Skip to main content
Log in

Incubation period induced biogenic synthesis of PEG enhanced Moringa oleifera silver nanocapsules and its antibacterial activity

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Human pathogenic diseases are on the rage in the list of enfeebling diseases globally. The endless quest to salvage these drug-resistant pathogens ravaging our system through various therapies still posts serious challenge. This study engaged a biogenic synthesis that is benign, facile, biocompatible, cost-effective and eco-friendly to synthesized silver nanocapsule (AgNCs) via Moringa oleifera aqueous extract under incubation control. The flavonoid-kaempferol, phenolic-chlorogenic acid and tannin components of MO acted as the potential stabilizing and reducing agent in the formation of AgNCs. The formulated AgNCs was further functionalized with PVA, PVP and PEG for biocompatibility and dispersion enhancement. Various characterization techniques were used to determine the properties of AgNCs formulated. The absorbance due to the color change was observed by the UV-Visible spectroscopy with surface plasmons resonance peak between 425 and 455 nm. The Fourier transform infrared spectroscopy (FTIR) shows the various functional group responsible for the biogenic synthesis of AgNCs. The X-ray spectroscopy analysis shows a single phase cubic structure of AgNCs formed. The Scanning electron microscopy (SEM) image shows a rod-like nanocapsule of uniform grains. The antibacterial potency of AgNCs was proven against gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli and Coliform). The AgNCs inhibited the growth of the three human pathogens with Coliform showing the highest activity to the AgNCs with a minimum inhibitory dose of 15 μg/mL. It is noteworthy that the bacterial strains show functional susceptibility to the AgNCs at lower concentrations compared to the conventional antibacterial drugs. Consequently, AgNCs serve as an enhanced substitute for the conventional antibacterial drugs in therapeutic biomedical field sequel to its pharmacodynamics against the bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12:789–799

    PubMed  Google Scholar 

  3. Abou KE-N, Eftaiha A, Al-Warthan A, Ammar R (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140

    Google Scholar 

  4. Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor L (2014) Applications of biosynthesized metallic nanoparticles—a review. Acta Biomater 10:4023–4042

    PubMed  Google Scholar 

  5. Ruben DR-R, Pilar MG-M, Mario A-R, Teresa AR-L, Conxita S (2018) Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids and Surfaces A 536:60–67

    Google Scholar 

  6. Wallace RR, Milena TP, Bruna DA, Letícia SF, Fanny NC, Juliana SB et al (2019) Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Appl Surf Sci 463:66–74

    Google Scholar 

  7. Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17:1534

    PubMed Central  Google Scholar 

  8. Oliveira M, Ugarte D, Zanchet D, Zarbin A (2005) Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J Colloid Interface Sci 292:429–435

    CAS  PubMed  Google Scholar 

  9. Chen J, Wang K, Xin J, Jin Y (2008) Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater Chem Phys 108:421–424

    CAS  Google Scholar 

  10. Sayed FN, Polshettiwar V (2015) Facile and sustainable synthesis of shaped Iron oxide nanoparticles: effect of Iron precursor salts on the shapes of Iron oxides. Sci Rep 5:9733

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Khalil M, Yu J, Liu N, Lee RL (2014) Hydrothermal synthesis, characterization, and growth mechanism of hematite nanoparticles. J Nanopart Res 16:2362

    Google Scholar 

  12. Ma H, Yin B, Wang S, Jiao Y, Pan W, Huang S et al (2004) Synthesis of silver and gold nanoparticles by a novel electrochemical method. Chem Phys Chem 24:68–75

    Google Scholar 

  13. Zhang Y, Chen F, Zhuang J, Tang Y, Wang D, Wang Y et al (2002) Synthesis of silver nanoparticles via electrochemical reduction on compact zeolite film modified electrodes. Chem Commun 24:2814–2815

    Google Scholar 

  14. Cozzoli P, Comparelli R, Fanizza E, Curri M, Agostiano A, Laub D (2004) Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. J Am Chem Soc 126:3868–3879

    CAS  PubMed  Google Scholar 

  15. Dharamvir SA, Rekha K, Rachna Y, Indu Y (2014) Synthesis and characterization of sol–gel prepared silver nanoparticles. Int J Nanosci 13:1450004

