Skip to main content

Dual Band Open Slot and Notch Loaded Bandwidth Enhanced Microstrip Patch Antenna for IoT/WiMAX/WLAN Applications

  • Conference paper
  • First Online:
Decision Intelligence Solutions (InCITe 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1080))

Included in the following conference series:

  • 76 Accesses

Abstract

The demand of multiband microstrip antennas is increasing due to the technological advancement in modern communication systems. This work presents a dual band microstrip patch antenna of enhanced bandwidth (BW). The intended antenna is designed by creating one open rectangular shape slot and four notches. The open slot is loaded at the top of radiation patch while four notches are loaded at each corner. The lower band of intended antenna is resonating from 2.50 to 2.75 GHz while upper band is resonating from 4.12 to 5.87 GHz. The lower band of antenna exhibits bandwidth of 250 MHz (9.52%) while upper band of antenna exhibits bandwidth of 1750 MHz (35.04%). The intended antenna resonates at 2.64 GHz in lower band with −18.9 dB return loss (RL) while at frequencies 4.43 GHz and 5.5 GHz in upper band with −14.82 dB and −31.19 dB return loss. The intended antenna shows peak gain of 4.07, 4.62 and 4.9 dB at resonating frequencies. The intended antenna can be convenient for IoT (in ISM), WiMAX and WLAN utilizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balanis CA (2005) Antenna Theory, Analysis and Design. John Wiley & Sons, New York

    Google Scholar 

  2. Kumar G, Ray K.P.: Broadband Microstrip Antenna. Artech House, Norwood, MA (2003)

    Google Scholar 

  3. Verulkar S, Khade A, Trimukhe MA, Gupta RK (2022) Dual band split ring monopole antenna structures for 5G and WLAN applications. Progress In Electromagnetics Research C 122:17–30

    Article  Google Scholar 

  4. Mishra B, Verma RK, Yashwanth N, Singh R (2022) A review on microstrip patch antenna parameters of different geometry and bandwidth enhancement techniques. Int J Microw Wirel Technol 14:652–673

    Article  Google Scholar 

  5. Kulkarni P, Srinivasan R (2021) Compact polarization diversity patch antenna in L and WiMAX bands for IoT applications. AEU-Int J Electron C 136:1–8

    Google Scholar 

  6. Yoon JH, Ha SJ, Rhee YC (2015) A novel monopole antenna with two arc-shaped strips for WLAN/WiMAX application. J Electromagnetic Eng Sci 15(1):6–13

    Article  Google Scholar 

  7. Naji DK (2016) Compact design of dual-band fractal ring antenna for WiMAX and WLAN applications. Int J Electromag Appl 6(2): 42–50

    MathSciNet  Google Scholar 

  8. Christydass SPJ, Gunavathi N (2021) Dual-band complementary split-ring resonator engraved rectangular monopole for GSM and WLAN/WiMAX/5G sub-6 GHz band. Progress In Electromagnetics Res. C 113:251–263

    Article  Google Scholar 

  9. Swain BR, Sharma AK (2019) An investigation of dual-band dual-square ring (DSR) based microstrip antenna for WiFi/WLAN and 5G-NR wireless applications. Progress In Electromagnetics Res M 86:17–26

    Article  Google Scholar 

  10. Singla G, Khanna R, Parkash D (2019) CPW fed rectangular rings-based patch antenna with DGS for WLAN/NII applications. Int J Microw Wirel Technol 11:523–531

    Article  Google Scholar 

  11. Rai C, Singh A, Singh S, Singh AK, Verma RK (2022) Dual-band and dual polarized inverted pentagonal shaped hybrid cylindrical dielectric resonator antenna for wireless applications. Wireless Pers Commun 124:2121–2139

    Article  Google Scholar 

  12. Verma RK, Srivastava DK, Tripathi RP, Rajpoot V (2022) Wide dual band asymmetrical I-shape rectangular microstrip patch antenna for PCS/UMTS/WiMAX/IMT applications. Wireless Pers Commun 122:1577–1598

