mater Interfaces 10(15):12518–12525

    Article  Google Scholar 

  • Guo Z, Feng Y, Wang Y, Wang J, Wu Y, Zhang Y (2011) A novel smart polymer responsive to CO2. Chem Commun 47(33):9348–9350

    Article  Google Scholar 

  • Guo Z, Feng Y, He S, Qu M, Chen H, Liu H, Wu Y, Wang Y (2013) CO2-responsive “Smart” single-walled carbon nanotubes. Adv Mater 25(4):584–590

    Article  Google Scholar 

  • Guo J, Wang N, Wu J, Ye Q, Zhang C, Xing X-H, Yuan J (2014) Hybrid nanoparticles with CO2-responsive shells and fluorescence-labelled magnetic cores. J Mater Chem B 2(4):437–442

    Article  Google Scholar 

  • Guo H-W, Lin L-T, Chen P-H, Ho M-H, Huang W-T, Lee Y-J, Chiou S-H, Hsieh Y-S, Dong C-Y, Wang H-W (2015) Low-fluence rate, long duration photodynamic therapy in glioma mouse model using organic light emitting diode (OLED). Photodiagn Photodyn Ther 12(3):504–510

    Article  Google Scholar 

  • Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan W-E (2018) Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnol 16:1–10

    Article  Google Scholar 

  • Guo K, Zhao X, Dai X, Zhao N, Xu FJ (2019) Organic/inorganic nanohybrids as multifunctional gene delivery systems. J Gene Med 21(5):e3084

    Google Scholar 

  • Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13):1565–1573

    Article  Google Scholar 

  • Gupta MK, Lee SH, Crowder SW, Wang X, Hofmeister LH, Nelson CE, Bellan LM, Duvall CL, Sung H-J (2015) Oligoproline-derived nanocarrier for dual stimuli-responsive gene delivery. J Mater Chem B 3(36):7271–7280

    Article  Google Scholar 

  • Ha PT, Le TTH, Bui TQ, Pham HN, Ho AS, Nguyen LT (2019) Doxorubicin release by magnetic inductive heating and in vivo hyperthermia-chemotherapy combined cancer treatment of multifunctional magnetic nanoparticles. New J Chem 43(14):5404–5413

    Article  Google Scholar 

  • Haase C, Nowak U (2012) Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles. Phys Rev B 85(4):045435

    Google Scholar 

  • Haghighi AH, Faghih Z, Khorasani MT, Farjadian F (2019). Antibody conjugated onto surface modified magnetic nanoparticles for separation of HER2+ breast cancer cells. J Magn Magn Mater 490:165479.

    Google Scholar 

  • Hajikarimi Z, Khoei S, Khoee S, Mahdavi SR (2014) Evaluation of the cytotoxic effects of PLGA coated iron oxide nanoparticles as a carrier of 5-fluorouracil and mega-voltage X-ray radiation in DU145 prostate cancer cell line. IEEE Trans Nanobiosci 13(4):403–408

    Article  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322

    Article  Google Scholar 

  • Hamoudeh M, Kamleh MA, Diab R, Fessi H (2008) Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 60(12):1329–1346

    Article  Google Scholar 

  • Han J, Zhao D, Li D, Wang X, Jin Z, Zhao K (2018) Polymer-based nanomaterials and applications for vaccines and drugs. Polymers 10(1):31

    Article  Google Scholar 

  • Hao H, Ma Q, He F, Yao P (2014) Doxorubicin and Fe3O4 loaded albumin nanoparticles with folic acid modified dextran surface for tumor diagnosis and therapy. J Mater Chem B 2(45):7978–7987

    Article  Google Scholar 

  • Haque R, Ahmed SA, Inzhakova G, Shi J, Avila C, Polikoff J, Bernstein L, Enger SM, Press MF (2012) Impact of breast cancer subtypes and treatment on survival: an analysis spanning two decades. Cancer Epidemiol Biomark Prev 21(10):1848–1855

    Article  Google Scholar 

  • Harada Y, Ogawa K, Irie Y, Endo H, Feril LB Jr, Uemura T, Tachibana K (2011) Ultrasound activation of TiO2 in melanoma tumors. J Control Release 149(2):190–195

    Article  Google Scholar 

  • Harrison LB, Chadha M, Hill RJ, Hu K, Shasha D (2002) Impact of tumor hypoxia and anemia on radiation therapy outcomes. Oncologist 7(6):492–508

    Article  Google Scholar 

  • Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, Yogo T (2010) High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. ACS Appl Mater Interfaces 2(7):1903–1911

    Article  Google Scholar 

  • Hayashi K, Nakamura M, Sakamoto W, Yogo T, Miki H, Ozaki S, Abe M, Matsumoto T, Ishimura K (2013) Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics 3(6):366

    Article  Google Scholar 

  • He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31(13):3657–3666

    Article  Google Scholar 

  • Hedayatnasab Z, Abnisa F, Daud WMAW (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196

    Article  Google Scholar 

  • Hegazy M, Zhou P, Wu G, Wang L, Rahoui N, Taloub N, Huang X, Huang Y (2017) Construction of polymer coated core–shell magnetic mesoporous silica nanoparticles with triple responsive drug delivery. Polym Chem 8(38):5852–5864

    Article  Google Scholar 

  • Hempstead J, Jones DP, Ziouche A, Cramer GM, Rizvi I, Arnason S, Hasan T, Celli JP (2015) Low-cost photodynamic therapy devices for global health settings: characterization of battery-powered LED performance and smartphone imaging in 3D tumor models. Sci Rep 5(1):10093

    Article  Google Scholar 

  • Henderson BW, Busch TM, Snyder JW (2006) Fluence rate as a modulator of PDT mechanisms. Lasers Surg Med Off J Am Soc Laser Med Surg 38(5):489–493

    Google Scholar 

  • Hergt R, Dutz S (2007) Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater 311(1):187–192

    Article  Google Scholar 

  • Hervault A, Dunn AE, Lim M, Boyer C, Mott D, Maenosono S, Thanh NT (2016) Doxorubicin loaded dual pH-and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale 8(24):12152–12161

    Article  Google Scholar 

  • Hicks JC, Drese JH, Fauth DJ, Gray ML, Qi G, Jones CW (2008) Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. J Am Chem Soc 130(10):2902–2903

    Article  Google Scholar 

  • Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43(1):33–56

    Article  Google Scholar 

  • Hiremath CG, Heggnnavar GB, Kariduraganavar MY, Hiremath MB (2019) Co-delivery of paclitaxel and curcumin to foliate positive cancer cells using Pluronic-coated iron oxide nanoparticles. Prog Biomater 8:155–168

    Article  Google Scholar 

  • Hoang M-D, Lee H-J, Lee H-J, Jung S-H, Choi N-R, Vo M-C, Nguyen-Pham T-N, Kim H-J, Park I-K, Lee J-J (2015). Branched polyethylenimine-superparamagnetic iron oxide nanoparticles (bPEI-SPIONs) improve the immunogenicity of tumor antigens and enhance Th1 polarization of dendritic cells. J Immunol Res

    Google Scholar 

  • Hoffman AS (2013) Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65(1):10–16

    Article  Google Scholar 

  • Hoffman D, Sun M, Yang L, McDonagh PR, Corwin F, Sundaresan G, Wang L, Vijayaragavan V, Thadigiri C, Lamichhane N (2014) Intrinsically radiolabelled [59Fe]-SPIONs for dual MRI/radionuclide detection. Am J Nucl Med Mol Imaging 4(6):548

    Google Scholar 

  • Hola K, Markova Z, Zoppellaro G, Tucek J, Zboril R (2015) Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol Adv 33(6):1162–1176

    Article  Google Scholar 

  • Hosseini V, Mirrahimi M, Shakeri-Zadeh A, Koosha F, Ghalandari B, Maleki S, Komeili A, Kamrava SK (2018) Multimodal cancer cell therapy using Au@ Fe2O3 core–shell nanoparticles in combination with photo-thermo-radiotherapy. Photodiagn Photodyn Ther 24:129–135

    Article  Google Scholar 

  • Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10(7):2727–2733

    Article  Google Scholar 

  • Hou H, Huang X, Wei G, Xu F, Wang Y, Zhou S (2019) Fenton reaction-assisted photodynamic therapy for cancer with multifunctional magnetic nanoparticles. ACS Appl Mater Interfaces 11(33):29579–29592

    Article  Google Scholar 

  • Hu P, Tirelli N (2012) Scavenging ROS: superoxide dismutase/catalase mimetics by the use of an oxidation-sensitive nanocarrier/enzyme conjugate. Bioconjug Chem 23(3):438–449

    Article  Google Scholar 

  • Hu X, Wang Y, Zhang L, Xu M, Zhang J, Dong W (2017) Dual-pH/magnetic-field-controlled drug delivery systems based on Fe3O4@ SiO2-incorporated Salecan graft copolymer composite hydrogels. ChemMedChem 12(19):1600–1609

    Article  Google Scholar 

  • Hu Y, Mignani S, Majoral J-P, Shen M, Shi X (2018) Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem Soc Rev 47(5):1874–1900

    Article  Google Scholar 

  • Huang Z, Chen Q, Shakil A, Chen H, Beckers J, Shapiro H, Hetzel FW (2003) Hyperoxygenation enhances the tumor cell killing of photofrin-mediated photodynamic therapy¶. Photochem Photobiol 78(5):496–502

    Article  Google Scholar 

  • Huang F-K, Chen W-C, Lai S-F, Liu C-J, Wang C-L, Wang C-H, Chen H-H, Hua T-E, Cheng Y-Y, Wu M (2009) Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (CLIO) nanoparticles. Phys Med Biol 55(2):469

    Article  Google Scholar 

  • Huang G, Chen H, Dong Y, Luo X, Yu H, Moore Z, Bey EA, Boothman DA, Gao J (2013) Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 3(2):116

    Article  Google Scholar 

  • Huang R-Y, Chiang P-H, Hsiao W-C, Chuang C-C, Chang C-W (2015) Redox-sensitive polymer/SPIO nanocomplexes for efficient magnetofection and MR imaging of human cancer cells. Langmuir 31(23):6523–6531

    Article  Google Scholar 

  • Huang Y, Mao K, Zhang B, Zhao Y (2017) Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater Sci Eng, C 70:763–771

    Article  Google Scholar 

  • Huh MS, Lee S-Y, Park S, Lee S, Chung H, Lee S, Choi Y, Oh Y-K, Park JH, Jeong SY (2010) Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice. J Control Release 144(2):134–143

    Article  Google Scholar 

  • Huo M, Yuan J, Tao L, Wei Y (2014) Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5(5):1519–1528

