Skip to main content

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

  • 76 Accesses

Abstract

One of the biggest issues facing mankind is cancer, which is a complex illness with a high incidence and is the second leading cause of death in economically developed nations. The estimated worldwide cancer prevalence in 2020 was 18,094,716 new cases and over 10 million fatalities, according to the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afrasiabi M, Seydi E, Rahimi S, Tahmasebi G, Jahanbani J, Pourahmad J (2021) The selective toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) on oral squamous cell carcinoma (OSCC) by targeting their mitochondria. J Biochem Mol Toxicol 35(6):1–8

    Article  Google Scholar 

  • Ahmadi R, Ranjbarnodeh E, Gu N (2012) Synthesizing cysteine-coated magnetite nanoparticles as MRI contrast agent: Effect of pH and cysteine addition on particles size distribution. Mater Sci-Pol 30:382–389

    Article  ADS  Google Scholar 

  • Ai H (2011) Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Adv Drug Deliv Rev 63(9):772–788

    Article  Google Scholar 

  • Aisida SO, Ugwoke E, Uwais A, Iroegbu C, Botha S, Ahmad I, Maaza M, Ezema FI (2019a) Incubation period induced biogenic synthesis of PEG enhanced Moringa oleifera silver nanocapsules and its antibacterial activity. J Polym Res 26:1–11

    Article  Google Scholar 

  • Aisida SO, Ugwu K, Akpa PA, Nwanya AC, Ejikeme PM, Botha S, Ahmad I, Maaza M, Ezema FI (2019b) Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium. Mater Chem Phys 237:121859

    Article  Google Scholar 

  • Aisida SO, Ugwu K, Akpa PA, Nwanya AC, Nwankwo U, Botha SS, Ejikeme PM, Ahmad I, Maaza M, Ezema FI (2019c) Biosynthesis of silver nanoparticles using bitter leave (Veronica amygdalina) for antibacterial activities. Surfaces and Interfaces 17:100359

    Article  Google Scholar 

  • Aisida SO, Akpa PA, Ahmad I, Zhao T-K, Maaza M, Ezema FI (2020) Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. Eur Polymer J 122:109371

    Article  Google Scholar 

  • Alwi R, Telenkov S, Mandelis A, Leshuk T, Gu F, Oladepo S, Michaelian K (2012) Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics. Biomed Opt Express 3(10):2500–2509

    Article  Google Scholar 

  • Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, Aggarwal BB (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25:2097–2116

    Article  Google Scholar 

  • Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  ADS  Google Scholar 

  • Arias LS, Pessan JP, Vieira APM, Lima TMTD, Delbem ACB, Monteiro DR (2018) Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 7(2):46

    Article  Google Scholar 

  • Armstrong RE, Horáček M, Zijlstra P (2020) Plasmonic assemblies for real-time single-molecule biosensing. Small 16(52):2003934

    Article  Google Scholar 

  • Ayala V, Herrera AP, Latorre-Esteves M, Torres-Lugo M, Rinaldi C (2013) Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles. J Nanopart Res 15(8):1874

    Article  Google Scholar 

  • Barrow M, Taylor A, Murray P, Rosseinsky MJ, Adams DJ (2015) Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chem Soc Rev 44(19):6733–6748

    Article  Google Scholar 

  • Bauer LM, Situ SF, Griswold MA, Samia ACS (2016) High-performance iron oxide nanoparticles for magnetic particle imaging–guided hyperthermia (hMPI). Nanoscale 8(24):12162–12169

    Article  ADS  Google Scholar 

  • Bloemen M, Brullot W, Luong TT, Geukens N, Gils A, Verbiest T (2012) Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications. J Nanopart Res 14:1–10

    Article  Google Scholar 

  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387

    Article  Google Scholar 

  • Cabuil V, Dupuis V, Talbot D, Neveu S (2011) Ionic magnetic fluid based on cobalt ferrite nanoparticles: influence of hydrothermal treatment on the nanoparticle size. J Magn Magn Mater 323(10):1238–1241

