Skip to main content

Implant Selection and Rationale for Use in Primary Total Hip Arthroplasty

  • Chapter
  • First Online:
Hip Arthroplasty

Abstract

With number of decades passed since the beginning of hip arthroplasty for the treatment of hip arthritis, there has been no clear-cut guidelines regarding the selection of implant for a particular case. No surgeons can reliably claim a particular implant to be the best one. However, a surgeon can best explain the advantages and disadvantages of using a particular implant based on the literature if available. Hence, on twenty-first century where the information can be easily sought through different medium, the surgeon’s acquaintance with the latest literature is more important. In this chapter, we try to bring into a concise form regarding the choice of implants depending on their long-term results based on the latest studies and registry data, the authors’ experience considering age of the patient, diagnosis, bone quality, and functional demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang MH, Cullen KE, Poss R. Primary total hip or knee replacement: evaluation of patients. Ann Intern Med. 1982;97(5):735–9.

    Article  CAS  PubMed  Google Scholar 

  2. Sochart DH, Porter ML. Long-term results of cemented Charnley low-friction arthroplasty in patients aged less than 30 years. J Arthroplast. 1998;13(2):123–31.

    Article  CAS  Google Scholar 

  3. Callaghan JJ, Forest EE, Olejniczak JP, et al. Charnley total hip arthroplasty in patients less than fifty years old. A twenty to twenty-five-year follow-up note. J Bone Joint Surg Am. 1998;80(5):704–14.

    Article  CAS  PubMed  Google Scholar 

  4. Malchau H, Garellick G, Eisler T, Karrholm J, Herberts P. Presidential guest address: the Swedish hip registry: increasing the sensitivity by patient outcome data. Clin Orthop Relat Res. 2005;441:19.

    Article  PubMed  Google Scholar 

  5. McMinn DJ, Snell KI, Daniel J, Treacy RB, Pynsent PB, Riley RD. Mortality and implant revision rates of hip arthroplasty in patients with osteoarthritis: registry based cohort study. Br Med J. 2012;344:e3319.

    Article  CAS  Google Scholar 

  6. Smith MA, Smith WT. The American joint replacement registry. Orthop Nurs. 2012;31(5):296.

    Article  PubMed  Google Scholar 

  7. Jameson SS, Kyle J, Baker PN, Mason J, Deehan DJ, McMurtry IA, et al. Patient and implant survival following 4323 total hip replacements for acute femoral neck fracture: a retrospective cohort study using National Joint Registry data. J Bone Joint Surg (Br). 2012;94(11):1557.

    Article  CAS  PubMed  Google Scholar 

  8. Ranawat CS, Peters LE, Umlas ME. Fixation of the acetabular component the case for cement. Clin Orthop Relat Res. 1997;344:207–15.

    Article  Google Scholar 

  9. Gaffey JL, Callaghan JJ, Pedersen DR, et al. Cementless acetabular fixation at fifteen years a comparison with the same surgeon's results following acetabular fixation with cement. J Bone Joint Surg Am. 2004;86:257–61.

    Article  PubMed  Google Scholar 

  10. Ritter MA, Thong AE. The role of cemented sockets in 2004: is there one? J Arthroplast. 2004;19:92–4.

    Article  Google Scholar 

  11. Trumm BN, Callaghan JJ, Liu SS, Goetz DD, Johnston RC. Revision with cementless acetabular components: a concise follow-up, at a minimum of twenty years, of previous reports. J Bone Joint Surg Am. 2012;94(21):2001–4. https://doi.org/10.2106/JBJS.L.00058.

    Article  PubMed  Google Scholar 

  12. Otten V, Mukka S, Nilsson K, Crnalic S, Kärrholm J. Uncemented cups with and without screw holes in primary THA: a Swedish hip arthroplasty register study with 22,725 hips. Acta Orthop. 2019;90(3):258–63. https://doi.org/10.1080/17453674.2019.1599777.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Flivik G, Kristiansson I, Kesteris U, Ryd L. Is removal of subchondral bone plate advantageous in cemented cup fixation? A randomized RSA study. Clin Orthop Relat Res. 2006;448:164.

    Article  PubMed  Google Scholar 

  14. Corten K, Au K, Bourne RB. Acetabular options: notes from the other side. Orthopedics. 2009;32(9):664. ;orthosupersite.com/view.asp?rID=42834. https://doi.org/10.3928/01477447-20090728-10.