    Article  Google Scholar 

  • Hurley KR, Ring HL, Etheridge M, Zhang J, Gao Z, Shao Q, Klein ND, Szlag VM, Chung C, Reineke TM (2016) Predictable heating and positive MRI contrast from a mesoporous silica-coated iron oxide nanoparticle. Mol Pharm 13(7):2172–2183

    Article  Google Scholar 

  • Islam T, Josephson L (2009) Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark 5(2):99–107

    Article  Google Scholar 

  • Ivkov R (2013) Magnetic nanoparticle hyperthermia: a new frontier in biology and medicine? Taylor & Francis 29:703–705

    Google Scholar 

  • Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today 11(17–18):812–818

    Article  Google Scholar 

  • Jacques P, Braun AM (1981) Laser flash photolysis of phthalocyanines in solution and microemulsion. Helv Chim Acta 64(6):1800–1806

    Article  Google Scholar 

  • Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45(9):1628–1650

    Article  Google Scholar 

  • Jeon M, Lin G, Stephen ZR, Kato FL, Zhang M (2019) Paclitaxel-loaded iron oxide nanoparticles for targeted breast cancer therapy. Advanced Therapeutics 2(12):1900081

    Article  Google Scholar 

  • Jeun M, Kim YJ, Park KH, Paek SH, Bae S (2013) Physical contribution of Néel and Brown relaxation to interpreting intracellular hyperthermia characteristics using superparamagnetic nanofluids. J Nanosci Nanotechnol 13(8):5719–5725

    Article  Google Scholar 

  • Jha K, Shukla M, Pandey M (2012) Survivin expression and targeting in breast cancer. Surg Oncol 21(2):125–131

    Article  Google Scholar 

  • Ji W, Li N, Chen D, Qi X, Sha W, Jiao Y, Xu Q, Lu J (2013) Coumarin-containing photo-responsive nanocomposites for NIR light-triggered controlled drug release via a two-photon process. J Mater Chem B 1(43):5942–5949

    Article  Google Scholar 

  • Ji S, Cao W, Yu Y, Xu H (2014) Dynamic diselenide bonds: exchange reaction induced by visible light without catalysis. Angew Chem Int Ed 53(26):6781–6785

    Article  Google Scholar 

  • Jia Y, Duan L, Li J (2016) Hemoglobin-based nanoarchitectonic assemblies as oxygen carriers. Adv Mater 28(6):1312–1318

    Article  Google Scholar 

  • Jin R, Lin B, Li D, Ai H (2014) Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 18:18–27

    Article  Google Scholar 

  • Jing Y, Zhu Y, Yang X, Shen J, Li C (2011) Ultrasound-triggered smart drug release from multifunctional core−shell capsules one-step fabricated by coaxial electrospray method. Langmuir 27(3):1175–1180

    Article  Google Scholar 

  • Jochum FD, Theato P (2013) Temperature-and light-responsive smart polymer materials. Chem Soc Rev 42(17):7468–7483

    Article  Google Scholar 

  • Johannsen M, Thiesen B, Gneveckow U, Taymoorian K, Waldöfner N, Scholz R, Deger S, Jung K, Loening SA, Jordan A (2006) Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer. Prostate 66(1):97–104

    Article  Google Scholar 

  • Justin R, Chen B (2018) Multifunctional chitosan–magnetic graphene quantum dot nanocomposites for the release of therapeutics from detachable and non-detachable biodegradable microneedle arrays. Interface Focus 8(3):20170055

    Article  Google Scholar 

  • Kalber TL, Ordidge KL, Southern P, Loebinger MR, Kyrtatos PG, Pankhurst QA, Lythgoe MF, Janes SM (2016) Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. Int J Nanomed 11:1973

    Article  Google Scholar 

  • Kandasamy G, Maity D (2015) Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 496(2):191–218

    Article  Google Scholar 

  • Kang H, Trondoli AC, Zhu G, Chen Y, Chang Y-J, Liu H, Huang Y-F, Zhang X, Tan W (2011) Near-infrared light-responsive core–shell nanogels for targeted drug delivery. ACS Nano 5(6):5094–5099

    Article  Google Scholar 

  • Karimi M, Avci P, Mobasseri R, Hamblin MR, Naderi-Manesh H (2013) The novel albumin–chitosan core–shell nanoparticles for gene delivery: preparation, optimization and cell uptake investigation. J Nanopart Res 15:1–14

    Article  Google Scholar 

  • Karimi M, Ghasemi A, Zangabad PS, Rahighi R, Basri SMM, Mirshekari H, Amiri M, Pishabad ZS, Aslani A, Bozorgomid M (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45(5):1457–1501

    Article  Google Scholar 

  • Kawasaki ES, Player A (2005) Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomed Nanotechnol Biol Med 1(2):101–109

    Google Scholar 

  • Kayal S, Ramanujan RV (2010) Anti-cancer drug loaded iron–gold core–shell nanoparticles (Fe@ Au) for magnetic drug targeting. J Nanosci Nanotechnol 10(9):5527–5539

    Article  Google Scholar 

  • Kelley EG, Albert JN, Sullivan MO, Epps TH III (2013) Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem Soc Rev 42(17):7057–7071

    Article  Google Scholar 

  • Khalvati B, Sheikhsaran F, Sharifzadeh S, Kalantari T, Behzad Behbahani A, Jamshidzadeh A, Dehshahri A (2017) Delivery of plasmid encoding interleukin-12 gene into hepatocytes by conjugated polyethylenimine-based nanoparticles. Artif Cells Nanomed Biotechnol 45(5):1036–1044

    Article  Google Scholar 

  • Khoei S, Mahdavi SR, Fakhimikabir H, Shakeri-Zadeh A, Hashemian A (2014) The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line DU145 at megavoltage radiation energies. Int J Radiat Biol 90(5):351–356

    Article  Google Scholar 

  • Khurshid H, Alonso J, Nemati Z, Phan M, Mukherjee P, Fdez-Gubieda M, Barandiarán J, Srikanth H (2015) Anisotropy effects in magnetic hyperthermia: a comparison between spherical and cubic exchange-coupled FeO/Fe3O4 nanoparticles. J Appl Phys 117(17):17A337

    Article  Google Scholar 

  • Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44(10):853–862

    Article  Google Scholar 

  • Kim G-W, Kang C, Oh Y-B, Ko M-H, Seo J-H, Lee D (2017) Ultrasonographic imaging and anti-inflammatory therapy of muscle and tendon injuries using polymer nanoparticles. Theranostics 7(9):2463

    Article  Google Scholar 

  • Kim MM, Darafsheh A (2020) Light sources and dosimetry techniques for photodynamic therapy. Photochem Photobiol 96(2):280–294

    Article  Google Scholar 

  • Klein S, Sommer A, Distel LV, Neuhuber W, Kryschi C (2012) Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem Biophys Res Commun 425(2):393–397

    Article  Google Scholar 

  • Klein S, Sommer A, Distel LV, Hazemann J-L, Kröner W, Neuhuber W, Müller P, Proux O, Kryschi C (2014) Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy. J Phys Chem B 118(23):6159–6166

    Article  Google Scholar 

  • Klein PM, Reinhard S, Lee D-J, Müller K, Ponader D, Hartmann L, Wagner E (2016) Precise redox-sensitive cleavage sites for improved bioactivity of siRNA lipopolyplexes. Nanoscale 8(42):18098–18104

    Article  Google Scholar 

  • Klotz L-O, Kröncke K-D, Sies H (2003) Singlet oxygen-induced signaling effects in mammalian cells. Photochem Photobiol Sci 2(2):88–94

    Article  Google Scholar 

  • Kong SD, Sartor M, Hu C-MJ, Zhang W, Zhang L, Jin S (2013) Magnetic field activated lipid–polymer hybrid nanoparticles for stimuli-responsive drug release. Acta Biomater 9(3):5447–5452

    Article  Google Scholar 

  • Kovach AK, Gambino JM, Nguyen V, Nelson Z, Szasz T, Liao J, Williams L, Bulla S, Prabhu R (2016) Prospective preliminary in vitro investigation of a magnetic iron oxide nanoparticle conjugated with ligand CD80 and VEGF antibody as a targeted drug delivery system for the induction of cell death in rodent osteosarcoma cells. BioResearch Open Access 5(1):299–307

    Article  Google Scholar 

  • Kovář M, Strohalm J, Etrych T, Ulbrich K, Říhová B (2002) Star structure of antibody-targeted HPMA copolymer-bound doxorubicin: a novel type of polymeric conjugate for targeted drug delivery with potent antitumor effect. Bioconjug Chem 13(2):206–215

    Article  Google Scholar 

  • Kresse M, Wagner S, Pfefferer D, Lawaczeck R, Elste V, Semmler W (1998) Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn Reson Med 40(2):236–242

    Article  Google Scholar 

  • Kumar CS, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63(9):789–808

    Article  Google Scholar 

  • Kumar A, Lale SV, Mahajan S, Choudhary V, Koul V (2015) ROP and ATRP fabricated dual targeted redox sensitive polymersomes based on pPEGMA-PCL-ss-PCL-pPEGMA triblock copolymers for breast cancer therapeutics. ACS Appl Mater Interfaces 7(17):9211–9227

    Article  Google Scholar 

  • Kuruppuarachchi M, Savoie H, Lowry A, Alonso C, Boyle RW (2011) Polyacrylamide nanoparticles as a delivery system in photodynamic therapy. Mol Pharm 8(3):920–931

    Article  Google Scholar 

  • Lacour JP, Ulrich C, Gilaberte Y, Von Felbert V, Basset-Seguin N, Dreno B, Girard C, Redondo P, Serra-Guillen C, Synnerstad I (2015) Daylight photodynamic therapy with methyl aminolevulinate cream is effective and nearly painless in treating actinic keratoses: a randomised, investigator-blinded, controlled, phase III study throughout Europe. J Eur Acad Dermatol Venereol 29(12):2342–2348

    Article  Google Scholar 

  • Lambeau G, Gelb MH (2008) Biochemistry and physiology of mammalian secreted phospholipases A2. Annu Rev Biochem 77:495–520

    Article  Google Scholar 

  • Larsen EK, Nielsen T, Wittenborn T, Birkedal H, Vorup-Jensen T, Jakobsen MH, Østergaard L, Horsman MR, Besenbacher F, Howard KA (2009) Size-dependent accumulation of PEGylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano 3(7):1947–1951

    Article  Google Scholar 

  • Lartigue L, Hugounenq P, Alloyeau D, Clarke SP, Lévy M, Bacri J-C, Bazzi R, Brougham DF, Wilhelm C, Gazeau F (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6(12):10935–10949