    Article  ADS  Google Scholar 

  • Castelló J, Gallardo M, Busquets MA, Estelrich J (2015) Chitosan (or alginate)-coated iron oxide nanoparticles: a comparative study. Colloids Surf, A 468:151–158

    Article  Google Scholar 

  • Cheng F-Y, Su C-H, Yang Y-S, Yeh C-S, Tsai C-Y, Wu C-L, Wu M-T, Shieh D-B (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26(7):729–738

    Article  Google Scholar 

  • Chivate A, Garkal A, Dhas N, Mehta T (2020) Three dimensional printing by Hot-Melt extrusion; new era for development of personalized medicines and continuous manufacturing of pharmaceuticals. Int J Pharm Investig 10(3):233–236

    Article  Google Scholar 

  • Choi KY, Liu G, Lee S, Chen X (2012) Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 4(2):330–342

    Article  ADS  Google Scholar 

  • Cole AJ, David AE, Wang J, Galbán CJ, Hill HL, Yang VC (2011) Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32(8):2183–2193

    Article  Google Scholar 

  • Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T (2019) Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 138:302–325

    Article  Google Scholar 

  • de Martel C, Georges D, Bray F, Ferlay J, Clifford GM (2020) Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health 8(2):e180–e190

    Article  Google Scholar 

  • Deng L, Ren J, Li J, Leng J, Qu Y, Lin C, Shi D (2015) Magnetothermally responsive star-block copolymeric micelles for controlled drug delivery and enhanced thermo-chemotherapy. Nanoscale 7(21):9655–9663

    Article  ADS  Google Scholar 

  • Dhas N, Parekh K, Pandey A, Kudarha R, Mutalik S, Mehta T (2019) Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: a biomedical and toxicological perspective. J Control Release 308:130–161

    Article  Google Scholar 

  • Dhas NL, Raval NJ, Kudarha RR, Acharya NS, Acharya SR (2018) Core–shell nanoparticles as a drug delivery platform for tumor targeting. In: Inorganic frameworks as smart nanomedicines. Elsevier, pp 387–448

    Google Scholar 

  • Du Y, Lai PT, Leung CH, Pong PW (2013) Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI). Int J Mol Sci 14(9):18682–18710

    Article  Google Scholar 

  • Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2012) Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull Korean Chem Soc 33(12):3957–3962

    Article  Google Scholar 

  • Fan W, Yung B, Huang P, Chen X (2017) Nanotechnology for multimodal synergistic cancer therapy. Chem Rev 117(22):13566–13638

    Article  Google Scholar 

  • Ferguson RM, Khandhar AP, Kemp SJ, Arami H, Saritas EU, Croft LR, Konkle J, Goodwill PW, Halkola A, Rahmer J (2014) Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans Med Imaging 34(5):1077–1084

    Article  Google Scholar 

  • Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2020) Global cancer observatory: Cancer today. International Agency for Research on Cancer. IARC, Lyon, 2018.

    Google Scholar 

  • Fernandez-Fernandez A, Manchanda R, McGoron AJ (2011) Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol 165:1628–1651

    Article  Google Scholar 

  • Figuerola A, Di Corato R, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62(2):126–143

    Article  Google Scholar 

  • Gaihre B, Khil MS, Lee DR, Kim HY (2009) Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Int J Pharm 365(1–2):180–189

    Article  Google Scholar 

  • Gao GH, Im GH, Kim MS, Lee JW, Yang J, Jeon H, Lee JH, Lee DS (2010) Magnetite-nanoparticle-encapsulated pH-responsive polymeric micelle as an MRI probe for detecting acidic pathologic areas. Small 6(11):1201–1204

    Article  Google Scholar 

  • García-Jimeno S, Estelrich J (2013) Ferrofluid based on polyethylene glycol-coated iron oxide nanoparticles: characterization and properties. Colloids Surf, A 420:74–81