    Article  Google Scholar 

  15. Lampropoulou-Adamidou K, Hartofilakidis G. Comparison of the long-term outcome of cemented Charnley low-friction arthroplasty with hybrid arthroplasty in patients with congenital hip disease. Bone Joint J. 2019;101-B(9):1050–7. https://doi.org/10.1302/0301-620X.101B9.BJJ-2018-1208.R1.

    Article  PubMed  Google Scholar 

  16. Okutani Y, Goto K, Kuroda Y, Kawai T, Okuzu Y, Kawata T, Shimizu Y, Matsuda S. Long-term outcome of cemented total hip arthroplasty with the Charnley-type femoral stem made of titanium alloy. J Orthop Sci. 2019;24(6):1047–52. https://doi.org/10.1016/j.jos.2019.07.013.

    Article  PubMed  Google Scholar 

  17. Schmitz MW, Busch VJ, Gardeniers JW, Hendriks JC, Veth RP, Schreurs BW. Long-term results of cemented total hip arthroplasty in patients younger than 30 years and the outcome of subsequent revisions. BMC Musculoskelet Disord. 2013;14:37. https://doi.org/10.1186/1471-2474-14-37.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hirose S, Otsuka H, Morishima T, Sato K. Outcomes of Charnley total hip arthroplasty using improved cementing with so-called second- and third-generation techniques. J Orthop Sci. 2012;17(2):118–23. https://doi.org/10.1007/s00776-011-0180-x.

    Article  PubMed  Google Scholar 

  19. Carter DR, Vasu R, Harris WH. Stress distribution in the acetabular region 2. Effects of cement thickness and metal backing of total hip acetabular component. J Biomech. 1982;1982(15):165–70.

    Article  Google Scholar 

  20. Carter DR. Finite-element analysis of a metal-backed acetabular component. In: The Hip; Proceedings of the Eleventh Open Scientific Meeting of the Hip Society. St Louis: Mosby; 1983. p. 216–28.

    Google Scholar 

  21. Dalstra M, Huskies R. The influence of metal backing in cemented cups. Orthop Trans. 1991;16:272–5.

    Google Scholar 

  22. Harris WH, Penenberg BL. Further follow-up on socket fixation using a metal-backed acetabular component for Total hip replacement. J Bone Joint Surg. 1987;69-A(8):1140–3.

    Article  Google Scholar 

  23. Chen FS, Di Cesare PE, Kale AA, Lee JF, Frankel VH, Stuchin SA, Zuckerman JD. Results of cemented metal-backed acetabular components: a 10-year-average follow-up study. J Arthroplast. 1998;13(8):867–73. https://doi.org/10.1016/s0883-5403(98)90191-7.

    Article  CAS  Google Scholar 

  24. Mohan R, Grigoris P, Johnstone F, Hamblen D. Howse II cemented titanium metal-backed acetabular cups poor 10-year results in 107 hips. Acta Orthop Scand. 2003;74(4):397–403. https://doi.org/10.1080/00016470310017686.

    Article  PubMed  Google Scholar 

  25. Weiss RJ, Hailer NP, Stark A, Kärrholm J. Survival of uncemented acetabular monoblock cups: evaluation of 210 hips in the Swedish hip arthroplasty register. Acta Orthop. 2012;83(3):214–9. https://doi.org/10.3109/17453674.2012.688726.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhao CC, Qu GX, Yan SG, et al. Squeaking in fourth-generation ceramic-on-ceramic total hip replacement and the relationship with prosthesis brands: meta-analysis and systematic review. J Orthop Surg Res. 2018;13:133. https://doi.org/10.1186/s13018-018-0841-y.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yamada H, Yoshihara Y, Henmi O, Morita M, Shiromoto Y, et al. Cementless total hip replacement: past, present, and future. J Orthop Sci. 2009;14:228–41.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jarcho M, Kay JF, Gumaer KI, Doremus RH, Drobeck HP. Tissue, cellular and subcellular events at a bone-ceramic hydroxyapatite Interface. J Bioeng. 1977;1(2):79–92.

    CAS  PubMed  Google Scholar 

  29. Ducheyne P, Hench L, Kagan A, Martens M, Bursens A, Mulier J. Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants. J Biomed Mater Res. 1980;14(3):225–37.