    Article  Google Scholar 

  • Laurent UB, Tengblad A (1980) Determination of hyaluronate in biological samples by a specific radioassay technique. Anal Biochem 109(2):386–394

    Article  Google Scholar 

  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Coll Interface Sci 166(1–2):8–23

    Article  Google Scholar 

  • Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M (2014) Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv 11(9):1449–1470

    Article  Google Scholar 

  • Lee S, Xie J, Chen X (2010) Peptide-based probes for targeted molecular imaging. Biochemistry 49(7):1364–1376

    Article  Google Scholar 

  • Lee D-J, He D, Kessel E, Padari K, Kempter S, Lächelt U, Rädler JO, Pooga M, Wagner E (2016a) Tumoral gene silencing by receptor-targeted combinatorial siRNA polyplexes. J Control Release 244:280–291

    Article  Google Scholar 

  • Lee D-J, Kessel E, Edinger D, He D, Klein PM, von Voithenberg LV, Lamb DC, Lächelt U, Lehto T, Wagner E (2016b) Dual antitumoral potency of EG5 siRNA nanoplexes armed with cytotoxic bifunctional glutamyl-methotrexate targeting ligand. Biomaterials 77:98–110

    Article  Google Scholar 

  • Lehto T, Simonson OE, Mäger I, Ezzat K, Sork H, Copolovici D-M, Viola JR, Zaghloul EM, Lundin P, Moreno PM (2011) A peptide-based vector for efficient gene transfer in vitro and in vivo. Mol Ther 19(8):1457–1467

    Article  Google Scholar 

  • Lemine O (2019) Magnetic hyperthermia therapy using hybrid magnetic nanostructures. Hybrid nanostructures for cancer theranostics, Elsevier, pp 125–138

    Google Scholar 

  • Leuschner C, Kumar CS, Hansel W, Soboyejo W, Zhou J, Hormes J (2006) LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res Treat 99:163–176

    Article  Google Scholar 

  • Li H, Qian ZM (2002) Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 22(3):225–250

    Article  Google Scholar 

  • Li R, Xie Y (2017) Nanodrug delivery systems for targeting the endogenous tumor microenvironment and simultaneously overcoming multidrug resistance properties. J Control Release 251:49–67

    Article  Google Scholar 

  • Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:1–16

    Google Scholar 

  • Li Y, Gao GH, Lee DS (2013) PH-sensitive polymeric micelles based on amphiphilic polypeptide as smart drug carriers. J Polym Sci, Part a: Polym Chem 51(19):4175–4182

    Article  Google Scholar 

  • Li W-P, Liao P-Y, Su C-H, Yeh C-S (2014) Formation of oligonucleotide-gated silica shell-coated Fe3O4-Au core–shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform. J Am Chem Soc 136(28):10062–10075

    Article  Google Scholar 

  • Li H, Yan K, Shang Y, Shrestha L, Liao R, Liu F, Li P, Xu H, Xu Z, Chu PK (2015a) Folate-bovine serum albumin functionalized polymeric micelles loaded with superparamagnetic iron oxide nanoparticles for tumor targeting and magnetic resonance imaging. Acta Biomater 15:117–126

    Article  Google Scholar 

  • Li W-M, Chiang C-S, Huang W-C, Su C-W, Chiang M-Y, Chen J-Y, Chen S-Y (2015b) Amifostine-conjugated pH-sensitive calcium phosphate-covered magnetic-amphiphilic gelatin nanoparticles for controlled intracellular dual drug release for dual-targeting in HER-2-overexpressing breast cancer. J Control Release 220:107–118

    Article  Google Scholar 

  • Li Y, Wang J, Zhang X, Guo W, Li F, Yu M, Kong X, Wu W, Hong Z (2015c) Highly water-soluble and tumor-targeted photosensitizers for photodynamic therapy. Org Biomol Chem 13(28):7681–7694

    Article  Google Scholar 

  • Li X, Wei J, Aifantis KE, Fan Y, Feng Q, Cui FZ, Watari F (2016a) Current investigations into magnetic nanoparticles for biomedical applications. J Biomed Mater Res, Part A 104(5):1285–1296

    Article  Google Scholar 

  • Li Y, Yang HY, Lee DS (2016b) Polymer-based and pH-sensitive nanobiosensors for imaging and therapy of acidic pathological areas. Pharm Res 33:2358–2372

    Article  Google Scholar 

  • Li E, Yang Y, Hao G, Yi X, Zhang S, Pan Y, Xing B, Gao M (2018a) Multifunctional magnetic mesoporous silica nanoagents for in vivo enzyme-responsive drug delivery and MR imaging. Nanotheranostics 2(3):233

    Article  Google Scholar 

  • Li X, Kwon N, Guo T, Liu Z, Yoon J (2018b) Innovative strategies for hypoxic-tumor photodynamic therapy. Angew Chem Int Ed 57(36):11522–11531

    Article  Google Scholar 

  • Li S, Yuan C, Chen J, Chen D, Chen Z, Chen W, Yan S, Hu P, Xue J, Li R (2019) Nanoparticle binding to urokinase receptor on cancer cell surface triggers nanoparticle disintegration and cargo release. Theranostics 9(3):884

    Article  Google Scholar 

  • Li H, Peng E, Zhao F, Li J, Xue J (2021) Supramolecular surface functionalization of iron oxide nanoparticles with α-cyclodextrin-based cationic star polymer for magnetically-enhanced gene delivery. Pharmaceutics 13(11):1884

    Article  Google Scholar 

  • Lin S, Theato P (2013) CO2-responsive polymers. Macromol Rapid Commun 34(14):1118–1133

    Article  Google Scholar 

  • Lin G, Zhu W, Yang L, Wu J, Lin B, Xu Y, Cheng Z, Xia C, Gong Q, Song B (2014) Delivery of siRNA by MRI-visible nanovehicles to overcome drug resistance in MCF-7/ADR human breast cancer cells. Biomaterials 35(35):9495–9507

    Article  Google Scholar 

  • Ling D, Park W, Park S-J, Lu Y, Kim KS, Hackett MJ, Kim BH, Yim H, Jeon YS, Na K (2014) Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem Soc 136(15):5647–5655

    Article  Google Scholar 

  • Ling Y, Tang X, Wang F, Zhou X, Wang R, Deng L, Shang T, Liang B, Li P, Ran H (2017) Highly efficient magnetic hyperthermia ablation of tumors using injectable polymethylmethacrylate–Fe3O4. RSC Adv 7(5):2913–2918

    Article  Google Scholar 

  • Liu Y, Miyoshi H, Nakamura M (2007) Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer 120(12):2527–2537

    Article  Google Scholar 

  • Liu XL, Fan HM, Yi JB, Yang Y, Choo ESG, Xue JM, Ding J (2012a) Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J Mater Chem 22(17):8235–8244

    Article  Google Scholar 

  • Liu Y, Zhou T, Crowley D, Li L, Liu D, Zheng J, Yu X, Pan G, Hussain Q, Zhang X (2012b) Decline in topsoil microbial quotient, fungal abundance and C utilization efficiency of rice paddies under heavy metal pollution across South China. PLoS One 7(6):e38858

    Google Scholar 

  • Liu G, Shen H, Mao J, Zhang L, Jiang Z, Sun T, Lan Q, Zhang Z (2013) Transferrin modified graphene oxide for glioma-targeted drug delivery: in vitro and in vivo evaluations. ACS Appl Mater Interfaces 5(15):6909–6914

    Article  Google Scholar 

  • Liu B, Zhang X, Li C, He F, Chen Y, Huang S, Jin D, Yang P, Cheng Z, Lin J (2016a) Magnetically targeted delivery of DOX loaded Cu 9 S 5@ mSiO2@ Fe3O4-PEG nanocomposites for combined MR imaging and chemo/photothermal synergistic therapy. Nanoscale 8(25):12560–12569

    Article  Google Scholar 

  • Liu H, Sui X, Xu H, Zhang L, Zhong Y, Mao Z (2016b) Self-healing polysaccharide hydrogel based on dynamic covalent enamine bonds. Macromol Mater Eng 301(6):725–732

    Article  Google Scholar 

  • Liu Y, Bhattarai P, Dai Z, Chen X (2019a) Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 48(7):2053–2108

    Article  Google Scholar 

  • Liu Y, Li Y, Rao Z, Xu J, Zhao S, Zhao C, Zhu H, Hao J, Yang T, Yang Y (2019b) Physiochemical properties and paclitaxel release behaviors of dual-stimuli responsive copolymer-magnetite superparamagnetic nanocomposites. Nanotechnology 30(10):105602

    Google Scholar 

  • Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13(8):572–583

    Article  Google Scholar 

  • Loh XJ, Lee T-C, Dou Q, Deen GR (2016) Utilising inorganic nanocarriers for gene delivery. Biomaterials Science 4(1):70–86

    Article  Google Scholar 

  • Lorkowski ME, Atukorale PU, Ghaghada KB, Karathanasis E (2021) Stimuli-responsive iron oxide nanotheranostics: a versatile and powerful approach for cancer therapy. Adv Healthcare Mater 10(5):2001044

    Article  Google Scholar 

  • Lu Y, Low PS (2003) Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. J Control Release 91(1–2):17–29

    Article  Google Scholar 

  • Lu Z, Li Y, Shi Y, Li Y, Xiao Z, Zhang X (2017) Traceable nanoparticles with spatiotemporally controlled release ability for synergistic glioblastoma multiforme treatment. Adv Func Mater 27(46):1703967

    Article  Google Scholar 

  • Lugert S, Unterweger H, Mühlberger M, Janko C, Draack S, Ludwig F, Eberbeck D, Alexiou C, Friedrich RP (2019) Cellular effects of paclitaxel-loaded iron oxide nanoparticles on breast cancer using different 2D and 3D cell culture models. Int J Nanomed 14:161

    Article  Google Scholar 

  • Lungoci A-L, Turin-Moleavin I-A, Corciova A, Mircea C, Arvinte A, Fifere A, Marangoci NL, Pinteala M (2019) Multifunctional magnetic cargo-complexes with radical scavenging properties. Mater Sci Eng, C 94:608–618

    Article  Google Scholar 

  • Luo Z, Cai K, Hu Y, Li J, Ding X, Zhang B, Xu D, Yang W, Liu P (2012) Redox-responsive molecular nanoreservoirs for controlled intracellular anticancer drug delivery based on magnetic nanoparticles. Adv Mater 24(3):431–435

    Article  Google Scholar 

  • Luo Y, Li Y, Li J, Fu C, Yu X, Wu L (2019) Hyaluronic acid-mediated multifunctional iron oxide-based MRI nanoprobes for dynamic monitoring of pancreatic cancer. RSC Adv 9(19):10486–10493