    Google Scholar 

  16. Kruis F, Fissan H, Rellinghaus B (2000) Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater Sci Eng B 69:329–334

    Google Scholar 

  17. Kabashin A, Meunier M (2003) Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J Appl Phys 94:7941–7943

    CAS  Google Scholar 

  18. Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337

    CAS  Google Scholar 

  19. Mahltig B, Gutmann E, Reibold M, Meyer D, Bottcher H (2009) Synthesis of Ag and Ag/SiO2 sols by solvothermal method and their bactericidal activity. J Sol-Gel Sci Technol 51:204–214

    CAS  Google Scholar 

  20. Soukupova J, Kvitek L, Panacek A, Nevecna T, Zboril R (2008) Comprehensive study on surfactant role on silver nanoparticles (NPs) prepared via modified Tollens process. Mater Chem Phys 111:77–81

    CAS  Google Scholar 

  21. Yin Y, Li Z-Y, Zhong Z, Gates B, Venkateswaran S (2002) Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J Mater Chem 12:522–527

    CAS  Google Scholar 

  22. Ghorbani HR, Safekordi AA, Attar H, Rezayat SM (2011) Biological and non-biological methods for silver nanoparticles synthesis. Chem Biochem Eng Q 25(3):317–326

    CAS  Google Scholar 

  23. Yeo S, Lee H, Jeong S (2003) Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38:2143–2147

    CAS  Google Scholar 

  24. Wiley B, Sun YG, Mayers B, Xia YN (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11:454–463

    CAS  PubMed  Google Scholar 

  25. Okoroh DO, Ozuomba J, Aisida SO, Asogwa PU (2019) Thermal treated synthesis and characterization of polyethylene glycol (PEG) mediated zinc ferrite nanoparticles. Surfaces and interfaces 16:127–131

    CAS  Google Scholar 

  26. Okoroh DO, Ozuomba J, Aisida SO, Asogwa PU (2019) Properties of zinc ferrite nanoparticles due to PVP mediation and annealing at 500°C. Advances in nanoparticles 8(2):36–45

    Google Scholar 

  27. Li K, Jia X, Tang A, Zhu X, Meng H, Wang Y (2012) Preparation of spherical and triangular silver nanoparticles by a convenient method. Integr Ferroelectr 136:9–14

    CAS  Google Scholar 

  28. AL-Thabaiti SA, Malik MA, Al-Youbi AA, Khan Z, Hussain JI (2013) Effects of surfactant and polymer on the morphology of advanced nanomaterials in aqueous solution. Int J Electrochem Sci 8:204–218

    CAS  Google Scholar 

  29. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179

    CAS  PubMed  Google Scholar 

  30. Im S, Lee YT, Wiley B, Xia Y (2005) Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed 44:2154–2157

    CAS  Google Scholar 

  31. Wiley B, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110:15666–17675

    CAS  PubMed  Google Scholar 

  32. Yamamoto T, Yin H, Wada Y, Kitamura T, Sakata T, Mori H, Yanagida S (2004) Morphology-control in microwave-assisted synthesis of silver particles in aqueous solutions. Bull Chem Soc Jpn 77(4):757–761

    CAS  Google Scholar 

  33. Kelly JM, Keegan G, Brennan-Fournet ME (2012) Triangular silver nanoparticles: their preparation functionalisation and properties. Acta Phys Pol A 122(2):337–348

    CAS  Google Scholar 

  34. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901

    Google Scholar 

  35. Dong X, Ji X, Jing J, Li M, Li J, Yang W (2010) Synthesis of triangular silver nanoprisms by stepwise reduction of sodium borohydride and trisodium citrate. J Phys Chem C 114(5):2070–2074

    CAS  Google Scholar 

  36. Métraux GS, Mirkin CA (2005) Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv Mater 17(4):412–415

    Google Scholar 

  37. Liu S, Yue J, Gedanken A (2001) Synthesis of long silver nanowires from AgBr nanocrystals. Adv Mater 13(9):656–658

    CAS  Google Scholar 

  38. Cong F, Wei H, Tian X, Xu H (2012) A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering. Front Phys 7(5):521–526