    Article  Google Scholar 

  • Gianella A, Jarzyna PA, Mani V, Ramachandran S, Calcagno C, Tang J, Kann B, Dijk WJ, Thijssen VL, Griffioen AW (2011) Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer. ACS Nano 5(6):4422–4433

    Article  Google Scholar 

  • Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications

    Google Scholar 

  • Hadjipanayis CG, Bonder MJ, Balakrishnan S, Wang X, Mao H, Hadjipanayis GC (2008) Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 4(11):1925–1929

    Article  Google Scholar 

  • Hasany S, Ahmed I, Rajan J, Rehman A (2012) Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci Nanotechnol 2(6):148–158

    Article  Google Scholar 

  • Haun JB, Yoon TJ, Lee H, Weissleder R (2010) Magnetic nanoparticle biosensors. Wiley Interdiscip Rev: Nanomedicine Nanobiotechnology 2(3):291–304

    Google Scholar 

  • He M-Q, Yu Y-L, Wang J-H (2020) Biomolecule-tailored assembly and morphology of gold nanoparticles for LSPR applications. Nano Today 35:101005

    Article  Google Scholar 

  • Hickey RJ, Haynes AS, Kikkawa JM, Park S-J (2011) Controlling the self-assembly structure of magnetic nanoparticles and amphiphilic block-copolymers: from micelles to vesicles. J Am Chem Soc 133(5):1517–1525

    Article  Google Scholar 

  • Hu Y, Mignani S, Majoral J-P, Shen M, Shi X (2018) Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem Soc Rev 47(5):1874–1900

    Article  Google Scholar 

  • Huang J, Bu L, Xie J, Chen K, Cheng Z, Li X, Chen X (2010) Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4(12):7151–7160

    Article  Google Scholar 

  • Huang J, Wang L, Lin R, Wang AY, Yang L, Kuang M, Qian W, Mao H (2013) Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting. ACS Appl Mater Interfaces 5(11):4632–4639

    Article  Google Scholar 

  • Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

    Article  Google Scholar 

  • Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 8:927–934

    Google Scholar 

  • Iost RM, Madurro JM, Brito-Madurro AG, Nantes IL, Caseli L, Crespilho FN (2011) Strategies of nano-manipulation for application in electrochemical biosensors. Int J Electrochem Sci 6(7):2965–2997

    Article  Google Scholar 

  • Issels RD (2008) Hyperthermia adds to chemotherapy. Eur J Cancer 44(17):2546–2554

    Article  Google Scholar 

  • Iv M, Telischak N, Feng D, Holdsworth SJ, Yeom KW, Daldrup-Link HE (2015) Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine 10(6):993–1018

    Article  Google Scholar 

  • Janowski M, Bulte JW, Walczak P (2012) Personalized nanomedicine advancements for stem cell tracking. Adv Drug Deliv Rev 64(13):1488–1507

    Article  Google Scholar 

  • Jia L, Li X, Liu H, Xia J, Shi X, Shen M (2021) Ultrasound-enhanced precision tumor theranostics using cell membrane-coated and pH-responsive nanoclusters assembled from ultrasmall iron oxide nanoparticles. Nano Today 36:101022

    Article  Google Scholar 

  • Jin R, Lin B, Li D, Ai H (2014) Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 18:18–27

    Article  Google Scholar 

  • Kandasamy G, Maity D (2015) Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 496(2):191–218

    Article  Google Scholar 

  • Kang T, Li F, Baik S, Shao W, Ling D, Hyeon T (2017) Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials 136:98–114

    Article  Google Scholar 

  • Kayal S, Ramanujan R (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng, C 30(3):484–490

    Article  Google Scholar 

  • Khandhar AP, Ferguson RM, Arami H, Krishnan KM (2013) Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. Biomaterials 34(15):3837–3845

    Article  Google Scholar 

  • Kim D, Kim J, Park YI, Lee N, Hyeon T (2018) Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent Sci 4(3):324–336