    Article  Google Scholar 

  • Ma X, Wang Y, Liu X-L, Ma H, Li G, Li Y, Gao F, Peng M, Fan HM, Liang X-J (2019) Fe3O4–Pd Janus nanoparticles with amplified dual-mode hyperthermia and enhanced ROS generation for breast cancer treatment. Nanoscale Horizons 4(6):1450–1459

    Article  Google Scholar 

  • Ma Z-Z, Shi Z-F, Wang L-T, Zhang F, Wu D, Yang D-W, Chen X, Zhang Y, Shan C-X, Li X-J (2020) Water-induced fluorescence enhancement of lead-free cesium bismuth halide quantum dots by 130% for stable white light-emitting devices. Nanoscale 12(6):3637–3645

    Article  Google Scholar 

  • Maas AL, Carter SL, Wileyto EP, Miller J, Yuan M, Yu G, Durham AC, Busch TM (2012) Tumor vascular microenvironment determines responsiveness to photodynamic therapy. Can Res 72(8):2079–2088

    Article  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  Google Scholar 

  • Mai BT, Balakrishnan PB, Barthel MJ, Piccardi F, Niculaes D, Marinaro F, Fernandes S, Curcio A, Kakwere H, Autret G (2019) Thermoresponsive iron oxide nanocubes for an effective clinical translation of magnetic hyperthermia and heat-mediated chemotherapy. ACS Appl Mater Interfaces 11(6):5727–5739

    Article  Google Scholar 

  • Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, Von Deimling A, Waldoefner N, Felix R (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81:53–60

    Article  Google Scholar 

  • Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324

    Article  Google Scholar 

  • Majidi S, Zeinali Sehrig F, Samiei M, Milani M, Abbasi E, Dadashzadeh K, Akbarzadeh A (2016) Magnetic nanoparticles: applications in gene delivery and gene therapy. Artif Cells Nanomed Biotechnol 44(4):1186–1193

    Google Scholar 

  • Martinkova P, Brtnicky M, Kynicky J, Pohanka M (2018) Iron oxide nanoparticles: innovative tool in cancer diagnosis and therapy. Adv Healthcare Mater 7(5):1700932

    Article  Google Scholar 

  • Masanori N, Ryuji H, Teruo K, Naofumi H, Hirofumi A, Masayuki N, Tadakazu S (1985) Molecular cloning of cDNA coding for human preprourokinase. Gene 36(1–2):183–188

    Article  Google Scholar 

  • Mdlovu NV, Mavuso FA, Lin K-S, Chang T-W, Chen Y, Wang SS-S, Wu C-M, Mdlovu NB, Lin Y-S (2019) Iron oxide-pluronic F127 polymer nanocomposites as carriers for a doxorubicin drug delivery system. Colloids Surf, A 562:361–369

    Article  Google Scholar 

  • Mehta T (2020) Application and functional characterization of Kollicoat smartseal 30D as a solid dispersion carrier for improving solubility. Asian J Pharm (AJP) 14(2)

    Google Scholar 

  • Mehta TA, Shah N, Parekh K, Dhas N, Patel JK (2019) Surface-modified PLGA nanoparticles for targeted drug delivery to neurons. Surf Modif Nanoparticles Target Drug Deliv 33–71

    Google Scholar 

  • Meidanchi A, Akhavan O, Khoei S, Shokri AA, Hajikarimi Z, Khansari N (2015) ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells. Mater Sci Eng C 46:394–399

    Article  Google Scholar 

  • Melamed JR, Edelstein RS, Day ES (2015) Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 9(1):6–11

    Article  Google Scholar 

  • Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480(7378):480–489

    Article  Google Scholar 

  • Meng F, Hennink WE, Zhong Z (2009) Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30(12):2180–2198

    Article  Google Scholar 

  • Meng Q-F, Rao L, Zan M, Chen M, Yu G-T, Wei X, Wu Z, Sun Y, Guo S-S, Zhao X-Z (2018) Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy. Nanotechnology 29(13):134004

    Google Scholar 

  • Mikhaylov G, Vasiljeva O (2011) Promising approaches in using magnetic nanoparticles in oncology.

    Google Scholar 

  • Mirrahimi M, Hosseini V, Shakeri-Zadeh A, Alamzadeh Z, Kamrava S, Attaran N, Abed Z, Ghaznavi H, Hosseini Nami S (2019) Modulation of cancer cells’ radiation response in the presence of folate conjugated Au@Fe2O3 nanocomplex as a targeted radiosensitizer. Clin Transl Oncol 21:479–488

    Article  Google Scholar 

  • Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR, Ghatak S (2011) Hyaluronan–CD44 interactions as potential targets for cancer therapy. FEBS J 278(9):1429–1443

    Article  Google Scholar 

  • Moan J, Sommer S (1985) Oxygen dependence of the photosensitizing effect of hematoporphyrin derivative in NHIK 3025 cells. Can Res 45(4):1608–1610

    Google Scholar 

  • Montazerabadi A-R, Sazgarnia A, Bahreyni-Toosi MH, Ahmadi A, Shakeri-Zadeh A, Aledavood A (2012) Mitoxantrone as a prospective photosensitizer for photodynamic therapy of breast cancer. Photodiagn Photodyn Ther 9(1):46–51

    Article  Google Scholar 

  • Montazerabadi A, Beik J, Irajirad R, Attaran N, Khaledi S, Ghaznavi H, Shakeri-Zadeh A (2019) Folate-modified and curcumin-loaded dendritic magnetite nanocarriers for the targeted thermo-chemotherapy of cancer cells. Artif Cells Nanomed Biotechnol 47(1):330–340

    Article  Google Scholar 

  • Moon HJ, Park MH, Joo MK, Jeong B (2012) Temperature-responsive compounds as in situ gelling biomedical materials. Chem Soc Rev 41(14):4860–4883

    Article  Google Scholar 

  • Mordon S, Cochrane C, Tylcz JB, Betrouni N, Mortier L, Koncar V (2015) Light emitting fabric technologies for photodynamic therapy. Photodiagn Photodyn Ther 12(1):1–8

    Article  Google Scholar 

  • Morovati A, Ahmadian S, Jafary H (2019) Cytotoxic effects and apoptosis induction of cisplatin-loaded iron oxide nanoparticles modified with chitosan in human breast cancer cells. Mol Biol Rep 46:5033–5039

    Article  Google Scholar 

  • Motoyama J, Hakata T, Kato R, Yamashita N, Morino T, Kobayashi T, Honda H (2008) Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy. Biomagn Res Technol 6(1):1–9

    Article  Google Scholar 

  • Mourant JR, Canpolat M, Brocker C, Esponda-Ramos O, Johnson TM, Matanock A, Stetter K, Freyer JP (2000) Light scattering from cells: the contribution of the nucleus and the effects of proliferative status. J Biomed Opt 5(2):131–137

    Article  Google Scholar 

  • Mu K, Zhang S, Ai T, Jiang J, Yao Y, Jiang L, Zhou Q, Xiang H, Zhu Y, Yang X (2015) Monoclonal antibody–conjugated superparamagnetic iron oxide nanoparticles for imaging of epidermal growth factor receptor–targeted cells and gliomas. Mol Imaging 14(5):7290.2015. 00002

    Google Scholar 

  • Mu J, Lin J, Huang P, Chen X (2018) Development of endogenous enzyme-responsive nanomaterials for theranostics. Chem Soc Rev 47(15):5554–5573

    Article  Google Scholar 

  • Mühlberger M, Unterweger H, Band J, Lehmann C, Heger L, Dudziak D, Alexiou C, Lee G, Janko C (2020) Loading of primary human T Lymphocytes with citrate-coated superparamagnetic iron oxide nanoparticles does not impair their activation after polyclonal stimulation. Cells 9(2):342

    Article  Google Scholar 

  • Munnier E, Cohen-Jonathan S, Hervé K, Linassier C, Soucé M, Dubois P, Chourpa I (2011) Doxorubicin delivered to MCF-7 cancer cells by superparamagnetic iron oxide nanoparticles: effects on subcellular distribution and cytotoxicity. J Nanopart Res 13:959–971

    Article  Google Scholar 

  • Murphy MP, Holmgren A, Larsson N-G, Halliwell B, Chang CJ, Kalyanaraman B, Rhee SG, Thornalley PJ, Partridge L, Gems D (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13(4):361–366

    Article  Google Scholar 

  • Nakamura Y, Mochida A, Choyke PL, Kobayashi H (2016) Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem 27(10):2225–2238

    Article  Google Scholar 

  • Natfji AA, Ravishankar D, Osborn HM, Greco F (2017) Parameters affecting the enhanced permeability and retention effect: the need for patient selection. J Pharm Sci 106(11):3179–3187

    Article  Google Scholar 

  • Neha R, Jaiswal A, Bellare J, Sahu N (2017) Synthesis of surface grafted mesoporous magnetic nanoparticles for cancer therapy. J Nanosci Nanotechnol 17(8):5181–5188

    Article  Google Scholar 

  • Nemati Z, Alonso J, Martinez L, Khurshid H, Garaio E, Garcia J, Phan M, Srikanth H (2016) Enhanced magnetic hyperthermia in iron oxide nano-octopods: size and anisotropy effects. J Phys Chem C 120(15):8370–8379

    Article  Google Scholar 

  • Nie Z, Vahdani Y, Cho WC, Bloukh SH, Edis Z, Haghighat S, Falahati M, Kheradmandi R, Jaragh-Alhadad LA, Sharifi M (2022) 5-Fluorouracil-containing inorganic iron oxide/platinum nanozymes with dual drug delivery and enzyme-like activity for the treatment of breast cancer. Arab J Chem 15(8):103966

    Article  Google Scholar 

  • Nigam S, Bahadur D (2018). Doxorubicin-loaded dendritic-Fe3O4 supramolecular nanoparticles for magnetic drug targeting and tumor regression in spheroid murine melanoma model. Nanomed Nanotechnol Biol Med 14(3):759–768

    Google Scholar 

  • Ninomiya K, Noda K, Ogino C, Kuroda S-I, Shimizu N (2014) Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles: its application to targeted sonodynamic therapy. Ultrason Sonochem 21(1):289–294

    Article  Google Scholar 

  • Noh S-H, Na W, Jang J-T, Lee J-H, Lee EJ, Moon SH, Lim Y, Shin J-S, Cheon J (2012) Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12(7):3716–3721

    Article  Google Scholar 

  • Nosrati H, Salehiabar M, Davaran S, Danafar H, Manjili HK (2018) Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev Ind Pharm 44(6):886–894