    Article  CAS  PubMed  Google Scholar 

  30. Moilanen T, Stocks GW, Freeman MA, Scott G, Goodier WD, Evans SJ. Hydroxyapatite coating of an acetabular prosthesis. Effect on stability. J Bone Joint Surg (Br). 1996;78:200–5.

    Article  CAS  PubMed  Google Scholar 

  31. Roffman M, Kligman M. Cementless coated and noncoated Mathys acetabular cups: radiographic and histologic evaluation. Orthopedics. 1999;22:39–41.

    Article  CAS  PubMed  Google Scholar 

  32. Ali MS, Kumar A. Hydroxyapatite-coated RM cup in primary hip arthroplasty. Int Orthop. 2003;27:90–3.

    Article  PubMed  Google Scholar 

  33. Reikeras O, Gunderson RB. Failure of HA coating on a gritblasted acetabular cup: 155 patients followed for 7-10 years. Acta Orthop Scand. 2002;73:104–8.

    Article  PubMed  Google Scholar 

  34. Lai KA, Shen WJ, Chen CH, Yang CY, Hu WP, Chang GL. Failure of hydroxyapatite-coated acetabular cups. Ten-year follow-up of 85 Landos atoll arthroplasties. J Bone Joint Surg (Br). 2002;84:641–6.

    Article  PubMed  Google Scholar 

  35. Miyakawa S, Kawamura H, Mishima H, Yasumoto J. Grit-blasted and hydroxyapatite-coated total hip arthroplasty: an 11- to 14-year follow-up study. J Orthop Sci. 2004;9:462–7.

    Article  CAS  PubMed  Google Scholar 

  36. Cheung KW, Yung SH, Wong KC, Chiu KH. Early failure of smooth hydroxyapatite-coated press-fit acetabular cup–7 years of follow-up. J Arthroplast. 2005;20:627–31.

    Article  Google Scholar 

  37. Kim SY, Kim DH, Kim YG, Oh CW, Ihn JC. Early failure of hemispheric hydroxyapatite-coated acetabular cups. Clin Orthop. 2006;446:233–8.

    Article  PubMed  Google Scholar 

  38. Morscher EW, Hefti A, Aebi U. Severe osteolysis after third-body wear due to hydroxyapatite particles from acetabular cup coating. J Bone Joint Surg (Br). 1998;80:267–72.

    Article  CAS  PubMed  Google Scholar 

  39. Lazarinis S, Kärrholm J, Hailer NP. Increased risk of revision of acetabular cups coated with hydroxyapatite. Acta Orthop. 2010;81(1):53–9. https://doi.org/10.3109/17453670903413178.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Havelin LI, Espehaug B, Engesaeter LB. The performance of two hydroxyapatite-coated acetabular cups compared with Charnley cups. From the Norwegian arthroplasty register. J Bone Joint Surg (Br). 2002;84(6):839–45. https://doi.org/10.1302/0301-620x.84b6.12492.

    Article  CAS  PubMed  Google Scholar 

  41. Lazarinis S, Mäkelä KT, Eskelinen A, Havelin L, Hallan G, Overgaard S, Pedersen AB, Kärrholm J, Hailer NP. Does hydroxyapatite coating of uncemented cups improve long-term survival? An analysis of 28,605 primary total hip arthroplasty procedures from the Nordic arthroplasty register association (NARA). Osteoarthr Cartil. 2017;25(12):1980–7. https://doi.org/10.1016/j.joca.2017.08.001.

    Article  CAS  Google Scholar 

  42. Gottliebsen M, Rahbek O, Ottosen PF, Søballe K, Stilling M. Superior 11-year survival but higher polyethylene wear of hydroxyapatite-coated Mallory-head cups. Hip Int. 2012;22(1):35–40. https://doi.org/10.5301/HIP.2012.9075.

    Article  PubMed  Google Scholar 

  43. Laursen MB, Nielsen PT, Søballe K. Bone remodelling around HA-coated acetabular cups: a DEXA study with a 3-year follow-up in a randomised trial. Int Orthop. 2007;31(2):199–204. https://doi.org/10.1007/s00264-006-0148-1.

    Article  CAS  PubMed  Google Scholar 

  44. Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg (Br). 1999;81(5):907–14.