    Article  Google Scholar 

  • Kudarha R, Dhas NL, Pandey A, Belgamwar VS, Ige PP (2015) Box–Behnken study design for optimization of bicalutamide-loaded nanostructured lipid carrier: Stability assessment. Pharm Dev Technol 20(5):608–618

    Article  Google Scholar 

  • Kumar CS, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63(9):789–808

    Article  Google Scholar 

  • LaConte LE, Nitin N, Zurkiya O, Caruntu D, O’Connor CJ, Hu X, Bao G (2007) Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity. J Magn Reson Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine 26(6):1634–1641

    Article  Google Scholar 

  • Lane LA, Qian X, Nie S (2015) SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem Rev 115(19):10489–10529

    Article  Google Scholar 

  • Larsen EKU, Nielsen T, Wittenborn T, Rydtoft LM, Lokanathan AR, Hansen L, Østergaard L, Kingshott P, Howard KA, Besenbacher F (2012) Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors. Nanoscale 4(7):2352–2361

    Article  ADS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  Google Scholar 

  • Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41(7):2575–2589

    Article  Google Scholar 

  • Lee J-H, Huh Y-M, Jun Y-W, Seo J-W, Jang J-T, Song H-T, Kim S, Cho E-J, Yoon H-G, Suh J-S (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99

    Article  Google Scholar 

  • Lee H, Shin T-H, Cheon J, Weissleder R (2015) Recent developments in magnetic diagnostic systems. Chem Rev 115(19):10690–10724

    Article  Google Scholar 

  • Leung KC-F, Xuan S, Zhu X, Wang D, Chak C-P, Lee S-F, Ho WK-W, Chung BC-T (2012) Gold and iron oxide hybrid nanocomposite materials. Chem Soc Rev 41(5):1911–1928

    Article  Google Scholar 

  • Li L, Mak K, Leung CW, Chan K, Chan W, Zhong W, Pong P (2013) Effect of synthesis conditions on the properties of citric-acid coated iron oxide nanoparticles. Microelectron Eng 110:329–334

    Article  Google Scholar 

  • Li D, Shen M, Xia J, Shi X (2021) Recent developments of cancer nanomedicines based on ultrasmall iron oxide nanoparticles and nanoclusters. Nanomedicine 16(8):609–612

    Article  Google Scholar 

  • Lin L-S, Cong Z-X, Cao J-B, Ke K-M, Peng Q-L, Gao J, Yang H-H, Liu G, Chen X (2014) Multifunctional Fe3O4@ polydopamine core–shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 8(4):3876–3883

    Article  Google Scholar 

  • Ling D, Lee N, Hyeon T (2015) Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res 48(5):1276–1285

    Article  Google Scholar 

  • Lopez Perez J, Lopez Quintela M, Mira J, Rivas J, Charles S (1997) Advances in the preparation of magnetic nanoparticles by the microemulsion method. J Phys Chem B 101(41):8045–8047

    Article  Google Scholar 

  • Ma H-L, Qi X-R, Maitani Y, Nagai T (2007) Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int J Pharm 333(1–2):177–186

    Article  Google Scholar 

  • Mahmoudi M, Serpooshan V (2012) Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 6(3):2656–2664

    Article  Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46

    Article  Google Scholar 

  • Maity D, Kandasamy G, Sudame A (2019) Superparamagnetic iron oxide nanoparticles for cancer theranostic applications. Nanotheranostics: Appl Limits: 245–276

    Google Scholar 

  • Majd MH, Asgari D, Barar J, Valizadeh H, Kafil V, Abadpour A, Moumivand E, Mojarrad JS, Rashidi MR, Coukos G (2013) Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf, B 106:117–125

    Article  Google Scholar 

  • Mamani J, Costa-Filho AJD, Cornejo DR, Vieira E, Gamarra LF (2013) Synthesis and characterization of magnetite nanoparticles coated with lauric acid. Materials Characterization 81:28–36