    Article  Google Scholar 

  • Nosrati H, Tarantash M, Bochani S, Charmi J, Bagheri Z, Fridoni M, Abdollahifar M-A, Davaran S, Danafar H, Kheiri Manjili H (2019) Glutathione (GSH) peptide conjugated magnetic nanoparticles as blood–brain barrier shuttle for MRI-monitored brain delivery of paclitaxel. ACS Biomater Sci Eng 5(4):1677–1685

    Article  Google Scholar 

  • O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176

    Article  Google Scholar 

  • Ortega D, Pankhurst Q (2013) Magnetic hyperthermia in nanoscience: Vol. 1: nanostructures through chemistry. Royal Society of Chemistry UK

    Google Scholar 

  • ÖSTERLIN S (1977) On the molecular biology of the vitreous in the aphakic eye. Acta Ophthalmol 55(3):353–361

    Google Scholar 

  • Pala K, Serwotka A, Jeleń F, Jakimowicz P, Otlewski J (2014) Tumor-specific hyperthermia with aptamer-tagged superparamagnetic nanoparticles. Int J Nanomed 9:67

    Google Scholar 

  • Palanisamy S, Wang Y-M (2019) Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans 48(26):9490–9515

    Article  Google Scholar 

  • Pan C, Liu Y, Zhou M, Wang W, Shi M, Xing M, Liao W (2018) Theranostic pH-sensitive nanoparticles for highly efficient targeted delivery of doxorubicin for breast tumor treatment. Int J Nanomed 13:1119

    Article  Google Scholar 

  • Pan J, Hu P, Guo Y, Hao J, Ni D, Xu Y, Bao Q, Yao H, Wei C, Wu Q (2020) Combined magnetic hyperthermia and immune therapy for primary and metastatic tumor treatments. ACS Nano 14(1):1033–1044

    Article  Google Scholar 

  • Panda J, Satapathy BS, Majumder S, Sarkar R, Mukherjee B, Tudu B (2019) Engineered polymeric iron oxide nanoparticles as potential drug carrier for targeted delivery of docetaxel to breast cancer cells. J Magn Magn Mater 485:165–173

    Article  Google Scholar 

  • Pandey A, Singh D, Dhas N, Tewari AK, Pathak K, Chatap V, Rathore KS, Mutalik S (2020) Complex injectables: development, delivery, and advancement. Delivery of drugs, Elsevier, pp 191–213

    Google Scholar 

  • Pandey N, Dhiman S, Srivastava T, Majumder S (2016) Transition metal oxide nanoparticles are effective in inhibiting lung cancer cell survival in the hypoxic tumor microenvironment. Chem Biol Interact 254:221–230

    Article  Google Scholar 

  • Pandey A, Singh K, Patel S, Singh R, Patel K, Sawant K (2019) Hyaluronic acid tethered pH-responsive alloy-drug nanoconjugates for multimodal therapy of glioblastoma: An intranasal route approach. Mater Sci Eng C 98:419–436

    Article  Google Scholar 

  • Paris JL, Cabañas MV, Manzano M, Vallet-Regí M (2015) Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano 9(11):11023–11033

    Article  Google Scholar 

  • Pariser D, Loss R, Jarratt M, Abramovits W, Spencer J, Geronemus R, Bailin P, Bruce S (2008) Topical methyl-aminolevulinate photodynamic therapy using red light-emitting diode light for treatment of multiple actinic keratoses: a randomized, double-blind, placebo-controlled study. J Am Acad Dermatol 59(4):569–576

    Article  Google Scholar 

  • Park S-C, Kim N-H, Yang W, Nah J-W, Jang M-K, Lee D (2016) Polymeric micellar nanoplatforms for Fenton reaction as a new class of antibacterial agents. J Control Release 221:37–47

    Article  Google Scholar 

  • Park YI, Kwon S-H, Lee G, Motoyama K, Kim MW, Lin M, Niidome T, Choi JH, Lee R (2021) PH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer. J Control Release 330:1–14

    Article  Google Scholar 

  • Parsian M, Unsoy G, Mutlu P, Yalcin S, Tezcaner A, Gunduz U (2016) Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug. Eur J Pharmacol 784:121–128

    Article  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):1–33

    Google Scholar 

  • Peng X-H, Qian X, Mao H, Wang AY, Chen Z, Nie S, Shin DM (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed 3(3):311–321

    Google Scholar 

  • Pérez-Hernández M, Del Pino P, Mitchell SG, Moros M, Stepien G, Pelaz B, Parak WJ, Gálvez EM, Pardo J, de la Fuente JM (2015) Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms. ACS Nano 9(1):52–61

    Article  Google Scholar 

  • Pitarresi G, Craparo E, Palumbo F, Carlisi B, Giammona G (2007) Composite nanoparticles based on hyaluronic acid chemically cross-linked with α, β-polyaspartylhydrazide. Biomacromolecules 8(6):1890–1898

    Article  Google Scholar 

  • Purushotham S, Ramanujan R (2010) Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater 6(2):502–510

    Article  Google Scholar 

  • Quinto CA, Mohindra P, Tong S, Bao G (2015) Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 7(29):12728–12736

    Article  Google Scholar 

  • Raha S, Paunesku T, Woloschak G (2011) Peptide-mediated cancer targeting of nanoconjugates. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(3):269–281

    Article  Google Scholar 

  • Rahman W, Kadian S, Ab Rashid R, Abdullah R, Razak KA, Pham B, Hawkett B, Geso M (2019) Radiosensitization characteristic of superparamagnetic iron oxide nanoparticles in electron beam radiotherapy and brachytherapy. Journal of Physics: Conference Series. IOP Publishing

    Google Scholar 

  • Ramzy L, Nasr M, Metwally AA, Awad GA (2017) Cancer nanotheranostics: a review of the role of conjugated ligands for overexpressed receptors. Eur J Pharm Sci 104:273–292

    Article  Google Scholar 

  • Rasheed T, Bilal M, Abu-Thabit NY, Iqbal HM (2018) The smart chemistry of stimuli-responsive polymeric carriers for target drug delivery applications. Stimuli responsive polymeric nanocarriers for drug delivery applications. Elsevier vol 1, pp 61–99

    Google Scholar 

  • Rastegar R, Akbari Javar H, Khoobi M, Dehghan Kelishadi P, Hossein Yousefi G, Doosti M, Hossien Ghahremani M, Shariftabrizi A, Imanparast F, Gholibeglu E (2018) Evaluation of a novel biocompatible magnetic nanomedicine based on beta-cyclodextrin, loaded doxorubicin-curcumin for overcoming chemoresistance in breast cancer. Artif Cells Nanomed Biotechnol 46(Sup 2):207–216

    Article  Google Scholar 

  • Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HM (2019a) “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review. J Market Res 8(1):1497–1509

    Google Scholar 

  • Raza A, Rasheed T, Nabeel F, Hayat U, Bilal M, Iqbal HM (2019b) Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules 24(6):1117

    Article  Google Scholar 

  • Rejinold NS, Thomas RG, Muthiah M, Lee HJ, Jeong YY, Park I-K, Jayakumar R (2016) Breast tumor targetable Fe3O4 embedded thermo-responsive nanoparticles for radiofrequency assisted drug delivery. J Biomed Nanotechnol 12(1):43–55

    Article  Google Scholar 

  • Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today 19(3):157–168

    Article  Google Scholar 

  • Ricci-Júnior E, Marchetti JM (2006) Zinc (II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use. Int J Pharm 310(1–2):187–195

    Article  Google Scholar 

  • Ricci M, Miola M, Multari C, Borroni E, Canuto RA, Congiusta N, Vernè E, Follenzi A, Muzio G (2018) PPARs are mediators of anti-cancer properties of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with conjugated linoleic acid. Chem Biol Interact 292:9–14

    Article  Google Scholar 

  • Rizvi I, Celli JP, Evans CL, Abu-Yousif AO, Muzikansky A, Pogue BW, Finkelstein D, Hasan T (2010) Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer. Can Res 70(22):9319–9328

    Article  Google Scholar 

  • Robinson DJ, de Bruijn HS, van der Veen N, Stringer MR, Brown SB, Star WM (1998) Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect. Photochem Photobiol 67(1):140–149

    Google Scholar 

  • Roch A, Gossuin Y, Muller RN, Gillis P (2005) Superparamagnetic colloid suspensions: water magnetic relaxation and clustering. J Magn Magn Mater 293(1):532–539

    Article  Google Scholar 

  • Rosen JE, Chan L, Shieh D-B, Gu FX (2012) Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomed Nanotechnol Biol Med 8(3):275–290

    Google Scholar 

  • Ross JF, Chaudhuri PK, Ratnam M (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73(9):2432–2443

    Article  Google Scholar 

  • Rossetti FC, Lopes LB, Carollo ARH, Thomazini JA, Tedesco AC, Bentley MVLB (2011) A delivery system to avoid self-aggregation and to improve in vitro and in vivo skin delivery of a phthalocyanine derivative used in the photodynamic therapy. J Control Release 155(3):400–408

    Article  Google Scholar 

  • Rousseau J, Nakamura M, Rio-Maior H, Álvares F, Choquet R, Madeira de Carvalho L, Godinho R, Santos N (2021) Non-invasive molecular survey of sarcoptic mange in wildlife: diagnostic performance in wolf faecal samples evaluated by multi-event capture-recapture models. Pathogens 10(2):243

    Article  Google Scholar 

  • Ruoslahti E (2012) Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv Mater 24(28):3747–3756

    Article  Google Scholar 

  • Saeed M, Ren W, Wu A (2018) Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances. Biomaterials Science 6(4):708–725

    Article  Google Scholar 

  • Saeed M, Gao J, Shi Y, Lammers T, Yu H (2019) Engineering nanoparticles to reprogram the tumor immune microenvironment for improved cancer immunotherapy. Theranostics 9(26):7981

    Article  Google Scholar 

  • Sahin U, Türeci Ö (2018) Personalized vaccines for cancer immunotherapy. Science 359(6382):1355–1360

    Article  Google Scholar 

  • Sahle FF, Gulfam M, Lowe TL (2018) Design strategies for physical-stimuli-responsive programmable nanotherapeutics. Drug Discovery Today 23(5):992–1006

    Article  Google Scholar 

  • Sahu NK, Singh NS, Pradhan L, Bahadur D (2014) Ce 3+ sensitized GdPO 4: Tb 3+ with iron oxide nanoparticles: a potential biphasic system for cancer theranostics. Dalton Trans 43(30):11728–11738