    Google Scholar 

  39. Hsieh CT, Tzou DY, Pan C, Chen WY (2012) Microwave-assisted deposition, scalable coating, and wetting behavior of silver nanowire layers. Surf Coat Technol 207:11–18

    CAS  Google Scholar 

  40. Wiley BJ, Chen Y, McLellan JM, Xiong Y, Li ZY, Ginger D, Xia Y (2007) Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 7(4):1032–1036

    CAS  PubMed  Google Scholar 

  41. Cai X, Zhai A (2010) Preparation of microsized silver crystals with different morphologies by a wet-chemical method. Rare Metals 29(4):407–412

    CAS  Google Scholar 

  42. Pourjavadi A, Soleyman R (2011) Novel silver nano-wedges for killing microorganisms. Mater Res Bull 46:1860–1865

    CAS  Google Scholar 

  43. Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90:1609–1624

    PubMed  Google Scholar 

  44. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84

    PubMed  Google Scholar 

  45. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    CAS  PubMed  Google Scholar 

  46. Aisida SO, Ugwu K, Akpa PA et al (2019) Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium. Mater Chem Phys 237:121859

    CAS  Google Scholar 

  47. Aisida, S.O; Madubuonu, N, Alnasir, M. H. et al. (2019). Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Applied Nanoscience https://doi.org/10.1007/s13204-019-01099-x2019

  48. Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599

    CAS  PubMed  Google Scholar 

  49. Ebrahiminezhad A, Zare-Hoseinabadi A, Sarmah AK, Taghizadeh S, Ghasemi Y, Berenjian A (2018) Plant-mediated synthesis and applications of iron nanoparticles. Mol Biotechnol 60:154–168

    CAS  PubMed  Google Scholar 

  50. Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37(11):2099–20120

    CAS  PubMed  Google Scholar 

  51. Salunke BK, Sawant SS, Lee SI, Kim BS (2016) Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World J Microbiol Biotechnol 32(5):88

    PubMed  Google Scholar 

  52. Patil MP (2018) Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf B Biointerfaces 172:487–495

    CAS  PubMed  Google Scholar 

  53. Durán N, Seabra AB (2018) Biogenic synthesized Ag/Au nanoparticles: production, characterization, and applications. Curr Nanosci 14:82–94

    Google Scholar 

  54. Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    CAS  PubMed  Google Scholar 

  55. Tiloke C, Phulukdaree A, Anand K, Gengan RM, Chuturgoon AA (2016) Moringa oleifera gold nanoparticles modulate oncogenes, tumor suppressor genes, and Caspase-9 splice variants in A549 cells. J Cell Biochem 117:2302–2314

    CAS  PubMed  Google Scholar 

  56. Omodanisi EI, Aboua YG, Oguntibeju OO (2017) Assessment of the anti-Hyperglycaemic, anti-inflammatory and antioxidant activities of the methanol extract of Moringa Oleifera in diabetes-induced nephrotoxic male Wistar rats. Molecules 22(4):E439

    PubMed  Google Scholar 

  57. Angel AE, Judith JV, Kaviyarasu K, Maaza M, Ayeshamariam A, John LK (2016) Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J Photochem Photobiol B Biol 164:352–360

    Google Scholar 

  58. Tiloke C, Anand K, Gengan RM, Chuturgoon AA (2018) Moringa oleifera and their phytonanoparticles: potential antiproliferative agents against cancer. Biomed Pharmacother 108:457–466

    CAS  PubMed  Google Scholar 

  59. Qin X-J, Yu Q, Yan H, Khan A, Feng M-Y, Li P-P et al (2017) Meroterpenoids with antitumor activities from guava (Psidium guajava). J Agric Food Chem 65:4993–4999

    CAS  PubMed  Google Scholar 

  60. Mandeep K, Akansha M, Amit M, Jagpreet S, Mohit R, Soumen B (2018) Biosynthesis of tin oxide nanoparticles using Psidium Guajava leave extract for photocatalytic dye degradation under sunlight. Mater Lett 215:121–124