    Article  Google Scholar 

  • Manshian BB, Jiménez J, Himmelreich U, Soenen SJ (2017) Personalized medicine and follow-up of therapeutic delivery through exploitation of quantum dot toxicity. Biomaterials 127:1–12

    Article  Google Scholar 

  • Martinez L, Leinen D, Martin F, Gabas M, Ramos-Barrado J, Quagliata E, Dalchiele E (2007) Electrochemical growth of diverse iron oxide (Fe3O4, α-FeOOH, and γ-FeOOH) thin films by electrodeposition potential tuning. J Electrochem Soc 154(3):D126

    Article  Google Scholar 

  • Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14

    Article  Google Scholar 

  • Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides–a review. Int J Eng, Sci Technol 2(8):127–146

    Google Scholar 

  • Mojica Pisciotti ML, Lima E Jr, Vasquez Mansilla M, Tognoli V, Troiani HE, Pasa A, Creczynski-Pasa T, Silva A, Gurman P, Colombo L (2014) In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting. J Biomed Mater Res B Appl Biomater 102(4):860–868

    Article  Google Scholar 

  • Norouzi M, Amerian M, Amerian M, Atyabi F (2020) Clinical applications of nanomedicine in cancer therapy. Drug Discovery Today 25(1):107–125

    Article  Google Scholar 

  • Nosrati H, Hamzehei H, Afroogh S, Ashabi SF, Attari E, Manjili HK (2019) Phenyl alanine & tyrosine amino acids coated magnetic nanoparticles: preparation and toxicity study. Drug Research 69(05):277–283

    Article  Google Scholar 

  • Oh JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36(1):168–189

    Article  Google Scholar 

  • Ortega D, Pankhurst QA (2013) Magnetic hyperthermia. Nanoscience 1(60):e88

    Google Scholar 

  • Palma SI, Marciello M, Carvalho A, Veintemillas-Verdaguer S, del Puerto Morales M, Roque AC (2015) Effects of phase transfer ligands on monodisperse iron oxide magnetic nanoparticles. J Colloid Interface Sci 437:147–155

    Article  ADS  Google Scholar 

  • Pan Y, Du X, Zhao F, Xu B (2012) Magnetic nanoparticles for the manipulation of proteins and cells. Chem Soc Rev 41(7):2912–2942

    Article  Google Scholar 

  • Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Rädler J, Natile G, Parak WJ (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett 4(4):703–707

    Article  ADS  Google Scholar 

  • Petcharoen K, Sirivat A (2012) Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater Sci Eng, B 177(5):421–427

    Article  Google Scholar 

  • Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19(35):6274–6293

    Article  Google Scholar 

  • Răcuciu M, Creangă D, Airinei A (2006) Citric-acid-coated magnetite nanoparticles for biological applications. The European Physical Journal E 21:117–121

    Article  ADS  Google Scholar 

  • Raji P, Samrot AV, Bhavya KS, Sharan M, Priya S, Paulraj P (2019a) Greener approach for leather tanning using less chrome with plant tannins and tannins mediated nanoparticles. J Cluster Sci 30:1533–1543

    Article  Google Scholar 

  • Raji P, Samrot AV, Keerthana D, Karishma S (2019b) Antibacterial activity of alkaloids, flavonoids, saponins and tannins mediated green synthesised silver nanoparticles against Pseudomonas aeruginosa and Bacillus subtilis. J Cluster Sci 30:881–895

    Article  Google Scholar 

  • Roca A, Morales M, O’Grady K, Serna C (2006) Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17(11):2783

    Article  ADS  Google Scholar 

  • Roca AG, Gutiérrez L, Gavilán H, Brollo MEF, Veintemillas-Verdaguer S, del Puerto Morales M (2019) Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv Drug Deliv Rev 138:68–104