    Article  Google Scholar 

  • Sahu NK, Gupta J, Bahadur D (2015) PEGylated FePt–Fe3O4 composite nanoassemblies (CNAs): in vitro hyperthermia, drug delivery and generation of reactive oxygen species (ROS). Dalton Trans 44(19):9103–9113

    Article  Google Scholar 

  • Sahu A, Choi WI, Tae G (2018) Recent progress in the design of hypoxia-specific nano drug delivery systems for cancer therapy. Advanced Therapeutics 1(4):1800026

    Article  Google Scholar 

  • Salaheldin TA, Loutfy SA, Ramadan MA, Youssef T, Mousa SA (2019) IR-enhanced photothermal therapeutic effect of graphene magnetite nanocomposite on human liver cancer HepG2 cell model. Int J Nanomed 4397–4412

    Google Scholar 

  • Salimi F, Dilmaghani KA, Alizadeh E, Akbarzadeh A, Davaran S (2018) Enhancing cisplatin delivery to hepatocellular carcinoma HepG2 cells using dual sensitive smart nanocomposite. Artif Cells Nanomed Biotechnol 46(5):949–958

    Article  Google Scholar 

  • Samrot AV, Sahithya CS, Selvarani J, Purayil SK, Ponnaiah P (2021) A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Curr Res Green Sustain Chem 4:100042

    Article  Google Scholar 

  • Sánchez-Cabezas S, Montes-Robles R, Gallo J, Sancenón F, Martínez-Máñez R (2019) Combining magnetic hyperthermia and dual T 1/T 2 MR imaging using highly versatile iron oxide nanoparticles. Dalton Trans 48(12):3883–3892

    Article  Google Scholar 

  • Saravanakumar G, Lee J, Kim J, Kim WJ (2015) Visible light-induced singlet oxygen-mediated intracellular disassembly of polymeric micelles co-loaded with a photosensitizer and an anticancer drug for enhanced photodynamic therapy. Chem Commun 51(49):9995–9998

    Article  Google Scholar 

  • Savari MN (2022) Multifunctional biocompatible nanoparticles to solve the challenges of resistance to treatment, real-time tracking, and reduce the side effects of destructing the cancerous tissues with radiotherapy. 5th International Conference on Bioscience: Fundamentals and Applications (ICBFA), http://icbfa.rf.gd/ICBFA27.htm?i=1

  • Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Krüger A, Gänsbacher B, Plank C (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9(2):102–109

    Article  Google Scholar 

  • Schleich N, Po C, Jacobs D, Ucakar B, Gallez B, Danhier F, Préat V (2014) Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release 194:82–91

    Article  Google Scholar 

  • Schuster A, Schwab T, Bischof M, Klotz M, Lemor R, Degel C, Schäfer K-H (2013) Cell specific ultrasound effects are dose and frequency dependent. Ann Anat-Anat Anzeiger 195(1):57–67

    Article  Google Scholar 

  • See KL, Forbes I, Betts W (1984) Oxygen dependency of photocytotoxicity with haematoporphyrin derivative. Photochem Photobiol 39(5):631–634

    Article  Google Scholar 

  • Sekar TV, Dhanabalan A, Paulmurugan R (2011) Imaging cellular receptors in breast cancers: an overview. Curr Pharm Biotechnol 12(4):508–527

    Google Scholar 

  • Sekhosana KE, Nyokong T (2014) Synthesis of ytterbium bisphthalocyanines: photophysicochemical properties and nonlinear absorption behavior. Opt Mater 37:139–146

    Article  Google Scholar 

  • Serpe L, Foglietta F, Canaparo R (2012) Nanosonotechnology: the next challenge in cancer sonodynamic therapy. Nanotechnol Rev 1(2):173–182

    Article  Google Scholar 

  • Sethi M, Chakarvarti S (2015) Hyperthermia techniques for cancer treatment: a review. Int. J. Pharmtech Res 8(6):292–299

    Google Scholar 

  • Shah SA, Reeves DB, Ferguson RM, Weaver JB, Krishnan KM (2015) Mixed Brownian alignment and Néel rotations in superparamagnetic iron oxide nanoparticle suspensions driven by an ac field. Phys Rev B 92(9):094438

    Article  Google Scholar 

  • Shanmugam V, Selvakumar S, Yeh C-S (2014) Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 43(17):6254–6287

    Article  Google Scholar 

  • Sharma RA, Plummer R, Stock JK, Greenhalgh TA, Ataman O, Kelly S, Clay R, Adams RA, Baird RD, Billingham L (2016) Clinical development of new drug–radiotherapy combinations. Nat Rev Clin Oncol 13(10):627–642

    Article  Google Scholar 

  • Sharma K, Ningthoujam R, Dubey A, Chattopadhyay A, Phapale S, Juluri R, Mukherjee S, Tewari R, Shetake NG, Pandey B (2018) Synthesis and characterization of monodispersed water dispersible Fe3O4 nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition. Sci Rep 8(1):14766

    Article  Google Scholar 

  • Shen Y, Zhan Y, Tang J, Xu P, Johnson PA, Radosz M, Van Kirk EA, Murdoch WJ (2008) Multifunctioning pH-responsive nanoparticles from hierarchical self-assembly of polymer brush for cancer drug delivery. AIChE J 54(11):2979–2989

    Article  Google Scholar 

  • Shen S, Wang S, Zheng R, Zhu X, Jiang X, Fu D, Yang W (2015) Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 39:67–74

    Article  Google Scholar 

  • Shen Z, Chen T, Ma X, Ren W, Zhou Z, Zhu G, Zhang A, Liu Y, Song J, Li Z (2017) Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T 1-weighted magnetic resonance imaging and chemotherapy. ACS Nano 11(11):10992–11004

    Article  Google Scholar 

  • Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:1–33

    Article  Google Scholar 

  • Shoji M, Sun A, Kisiel W, Lu YJ, Shim H, McCarey BE, Nichols C, Parker ET, Pohl J, Mosley CA (2008) Targeting tissue factor-expressing tumor angiogenesis and tumors with EF24 conjugated to factor VIIa. J Drug Target 16(3):185–197

    Article  Google Scholar 

  • Shubayev VI, Pisanic TR II, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61(6):467–477

    Article  Google Scholar 

  • Singh A, Sahoo SK (2014) Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discovery Today 19(4):474–481

    Article  Google Scholar 

  • Singha K, Namgung R, Kim WJ (2011) Polymers in small-interfering RNA delivery. Nucleic Acid Ther 21(3):133–147

    Article  Google Scholar 

  • Singhal P, Gill AR, Sharma PK, Kumar R, Bhusal N, Kaur A, Sharma P (2019) Aptamers: novel therapeutic and diagnostic molecules. Aptamers: Biotechnol Appl of a Next Gener Tool 73–89

    Google Scholar 

  • Sirsi SR, Borden MA (2014) State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Deliv Rev 72:3–14

    Article  Google Scholar 

  • Soares PI, Lochte F, Echeverria C, Pereira LC, Coutinho JT, Ferreira IM, Novo CM, Borges JP (2015) Thermal and magnetic properties of iron oxide colloids: influence of surfactants. Nanotechnology 26(42):425704

    Article  Google Scholar 

  • Sodipo BK, Aziz AA (2016) Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica. J Magn Magn Mater 416:275–291

    Article  Google Scholar 

  • Song XR, Li SH, Dai J, Song L, Huang G, Lin R, Li J, Liu G, Yang HH (2017) Polyphenol-inspired facile construction of smart assemblies for ATP-and pH-responsive tumor MR/Optical imaging and photothermal therapy. Small 13(20):1603997

    Article  Google Scholar 

  • Sonwane MP, Bhusnure O, Gaikwad V, Ali SS, Atul G, Santosh K (2015) A review formulation and development of orodispersible tablet. Indo Am J Pharm Res 5:3868–3881

    Google Scholar 

  • Srinivasarao M, Galliford CV, Low PS (2015) Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discovery 14(3):203–219

    Article  Google Scholar 

  • Star WM, Marijnissen HP, van den Berg-Blok AE, Versteeg JA, Franken KA, Reinhold HS (1986) Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers. Can Res 46(5):2532–2540

    Google Scholar 

  • Stavarache CE, Paniwnyk L (2018) Controlled rupture of magnetic LbL polyelectrolyte capsules and subsequent release of contents employing high intensity focused ultrasound. J Drug Deliv Sci Technol 45:60–69

    Article  Google Scholar 

  • Stephen ZR, Kievit FM, Veiseh O, Chiarelli PA, Fang C, Wang K, Hatzinger SJ, Ellenbogen RG, Silber JR, Zhang M (2014) Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O 6-benzylguanine to brain tumors. ACS Nano 8(10):10383–10395

    Article  Google Scholar 

  • Stolik S, Delgado J, Pérez A, Anasagasti L (2000) Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. J Photochem Photobiol, B 57(2–3):90–93

    Article  Google Scholar 

  • Sudame A, Kandasamy G, Maity D (2019) Single and dual surfactants coated hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia applications. J Nanosci Nanotechnol 19(7):3991–3999

    Article  Google Scholar 

  • Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41(2):147–162

    Article  Google Scholar 

  • Sun S, Hu J, Tang H, Wu P (2010) Chain collapse and revival thermodynamics of poly (N-isopropylacrylamide) hydrogel. J Phys Chem B 114(30):9761–9770

    Article  Google Scholar 

  • Sun D, Lu J, Zhang L, Chen Z (2019a) Aptamer-based electrochemical cytosensors for tumor cell detection in cancer diagnosis: a review. Anal Chim Acta 1082:1–17

    Article  Google Scholar 

  • Sun X, Liu B, Chen X, Lin H, Peng Y, Li Y, Zheng H, Xu Y, Ou X, Yan S (2019b) Aptamer-assisted superparamagnetic iron oxide nanoparticles as multifunctional drug delivery platform for chemo-photodynamic combination therapy. J Mater Sci - Mater Med 30:1–15

    Article  Google Scholar 

  • Sundaresan V, Menon JU, Rahimi M, Nguyen KT, Wadajkar AS (2014) Dual-responsive polymer-coated iron oxide nanoparticles for drug delivery and imaging applications. Int J Pharm 466(1–2):1–7

    Article  Google Scholar 

  • Tagde P, Kulkarni GT, Mishra DK, Kesharwani P (2020) Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J Drug Deliv Sci Technol 56:101613

    Article  Google Scholar 

  • Taherian A, Esfandiari N, Rouhani S (2021) Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nanotechnol 12(1):1–20

    Article  Google Scholar 

  • Tammi R, Ågren UM, Tuhkanen A-L, Tammi M (1994). Hyaluronan metabolism in skin. Prog Histochem Cytochem 29(2):III-77