    Google Scholar 

  61. Offor C (2015) Photochemical and proximate analyses of Psidium Guajava leaves. Journal of Research in Pharmaceutical Sciences 2(6):05–07

    Google Scholar 

  62. Bastos V, Ferreira DO, Brown D, Jonhston H, Malheiro E, Daniel-da-Silva A et al (2016) The influence of citrate or PEG coating on silver nanoparticle toxicity to a human keratinocyte cell line. Toxicol Lett 249:29–41

    CAS  PubMed  Google Scholar 

  63. Sharmila C, Vinuppriya R, Selvi C, Jincy C, Bellan C (2016) Biosynthesis of PVA encapsulated silver nanoparticles. Journal of Applied Research and Technology 14(5):319–324

    Google Scholar 

  64. Daniela P, Rayna B, Todor K (2012) Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles. Mater Sci Eng C 32(7):2048–2051

    Google Scholar 

  65. Ali M, Kamal J, Babak H, Maryam B, Salvatore GL, Giovanni N (2017) Characterization and optical studies of PVP-capped silver nanoparticles. Journal of Nanostructure in Chemistry 7(1):37–46

    Google Scholar 

  66. Aisida SO, Akpa PA, Ahmad I, Maaza M, Ezema FI (2019) Influence of PVA, PVP and PEG doping on the optical, structural, morphological and magnetic properties of zinc ferrite nanoparticles produced by thermal method. Physica B 571:130–136

    CAS  Google Scholar 

  67. Chai Z, Wang Y, Chen S, Chen H, Yang H, Guo X, Wu F (2019) Photochemical properties of metalloporphyrin-silver nanoparticle stabilized by polymeric micelle. J Polym Res 26:67

    Google Scholar 

  68. Palem, R. R; Ganesh, S. D; Saha, N; Kronek, J; Sáha, P. (2018) Green synthesis of silver polymer Nanocomposites of poly (2-isopropenyl-2- oxazoline-co- N-vinylpyrrolidone) and its catalytic activity. J Polym Res. 25:152

  69. Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolke RH (1995) Manual of clinical microbiology, vol 6. ASM, Washington, DC

    Google Scholar 

  70. Samy RP, Ignacimuthu S (2000) Antibacterial activity of some folklore medicinal plants used by tribals in Western Ghats of India. J Ethnopharmacol 69:63–71

    CAS  PubMed  Google Scholar 

  71. Manjul G, Geeta JN (2018) Synthesis and Catalytic and Biological Activities of Silver and Copper Nanoparticles Using Cassia occidentalis. International Journal of Biomaterials 2018. https://doi.org/10.1155/2018/6735426

    Google Scholar 

  72. Moldovan, B., David, L., Achim, M., Clichici, S., & Filip, G. A. ( 2016). A green approach to phytomediated synthesis of silver nanoparticles using. Journal of Molecular Liquids 271-278

  73. Obayashi H, Nakano K, Shigeta H, Yamaguchi M, Yoshimori K, Fukui M et al (1996) Formation of crossline as a fluorescent advanced glycation end product in vitro and in vivo. Biochem Biophys Res Commun 226:37–41

    CAS  PubMed  Google Scholar 

  74. Jalaluddin MA, Mohammad AA, Haris MK, Mohammad AA, Inho C (2016) Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci Rep 6:20414

    Google Scholar 

  75. Mahmoodreza B, Ayat HP, Ali N, Masood Z, Roya M, Aliyar M (2019) Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 124:148–154

    Google Scholar 

  76. Jacob SJ, Finub J, Narayanan A (2012) Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B: Biointerfaces 91:212–214

    PubMed  Google Scholar 

  77. Singh P, Bhardwaj K, Dubey P, Prabhune A (2015) UV-assisted size sampling and antibacterial screening of Lantana camara leaf extract synthesized silver nanoparticles. RSC Adv 5:24513–24520

    CAS  Google Scholar 

  78. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    PubMed  PubMed Central  Google Scholar 

  79. Soylu EM, Soylu S, Kurt S (2006) Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia 161:119–128

    CAS  PubMed  Google Scholar 

  80. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Localized surface plasmon resonance efects by naturally occurring Chinese yam particles. J Chem Phys 116:6755–6759