    Article  Google Scholar 

  • Rutka JT, Kuo JS (2004) Pediatric surgical neuro-oncology: current best care practices and strategies. J Neurooncol 69:139–150

    Article  Google Scholar 

  • Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  Google Scholar 

  • Samrot AV, Raji P, Selvarani AJ, Nishanthini P (2018a) Antibacterial activity of some edible fruits and its green synthesized silver nanoparticles against uropathogen–Pseudomonas aeruginosa SU 18. Biocatal Agric Biotechnol 16:253–270

    Article  Google Scholar 

  • Samrot AV, Shobana N, Jenna R (2018b) Antibacterial and antioxidant activity of different staged ripened fruit of capsicum annuum and its green synthesized silver nanoparticles. BioNanoScience 8:632–646

    Article  Google Scholar 

  • Samrot AV, Shobana N, Suresh Kumar S, Narendrakumar G (2019c) Production, optimization and characterisation of chitosanase of Bacillus sp. and its applications in nanotechnology. J Cluster Sci 30:607–620

    Article  Google Scholar 

  • Samrot AV, Raji P, SaiPriya C, Selvarani J (2019) Bioactivity Studies of Datura metel, Aegle marmelos, Annona reticulata and Saraca indica and their Green Synthesized Silver Nanoparticle

    Google Scholar 

  • Samrot AV, Saipriya C, Lavanya Agnes Angalene J, Roshini S, Jane Cypriyana P, Saigeetha S, Raji P, Suresh Kumar S (2019) Evaluation of nanotoxicity of Araucaria heterophylla gum derived green synthesized silver nanoparticles on Eudrilus eugeniae and Danio rerio. J Clust Sci 30:1017–1024

    Google Scholar 

  • Schleich N, Sibret P, Danhier P, Magat J, Ucakar B, Laurent S, Muller R, Jérôme C, Gallez B, Préat V (2012). Dual paclitaxel/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Société belge des sciences pharmaceutiques (SBSP): 16e forum of pharmaceutical sciences

    Google Scholar 

  • Senthilkumar P, Rashmitha S, Veera P, Ignatious CV, SaiPriya C, Samrot AV (2018) Antibacterial activity of neem extract and its green synthesized silver nanoparticles against Pseudomonas aeruginosa. J Pure Appl Microbio 12(2):969–974

    Article  Google Scholar 

  • Seo WS, Lee JH, Sun X, Suzuki Y, Mann D, Liu Z, Terashima M, Yang PC, McConnell MV, Nishimura DG (2006) FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater 5(12):971–976

    Article  ADS  Google Scholar 

  • Shen Z, Wu A, Chen X (2017) Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm 14(5):1352–1364

    Article  Google Scholar 

  • Siddiqi KS, ur Rahman A, Husen A (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett 11:1–13

    Google Scholar 

  • Silva SM, Tavallaie R, Sandiford L, Tilley RD, Gooding JJ (2016) Gold coated magnetic nanoparticles: from preparation to surface modification for analytical and biomedical applications. Chem Commun 52(48):7528–7540

    Article  Google Scholar 

  • Smith JE, Medley CD, Tang Z, Shangguan D, Lofton C, Tan W (2007) Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem 79(8):3075–3082

    Article  Google Scholar 

  • Sodipo BK, Aziz AA (2018) One minute synthesis of amino-silane functionalized superparamagnetic iron oxide nanoparticles by sonochemical method. Ultrason Sonochem 40:837–840

    Article  Google Scholar 

  • Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R (2020) Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Adv Drug Deliv Rev 163:65–83

    Article  Google Scholar 

  • Song Y, Wei W, Qu X (2011) Colorimetric biosensing using smart materials. Adv Mater 23(37):4215–4236

    Article  Google Scholar 

  • Stefan M, Pana O, Leostean C, Bele C, Silipas D, Senila M, Gautron E (2014) Synthesis and characterization of Fe3O4–TiO2 core-shell nanoparticles. J Appl Phys 116(11):114312