    Google Scholar 

  • Tang Z, Zhang L, Wang Y, Li D, Zhong Z, Zhou S (2016) Redox-responsive star-shaped magnetic micelles with active-targeted and magnetic-guided functions for cancer therapy. Acta Biomater 42:232–246

    Article  Google Scholar 

  • Tapeinos C, Pandit A (2016) Physical, chemical, and biological structures based on ROS-sensitive moieties that are able to respond to oxidative microenvironments. Adv Mater 28(27):5553–5585

    Article  Google Scholar 

  • Tarvirdipour S, Vasheghani-Farahani E, Soleimani M, Bardania H (2016) Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells. Int J Pharm 501(1–2):331–341

    Article  Google Scholar 

  • Taurin S, Nehoff H, Greish K (2012) Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J Control Release 164(3):265–275

    Article  Google Scholar 

  • Thambi T, Deepagan V, Yoon HY, Han HS, Kim S-H, Son S, Jo D-G, Ahn C-H, Suh YD, Kim K (2014) Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials 35(5):1735–1743

    Article  Google Scholar 

  • Thambi T, Park JH, Lee DS (2016) Hypoxia-responsive nanocarriers for cancer imaging and therapy: recent approaches and future perspectives. Chem Commun 52(55):8492–8500

    Article  Google Scholar 

  • Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4(5):346–358

    Article  Google Scholar 

  • Thorstensen K, Romslo I (1993) The transferrin receptor: its diagnostic value and its potential as therapeutic target. Scand J Clin Lab Invest 53(Sup 215):113–120

    Article  Google Scholar 

  • Tian X, Lara H, Wagner KT, Saripalli S, Hyder SN, Foote M, Sethi M, Wang E, Caster JM, Zhang L (2015) Improving DNA double-strand repair inhibitor KU55933 therapeutic index in cancer radiotherapy using nanoparticle drug delivery. Nanoscale 7(47):20211–20219

    Article  Google Scholar 

  • Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27(4):450–461

    Article  Google Scholar 

  • Tung Y-S, Liu H-L, Wu C-C, Ju K-C, Chen W-S, Lin W-L (2006) Contrast-agent-enhanced ultrasound thermal ablation. Ultrasound Med Biol 32(7):1103–1110

    Article  Google Scholar 

  • Tuntland T, Ethell B, Kosaka T, Blasco F, Zang RX, Jain M, Gould T, Hoffmaster K (2014) Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research. Front Pharmacol 5:174

    Article  Google Scholar 

  • Turan O, Bielecki PA, Perera V, Lorkowski M, Covarrubias G, Tong K, Yun A, Loutrianakis G, Raghunathan S, Park Y (2019) Treatment of glioblastoma using multicomponent silica nanoparticles. Advanced Therapeutics 2(11):1900118

    Article  Google Scholar 

  • Turkoglu G, Koygun GK, Yurt MNZ, Demirok N, Erbas-Cakmak S (2020) Self-reporting heavy atom-free photodynamic therapy agents. Org Biomol Chem 18(46):9433–9437

    Article  Google Scholar 

  • Unger EC, McCreery TP, Sweitzer RH, Caldwell VE, Wu Y (1998) Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest Radiol 33(12):886–892

    Article  Google Scholar 

  • Ura T, Okuda K, Shimada M (2014) Developments in viral vector-based vaccines. Vaccines 2(3):624–641

    Article  Google Scholar 

  • Van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13(8):1173–1184

    Article  Google Scholar 

  • Van Straten D, Mashayekhi V, De Bruijn HS, Oliveira S, Robinson DJ (2017) Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers 9(2):19

    Article  Google Scholar 

  • Vaupel P, Thews O, Hoeckel M (2001) Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol 18:243–259

    Article  Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    Article  Google Scholar 

  • Velloso FJ, Bianco AF, Farias JO, Torres NE, Ferruzo PY, Anschau V, Jesus-Ferreira HC, Chang TH-T, Sogayar MC, Zerbini LF (2017) The crossroads of breast cancer progression: insights into the modulation of major signaling pathways. Onco Targets Ther 10:5491

    Article  Google Scholar 

  • Wadajkar AS, Menon JU, Tsai Y-S, Gore C, Dobin T, Gandee L, Kangasniemi K, Takahashi M, Manandhar B, Ahn J-M (2013) Prostate cancer-specific thermo-responsive polymer-coated iron oxide nanoparticles. Biomaterials 34(14):3618–3625

    Article  Google Scholar 

  • Wahajuddin N, Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed 3445–3471

    Google Scholar 

  • Wang S, Low PS (1998) Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J Control Release 53(1–3):39–48

    Article  Google Scholar 

  • Wang H, Shen J, Li Y, Wei Z, Cao G, Gai Z, Hong K, Banerjee P, Zhou S (2014a) Magnetic iron oxide–fluorescent carbon dots integrated nanoparticles for dual-modal imaging, near-infrared light-responsive drug carrier and photothermal therapy. Biomater Sci 2(6):915–923

    Article  Google Scholar 

  • Wang H, Yi J, Mukherjee S, Banerjee P, Zhou S (2014b) Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release. Nanoscale 6(21):13001–13011

    Article  Google Scholar 

  • Wang X, Niu D, Li P, Wu Q, Bo X, Liu B, Bao S, Su T, Xu H, Wang Q (2015) Dual-enzyme-loaded multifunctional hybrid nanogel system for pathological responsive ultrasound imaging and T2-weighted magnetic resonance imaging. ACS Nano 9(6):5646–5656

    Article  Google Scholar 

  • Wang C, Zhang L, Li S, Zhang M, Wang T, Li L, Wang C, Su Z (2016) A designed synthesis of multifunctional Fe3O4@ carbon/zinc phosphate nanoparticles for simultaneous imaging and synergic chemo-photothermal cancer therapy. J Mater Chem B 4(35):5809–5813

    Article  Google Scholar 

  • Wang J, Yao C, Shen B, Zhu X, Li Y, Shi L, Zhang Y, Liu J, Wang Y, Sun L (2019) Upconversion-magnetic carbon sphere for near infrared light-triggered bioimaging and photothermal therapy. Theranostics 9(2):608

    Article  Google Scholar 

  • Watson DC, Bayik D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, Bear J, Monninger M, Sun M, Morales-Kastresana A (2016) Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials 105:195–205

    Article  Google Scholar 

  • Webber MJ, Appel EA, Meijer E, Langer R (2016) Supramolecular biomaterials. Nat Mater 15(1):13–26

    Article  Google Scholar 

  • Weerathunge P, Pooja D, Singh M, Kulhari H, Mayes EL, Bansal V, Ramanathan R (2019) Transferrin-conjugated quasi-cubic SPIONs for cellular receptor profiling and detection of brain cancer. Sens Actuators B Chem 297:126737

    Article  Google Scholar 

  • Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR Jr, Kamen BA (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Can Res 52(12):3396–3401

    Google Scholar 

  • Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA (2019) Stimuli-responsive drug release from smart polymers. J Funct Biomater 10(3):34

    Article  Google Scholar 

  • Weng H, Bejjanki NK, Zhang J, Miao X, Zhong Y, Li H, Xie H, Wang S, Li Q, Xie M (2019) TAT peptide-modified cisplatin-loaded iron oxide nanoparticles for reversing cisplatin-resistant nasopharyngeal carcinoma. Biochem Biophys Res Commun 511(3):597–603

    Article  Google Scholar 

  • Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499

    Article  Google Scholar 

  • Wouters A, Pauwels B, Lardon F, Vermorken JB (2007) Implications of in vitro research on the effect of radiotherapy and chemotherapy under hypoxic conditions. Oncologist 12(6):690–712

    Article  Google Scholar 

  • Wu G, Fang Y-Z, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492

    Article  Google Scholar 

  • Wu L-X, Wang H, Tu Z-Y, Ding B-B, Xiao Y, Lu J-X (2012) Synthesis of cyclic carbonates from CO2 and diols via electrogenerated N-heterocyclic carbenes. Int J Electrochem Sci 7(11):11540–11549

    Article  Google Scholar 

  • Wu H, Yin J-J, Wamer WG, Zeng M, Lo YM (2014) Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J Food Drug Anal 22(1):86–94

    Article  Google Scholar 

  • Wu L, Chen L, Liu F, Qi X, Ge Y, Shen S (2017) Remotely controlled drug release based on iron oxide nanoparticles for specific therapy of cancer. Colloids Surf B 152:440–448

    Article  Google Scholar 

  • Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag P (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497

    Article  Google Scholar 

  • Xiao Z, Halls S, Dickey D, Tulip J, Moore RB (2007) Fractionated versus standard continuous light delivery in interstitial photodynamic therapy of dunning prostate carcinomas. Clin Cancer Res 13(24):7496–7505

    Article  Google Scholar 

  • Xu H, Rudkevich DM (2004) CO2 in supramolecular chemistry: Preparation of switchable supramolecular polymers. Chemistry–A Eur J 10(21):5432–5442

    Google Scholar 

  • Xu H, Cao W, Zhang X (2013) Selenium-containing polymers: promising biomaterials for controlled release and enzyme mimics. Acc Chem Res 46(7):1647–1658

    Article  Google Scholar 

  • Xu H, Zhang X, Han R, Yang P, Ma H, Song Y, Lu Z, Yin W, Wu X, Wang H (2016) Nanoparticles in sonodynamic therapy: state of the art review. RSC Adv 6(56):50697–50705

    Article  Google Scholar 

  • Xu L, Bai Q, Zhang X, Yang H (2017) Folate-mediated chemotherapy and diagnostics: an updated review and outlook. J Control Release 252:73–82

    Article  Google Scholar 

  • Xuan J, Boissiere O, Zhao Y, Yan B, Tremblay L, Lacelle S, Xia H, Zhao Y (2012) Ultrasound-responsive block copolymer micelles based on a new amplification mechanism. Langmuir 28(47):16463–16468

    Article  Google Scholar 

  • Yan L, Luo L, Amirshaghaghi A, Miller J, Meng C, You T, Busch TM, Tsourkas A, Cheng Z (2019) Dextran-benzoporphyrin derivative (BPD) coated superparamagnetic iron oxide nanoparticle (SPION) micelles for T2-weighted magnetic resonance imaging and photodynamic therapy. Bioconjug Chem 30(11):2974–2981

    Article  Google Scholar 

  • Yan Q, Zhou R, Fu C, Zhang H, Yin Y, Yuan J (2011) CO2-responsive polymeric vesicles that breathe. Angew Chem Int Ed 50(21):4923–4927