    Article  Google Scholar 

  13. Rai C, Singh S, Singh AK, Verma RK (2022) Design and analysis of dual-band circularly polarized hybrid ring cylindrical dielectric resonator antenna for wireless applications in C and X-band. Wireless Pers Commun 126:1383–1401

    Article  Google Scholar 

  14. Li H, Zheng Q, Ding J, Guo G (2018) Dual-band planar antenna loaded with CRLH unit cell for WLAN/iMAX application. IET Microwaves Antennas Propag 12(1):132–136

    Article  Google Scholar 

  15. Daniel RS, Pandeeswari R, Raghavan S (2018) Dual-band monopole antenna loaded with ELC metamaterial resonator for WiMAX and WLAN applications. Appl Phys A Mater Sci Process 124:1–7

    Article  Google Scholar 

  16. Arya AK, Kim SJ, Kim S (2020) A dual-band antenna for LTE-R and 5G lower frequency. Progress In Electromagnetics Res. Letters 88:113–119

    Article  Google Scholar 

  17. Dattatreya, G., Naik, K.K.: A low volume flexible CPW-fed elliptical-ring with split-triangular patch dual-band antenna. Int J RF Microw Comput Aided Eng 29:1–9 (2019)

    Google Scholar 

  18. Dehmas M, Azrar A, Mouhouche F, Djafri K, Challal M (2018) Compact dual band slotted triangular monopole antenna for RFID applications. Microw Opt Technol Lett 60:432–436

    Article  Google Scholar 

  19. Gangwar SP, Gangwar K, Kumar A (2019) Dual band modified circular ring shaped slot antenna for GSM and WiMAX applications. Microw Opt Technol Lett 61(12):2752–2759

    Article  Google Scholar 

  20. Tak J, Kang DG, Choi J (2016) A compact dual-band monopolar patch antenna using TM01 and TM41 modes. Microw Opt Technol Lett 58(7):1699–1703

    Article  Google Scholar 

  21. Mishra, A., Ansari, J.A., Kamakshi, K., Singh, A., Aneesh, M., Vishvakarma, B.R.: Compact dual band rectangular microstrip patch antenna for 2.4/5.12 GHz wireless applications. Wireless Networks 21(2), 347–355 (2015)

    Google Scholar 

  22. Tripathi D, Srivastava DK, Verma RK (2021) Bandwidth enhancement of slotted rectangular wideband microstrip antenna for the application of WLAN/WiMAX. Wireless Pers Commun 119:1193–1207

    Article  Google Scholar 

  23. Zeland Software, Inc., IE3D Simulation Software Version 9.0 and Mentor Graphics IE3D Simulation Software Version 15.30

    Google Scholar 

  24. Verma RK, Srivastava DK, Mishra B (2022) Circuit theory model-based analysis of triple-band stub and notches loaded epoxy substrate patch antenna for wireless applications. Int J Commun Syst 35:1–17

    Article  Google Scholar 

  25. Verma RK (2022) Bandwidth enhancement of an inverted F-shape notch loaded rectangular microstrip patch antenna for wireless applications in L and S-band. Wireless Pers Commun 125:861–877

    Article  Google Scholar 

  26. Yadav A, Singh P, Verma RK, Singh VK (2023) Design and comparative analysis of circuit theory model based slot loaded printed rectangular monopole antenna for UWB applications with notch band. Int J Commun Syst 36(3):1–15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verma, R.K., Tripathi, D., Sabat, D., Singh, M., Kumar, A. (2023). Dual Band Open Slot and Notch Loaded Bandwidth Enhanced Microstrip Patch Antenna for IoT/WiMAX/WLAN Applications. In: Hasteer, N., McLoone, S., Khari, M., Sharma, P. (eds) Decision Intelligence Solutions. InCITe 2023. Lecture Notes in Electrical Engineering, vol 1080. Springer, Singapore. https://doi.org/10.1007/978-981-99-5994-5_1

Download citation

Publish with us

Policies and ethics