    Article  ADS  Google Scholar 

  • Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205

    Article  Google Scholar 

  • Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265

    Article  Google Scholar 

  • Sun W, Mignani S, Shen M, Shi X (2016) Dendrimer-based magnetic iron oxide nanoparticles: their synthesis and biomedical applications. Drug Discovery Today 21(12):1873–1885

    Article  Google Scholar 

  • Szpak A, Fiejdasz S, Prendota W, Strączek T, Kapusta C, Szmyd J, Nowakowska M, Zapotoczny S (2014) T 1–T 2 dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. J Nanopart Res 16:1–11

    Article  Google Scholar 

  • Tan SC, Yiap BC (2009) DNA, RNA, and protein extraction: the past and the present. J Biomed Biotechnol 2009: 1–10

    Google Scholar 

  • Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44(10):842–852

    Article  Google Scholar 

  • Taylor A, Wilson KM, Murray P, Fernig DG, Levy R (2012) Long-term tracking of cells using inorganic nanoparticles as contrast agents: are we there yet? Chem Soc Rev 41(7):2707–2717

    Article  Google Scholar 

  • Teja AS, Koh PY (2009) Prog Cryst Growth Charact Mater

    Google Scholar 

  • Terreno E, Castelli DD, Viale A, Aime S (2010) Challenges for molecular magnetic resonance imaging. Chem Rev 110(5):3019–3042

    Article  Google Scholar 

  • Turcheniuk K, Tarasevych AV, Kukhar VP, Boukherroub R, Szunerits S (2013) Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale 5(22):10729–10752

    Article  ADS  Google Scholar 

  • Ullrich NJ, Pomeroy SL (2003) Pediatric brain tumors. Neurol Clin 21(4):897–913

    Article  Google Scholar 

  • Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U (2012) Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res 14:1–13

    Article  Google Scholar 

  • Vismara E, Bongio C, Coletti A, Edelman R, Serafini A, Mauri M, Simonutti R, Bertini S, Urso E, Assaraf YG (2017) Albumin and hyaluronic acid-coated superparamagnetic iron oxide nanoparticles loaded with paclitaxel for biomedical applications. Molecules 22(7):1030

    Article  Google Scholar 

  • Wang Z, Zhang F, Shao D, Chang Z, Wang L, Hu H, Zheng X, Li X, Chen F, Tu Z (2019) Janus nanobullets combine photodynamic therapy and magnetic hyperthermia to potentiate synergetic anti-metastatic immunotherapy. Advanced Science 6(22):1901690

    Article  Google Scholar 

  • Wáng YXJ, Idée J-M (2017) A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg 7(1):88

    Article  Google Scholar 

  • Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, Muldoon LL, Neuwelt EA (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30(1):15–35

    Article  Google Scholar 

  • Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J (2009) Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54(5):L1

    Article  ADS  Google Scholar 

  • World Health Organization (2020) Assessing national capacity for the prevention and control of noncommunicable diseases: report of the 2019 global survey

    Google Scholar 

  • Wu M, Zhang D, Zeng Y, Wu L, Liu X, Liu J (2015a) Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy. Nanotechnology 26(11):115102

    Article  ADS  Google Scholar 

  • Wu W, Wu Z, Yu T, Jiang C, Kim W-S (2015b) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501

    Article  Google Scholar 

  • Xie J, Wang J, Niu G, Huang J, Chen K, Li X, Chen X (2010) Human serum albumin coated iron oxide nanoparticles for efficient cell labeling. Chem Commun 46(3):433–435

    Article  Google Scholar 

  • Xie J, Liu G, Eden HS, Ai H, Chen X (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44(10):883–892

    Article  Google Scholar 

  • Xie W, Guo Z, Gao F, Gao Q, Wang D, Liaw B-S, Cai Q, Sun X, Wang X, Zhao L (2018) Shape-, size-and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 8(12):3284

    Article  Google Scholar 

  • Xu C, Sun S (2013) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65(5):732–743