    Article  Google Scholar 

  • Yang J, Zhang C (2020) Regulation of cancer-immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy. Wiley Interdisciplinary Rev Nanomed and Nanobiotechnol 12(4):e1612

    Article  Google Scholar 

  • Yang L, Cao Z, Sajja HK, Mao H, Wang L, Geng H, Xu H, Jiang T, Wood WC, Nie S (2008) Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J Biomed Nanotechnol 4(4):439–449

    Article  Google Scholar 

  • Yang Y, Aw J, Chen K, Liu F, Padmanabhan P, Hou Y, Cheng Z, Xing B (2011). Enzyme‐responsive multifunctional magnetic nanoparticles for tumor intracellular drug delivery and imaging. Chem Asian J 6(6):1381–1389

    Google Scholar 

  • Yang G, Liu J, Wu Y, Feng L, Liu Z (2016a) Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coord Chem Rev 320:100–117

    Article  Google Scholar 

  • Yang HY, Jang M-S, Gao GH, Lee JH, Lee DS (2016b) Construction of redox/pH dual stimuli-responsive PEGylated polymeric micelles for intracellular doxorubicin delivery in liver cancer. Polym Chem 7(9):1813–1825

    Article  Google Scholar 

  • Yang HY, Jang M-S, Gao GH, Lee JH, Lee DS (2016c) PH-Responsive biodegradable polymeric micelles with anchors to interface magnetic nanoparticles for MR imaging in detection of cerebral ischemic area. Nanoscale 8(25):12588–12598

    Article  Google Scholar 

  • Yang HY, Fu Y, Jang M-S, Li Y, Yin WP, Ahn TK, Lee JH, Chae H, Lee DS (2017a) CdSe@ ZnS/ZnS quantum dots loaded in polymeric micelles as a pH-triggerable targeting fluorescence imaging probe for detecting cerebral ischemic area. Colloids Surf B 155:497–506

    Article  Google Scholar 

  • Yang HY, Jang M-S, Li Y, Lee JH, Lee DS (2017b) Multifunctional and redox-responsive self-assembled magnetic nanovectors for protein delivery and dual-modal imaging. ACS Appl Mater Interfaces 9(22):19184–19192

    Article  Google Scholar 

  • Yang B, Wang K, Zhang D, Sun B, Ji B, Wei L, Li Z, Wang M, Zhang X, Zhang H (2018) Light-activatable dual-source ROS-responsive prodrug nanoplatform for synergistic chemo-photodynamic therapy. Biomater Sci 6(11):2965–2975

    Article  Google Scholar 

  • Yang HY, Jang M-S, Li Y, Fu Y, Lee JH, Lee DS (2019) Hierarchical tumor acidity-responsive self-assembled magnetic nanotheranostics for bimodal bioimaging and photodynamic therapy. J Control Release 301:157–165

    Article  Google Scholar 

  • Yang G, Liu Y, Chen J, Ding J, Chen X (2022) Self-adaptive nanomaterials for rational drug delivery in cancer therapy. Acc Mater Res 3(12):1232–1247

    Article  Google Scholar 

  • Yao J, Feng J, Chen J (2016) External-stimuli responsive systems for cancer theranostic. Asian J Pharm Sci 11(5):585–595

    Article  Google Scholar 

  • Ye H, Zhou Y, Liu X, Chen Y, Duan S, Zhu R, Liu Y, Yin L (2019) Recent advances on reactive oxygen species-responsive delivery and diagnosis system. Biomacromolecules 20(7):2441–2463

    Article  Google Scholar 

  • Yu J, Ju Y, Zhao L, Chu X, Yang W, Tian Y, Sheng F, Lin J, Liu F, Dong Y (2016) Multistimuli-regulated photochemothermal cancer therapy remotely controlled via Fe5C2 nanoparticles. ACS Nano 10(1):159–169

    Article  Google Scholar 

  • Yu S, Ng VMH, Wang F, Xiao Z, Li C, Kong LB, Que W, Zhou K (2018) Synthesis and application of iron-based nanomaterials as anodes of lithium-ion batteries and supercapacitors. J Mater Chem A 6(20):9332–9367

    Article  Google Scholar 

  • Yue X, Zhang Q, Dai Z (2017) Near-infrared light-activatable polymeric nanoformulations for combined therapy and imaging of cancer. Adv Drug Deliv Rev 115:155–170

    Article  Google Scholar 

  • Zakharchenko A, Guz N, Laradji AM, Katz E, Minko S (2018) Magnetic field remotely controlled selective biocatalysis. Nat Catal 1(1):73–81

    Article  Google Scholar 

  • Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, Pajarinen JS, Nejadnik H, Goodman S, Moseley M (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11(11):986–994

    Article  Google Scholar 

  • Zeng J, Du P, Liu L, Li J, Tian K, Jia X, Zhao X, Liu P (2015) Superparamagnetic reduction/pH/temperature multistimuli-responsive nanoparticles for targeted and controlled antitumor drug delivery. Mol Pharm 12(12):4188–4199

    Article  Google Scholar 

  • Zhang Z-Q, Song S-C (2017) Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy. Biomaterials 132:16–27

    Article  Google Scholar 

  • Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107(16):3712–3718

    Article  Google Scholar 

  • Zhang C, Jugold M, Woenne EC, Lammers T, Morgenstern B, Mueller MM, Zentgraf H, Bock M, Eisenhut M, Semmler W (2007) Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Can Res 67(4):1555–1562

    Article  Google Scholar 

  • Zhang L, Li Y, Jimmy CY, Chen YY, Chan KM (2014a) Assembly of polyethylenimine-functionalized iron oxide nanoparticles as agents for DNA transfection with magnetofection technique. J Mater Chem B 2(45):7936–7944

    Article  Google Scholar 

  • Zhang Y, Sun Y, Yang X, Hilborn J, Heerschap A, Ossipov DA (2014b) Injectable in situ forming hybrid iron oxide-hyaluronic acid hydrogel for magnetic resonance imaging and drug delivery. Macromol Biosci 14(9):1249–1259

    Article  Google Scholar 

  • Zhang P, Ren Z, Chen Z, Zhu J, Liang J, Liao R, Wen J (2018a) Iron oxide nanoparticles as nanocarriers to improve chlorin e6-based sonosensitivity in sonodynamic therapy. Drug Des Dev Ther 4207–4216

    Google Scholar 

  • Zhang W, Zhou Y, Li X, Xu X, Chen Y, Zhu R, Yin L (2018b) Macrophage-targeting and reactive oxygen species (ROS)-responsive nanopolyplexes mediate anti-inflammatory siRNA delivery against acute liver failure (ALF). Biomater Sci 6(7):1986–1993

    Article  Google Scholar 

  • Zhang Z-T, Huang-Fu M-Y, Xu W-H, Han M (2019) Stimulus-responsive nanoscale delivery systems triggered by the enzymes in the tumor microenvironment. Eur J Pharm Biopharm 137:122–130

    Article  Google Scholar 

  • Zhao D, Sun X, Tong J, Ma J, Bu X, Xu R, Fan R (2012a) A novel multifunctional nanocomposite C225-conjugated Fe3O4/Ag enhances the sensitivity of nasopharyngeal carcinoma cells to radiotherapy. Acta Biochim Biophys Sin 44(8):678–684

    Article  Google Scholar 

  • Zhao Y, Zhang S, Cui S, Wang B, Zhang S (2012b) Peptide-based cationic liposome-mediated gene delivery. Expert Opin Drug Deliv 9(1):127–139

    Article  Google Scholar 

  • Zhao Q, Liu J, Zhu W, Sun C, Di D, Zhang Y, Wang P, Wang Z, Wang S (2015) Dual-stimuli responsive hyaluronic acid-conjugated mesoporous silica for targeted delivery to CD44-overexpressing cancer cells. Acta Biomater 23:147–156

    Article  Google Scholar 

  • Zhao C, Song X, Jin W, Wu F, Zhang Q, Zhang M, Zhou N, Shen J (2019) Image-guided cancer therapy using aptamer-functionalized cross-linked magnetic-responsive Fe3O4@ carbon nanoparticles. Anal Chim Acta 1056:108–116

    Article  Google Scholar 

  • Zheng J, Liu Y, Song F, Jiao L, Wu Y, Peng X (2020) A nitroreductase-activatable near-infrared theranostic photosensitizer for photodynamic therapy under mild hypoxia. Chem Commun 56(43):5819–5822

    Article  Google Scholar 

  • Zheng M, Pan M, Zhang W, Lin H, Wu S, Lu C, Tang S, Liu D, Cai J (2021) Poly (α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioactive Materials 6(7):1878–1909

    Article  Google Scholar 

  • Zhi D, Yang T, Yang J, Fu S, Zhang S (2020) Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater 102:13–34

    Article  Google Scholar 

  • Zhou J, Rossi J (2017) Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discovery 16(3):181–202

    Article  Google Scholar 

  • Zhou L, Dong C, Ding L, Feng W, Yu L, Cui X, Chen Y (2021) Targeting ferroptosis synergistically sensitizes apoptotic sonodynamic anti-tumor nanotherapy. Nano Today 39:101212

    Article  Google Scholar 

  • Zhu L, Wang D, Wei X, Zhu X, Li J, Tu C, Su Y, Wu J, Zhu B, Yan D (2013) Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. J Control Release 169(3):228–238

    Article  Google Scholar 

  • Zorlu Y, Ermeydan MA, Dumoulin F, Ahsen V, Savoie H, Boyle RW (2009) Glycerol and galactose substituted zinc phthalocyanines. Synthesis and photodynamic activity. Photochem Photobiol Sci 8:312–318

    Article  Google Scholar 

  • Zou H, Yuan W (2015) Temperature-and redox-responsive magnetic complex micelles for controlled drug release. J Mater Chem B 3(2):260–269

    Article  Google Scholar 

  • Zou W, Wolchok JD, Chen L (2016) PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 8(328):328rv324–328rv324

    Google Scholar 

  • Zuvin M, Kuruoglu E, Kaya VO, Unal O, Kutlu O, Yagci Acar H, Gozuacik D, Koşar A (2019) Magnetofection of green fluorescent protein encoding DNA-bearing polyethyleneimine-coated superparamagnetic iron oxide nanoparticles to human breast cancer cells. ACS Omega 4(7):12366–12374

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Nabil Savari .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savari, MN., Jabali, A. (2023). IONPs-Based Treatment Methods. In: Theranostic Iron-Oxide Based Nanoplatforms in Oncology. Nanomedicine and Nanotoxicology. Springer, Singapore. https://doi.org/10.1007/978-981-99-6507-6_7

Download citation

Publish with us

Policies and ethics