    CAS  Google Scholar 

  81. Rivera-Rangel R, González-Munhoz M, Avila-Rodriguez M, Razo-Lazcano T, Solans C (2018) Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surf A Physicochem Eng Asp 536:60–67

    CAS  Google Scholar 

  82. Silva B, Seabra A (2016) Characterization of iron nanoparticles produced with green tea extract: a promising material for nitric oxide delivery. Biointerface Res Appl Chem 6:1280–1287

    CAS  Google Scholar 

  83. Ahluwalia V, Elumalai S, Kumar V, Kumar S, Sangwan R (2018) Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity. Microb Pathog 114:402–408

    CAS  PubMed  Google Scholar 

  84. Song JY, Jang H-K, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 44:1133–1138

    CAS  Google Scholar 

  85. Susanto H, Feng YU (2009) Fouling behavior of aqueous solutions of polyphenolic compounds during ultrafiltration. J Food Eng 91:333–340

    CAS  Google Scholar 

  86. Sun Q, Cai X, Li J, Zheng M, Chen Z, Yu C (2014) Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf APhysicochem Eng Aspects 444:226–231

    CAS  Google Scholar 

  87. Carballo T, Gil M, Gómez X, González-Andrés F, Morán A (2008) Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. Biodegradation 19:815–830

    PubMed  Google Scholar 

  88. Babumathi B, Vaseeharan B, Suganya P, Citarasu T, Govindarajan M (2017) Fabricated silver nanoparticles on invertebrate and vertebrate organisms: morphological abnormalities and DNA damages. Clust Sci 28:2027–2040

    Google Scholar 

  89. Kombaiah K, Judith JV, John LK, Bououdina M, Jothi RR, Hamad A Al (2018) Okra extract-assited green synthsis of CoFe2O4 nanoparticles and their optical, magnetic and antimicrobial properties. Material chemistry and Physics 204:410–419

    CAS  Google Scholar 

  90. Ladole C (2012) Preparation and characterization of spinel zinc ferrite ZnFe2O4. Int J Chem Sci 10:1230

    CAS  Google Scholar 

  91. Kumar D, Kumar G, Agrawal V (2018) Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.Bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitol Res 117:377–389

    PubMed  Google Scholar 

  92. Dutt A, Upadhyay L (2018) Synthesis of cysteine-functionalized silver nanoparticles using green tea extract with application for lipase immobilization. Anal Lett 51:1071–1086

    CAS  Google Scholar 

  93. Durán N, Nakazato G, Seabra AB (2016) Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol 100:6555–6570

    PubMed  Google Scholar 

  94. Cullity B (1978) Element of X-ray Diffraction2nd edn. Addison-Wesley, London

    Google Scholar 

  95. Valodkar M, Modi S, Pal A, Takore S (2011) Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: a green approach. Mater Res Bull 46:384–389

    CAS  Google Scholar 

Download references

Acknowledgments

Samson O. Aisida acknowledges the NCP-TWAS Postdoc Fellowship award (NCP-CAAD/TWAS_Fellow8408).

FIE (90407830) acknowledges UNISA for VRSP Fellowship award; he also acknowledges the grant by TETFUND under contract number TETF/DESS/UNN/NSUKKA/STI/VOL.I/B4.33. Also, we thank Engr. Emeka Okwuosa for the sponsorship of 2014, 2016 and 2018 nano-conferences/workshops.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samson O. Aisida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlight

• Biogenic synthesis of AgNCs via aqueous extracts of MO were demonstrated for the first time

• Fresh leave of MO serves as a substitute to chemical reagents

• MO phytochemicals worked as a fuel that reduced Ag ion to AgNCs under incubation period

• AgNCs formed was functionalized with PVA, PVP and PEG to enhance the AgNCs

• PEG-AgNCs show strong bactericidal against Coliform, E. coli and S. aureus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aisida, S.O., Ugwoke, E., Uwais, A. et al. Incubation period induced biogenic synthesis of PEG enhanced Moringa oleifera silver nanocapsules and its antibacterial activity. J Polym Res 26, 225 (2019). https://doi.org/10.1007/s10965-019-1897-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1897-z

Keywords

Navigation