    Article  Google Scholar 

  • Xu H, Cheng L, Wang C, Ma X, Li Y, Liu Z (2011) Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32(35):9364–9373

    Article  Google Scholar 

  • Yallapu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, Chauhan SC (2011) Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 32(7):1890–1905

    Article  Google Scholar 

  • Yang L, Zhang X, Ye M, Jiang J, Yang R, Fu T, Chen Y, Wang K, Liu C, Tan W (2011) Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev 63(14–15):1361–1370

    Article  Google Scholar 

  • Yang G, Gong H, Liu T, Sun X, Cheng L, Liu Z (2015) Two-dimensional magnetic WS2@ Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 60:62–71

    Article  Google Scholar 

  • Yang L, Zhou Z, Song J, Chen X (2019) Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chem Soc Rev 48(19):5140–5176

    Article  Google Scholar 

  • Yao X, Niu X, Ma K, Huang P, Grothe J, Kaskel S, Zhu Y (2017) Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 13(2):1602225

    Article  Google Scholar 

  • Ye F, Laurent S, Fornara A, Astolfi L, Qin J, Roch A, Martini A, Toprak MS, Muller RN, Muhammed M (2012) Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T2 contrast agent with tunable proton relaxivities. Contrast Media Mol Imaging 7(5):460–468

    Article  Google Scholar 

  • Yu M, Huang S, Yu KJ, Clyne AM (2012) Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci 13(5):5554–5570

    Article  Google Scholar 

  • Yu J, Yang C, Li J, Ding Y, Zhang L, Yousaf MZ, Lin J, Pang R, Wei L, Xu L (2014) Multifunctional Fe5C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv Mater 26(24):4114–4120

    Article  Google Scholar 

  • Yue-Jian C, Juan T, Fei X, Jia-Bi Z, Ning G, Yi-Hua Z, Ye D, Liang G (2010) Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Dev Ind Pharm 36(10):1235–1244

    Article  Google Scholar 

  • Zhang L, He R, Gu H-C (2006) Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci 253(5):2611–2617

    Article  ADS  Google Scholar 

  • Zhang T-T, Xu C-H, Zhao W, Gu Y, Li X-L, Xu J-J, Chen H-Y (2018a) A redox-activated theranostic nanoagent: toward multi-mode imaging guided chemo-photothermal therapy. Chem Sci 9(33):6749–6757

    Article  Google Scholar 

  • Zhang W, Liu L, Chen H, Hu K, Delahunty I, Gao S, Xie J (2018b) Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 8(9):2521

    Article  Google Scholar 

  • Zhang Z, Lei J, Shao X, Dong F, Wang J, Wang D, Wu S, Xie W, Wan J, Chen H (2019) Trends in hospitalization and in-hospital mortality from VTE, 2007 to 2016, in China. Chest 155(2):342–353

    Article  Google Scholar 

  • Zhao Z, Bao J, Fu C, Lei M, Cheng J (2017) Controllable synthesis of manganese oxide nanostructures from 0-D to 3-D and mechanistic investigation of internal relation between structure and T 1 relaxivity. Chem Mater 29(24):10455–10468

    Article  Google Scholar 

  • Zhou Z, Zhu X, Wu D, Chen Q, Huang D, Sun C, Xin J, Ni K, Gao J (2015) Anisotropic shaped iron oxide nanostructures: controlled synthesis and proton relaxation shortening effects. Chem Mater 27(9):3505–3515

    Article  Google Scholar 

  • Zhou Z, Yang L, Gao J, Chen X (2019) Structure–relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv Mater 31(8):1804567

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Nabil Savari .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savari, MN., Jabali, A. (2023). Introduction. In: Theranostic Iron-Oxide Based Nanoplatforms in Oncology. Nanomedicine and Nanotoxicology. Springer, Singapore. https://doi.org/10.1007/978-981-99-6507-6_1

Download citation

Publish with us

Policies and ethics