    Article  CAS  PubMed  Google Scholar 

  45. Lachiewicz PF, Soileau ES. Second-generation modular acetabular components provide fixation at 10 to 16 years. Clin Orthop Relat Res. 2012;470(2):366–72. https://doi.org/10.1007/s11999-011-1950-7.

    Article  PubMed  Google Scholar 

  46. Valle AG, Zoppi A, Peterson MG, Salvati EA. Clinical and radiographic results associated with a modern, cementless modular cup design in total hip arthroplasty. J Bone Joint Surg Am. 2004;86(9):1998–2004. https://doi.org/10.2106/00004623-200409000-00019.

    Article  PubMed  Google Scholar 

  47. Kim JT, Yoo JJ. Implant design in cementless hip arthroplasty. Hip Pelvis. 2016;28(2):65–75. https://doi.org/10.5371/hp.2016.28.2.65.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Malhotra R, Gautam D. Acute total hip arthroplasty in acetabular fractures using modern porous metal cup. J Orthop Surg (Hong Kong). 2019;27(2):2309499019855438. https://doi.org/10.1177/2309499019855438.

    Article  PubMed  Google Scholar 

  49. Antoniades G, Smith EJ, Deakin AH, Wearing SC, Sarungi M. Primary stability of two uncemented acetabular components of different geometry: hemispherical or peripherally enhanced? Bone Joint Res. 2013;2(12):264–9. https://doi.org/10.1302/2046-3758.212.2000193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Langlais FL, Ropars M, Gaucher F, Musset T, Chaix O. Dual mobility cemented cups have low dislocation rates in THA revisions. Clin Orthop Relat Res. 2008;466:389–95.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Epinette JA, Béracassat R, Tracol P, Pagazani G, Vandenbussche E. Are modern dual mobility cups a valuable option in reducing instability after primary hip arthroplasty, even in younger patients? J Arthroplast. 2014;29(6):1323–8. https://doi.org/10.1016/j.arth.2013.12.011.

    Article  Google Scholar 

  52. Blakeney WG, Epinette JA, Vendittoli PA. Dual mobility total hip arthroplasty: should everyone get one? EFORT Open Rev. 2019;4(9):541–7. https://doi.org/10.1302/2058-5241.4.180045.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stulberg SD. Dual poly liner mobility optimizes wear and stability in THA: affirms. Orthopedics. 2011;34:e445–8.

    Article  PubMed  Google Scholar 

  54. Wyatt M, Hooper G, Frampton C, Rothwell A. Survival outcomes of cemented compared to uncemented stems in primary total hip replacement. World J Orthop. 2014;5:591–6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Blankstein M, Lentine B, Nelms NJ. The use of cement in hip arthroplasty: a contemporary perspective. J Am Acad Orthop Surg. 2020;28(14):e586–94. https://doi.org/10.5435/JAAOS-D-19-00604.

    Article  PubMed  Google Scholar 

  56. Rivière C, Grappiolo G, Engh CA Jr, et al. Long-term bone remodelling around 'legendary' cementless femoral stems. EFORT Open Rev. 2018;3:45–57. https://doi.org/10.1302/2058-5241.3.170024.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Swedish National hip Arthroplasty Register Annual Report 2007. Sahlgrenska University Hospital, Goteburg; 2008.

    Google Scholar 

  58. Norwegian Arthroplasty Register. Haukeland University Hospital; 2008.

    Google Scholar 

  59. Carrington NC, Sierra RJ, Gie GA, Hubble MJ, Timperley AJ, Howell JR. The Exeter universal cemented femoral component at 15 to 17 years: an update on the first 325 hips. J Bone Joint Surg (Br). 2009;91:730–7.

    Article  CAS  PubMed  Google Scholar 

  60. Espehaug B, Furnes O, Engesaeter LB, Havelin LI. 18 years of results with cemented primary hip prostheses in the Norwegian arthroplasty register. Acta Orthop. 2009;80:402–12.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ling RS, Charity J, Lee AJ, Whitehouse SL, Timperley AJ, Gie GA. The long-term results of the original Exe- ter polished cemented femoral component: a follow-up report. J Arthroplast. 2009;24:511–7.

    Article  Google Scholar 

  62. Wroblewski BM, Siney PD, Fleming PA. Charnley low-frictional torque arthroplasty: follow-up for 30 to 40 years. J Bone Joint Surg (Br). 2009;91–4:447–50.

    Article  Google Scholar 

  63. Fowler JL, Gie GA, Lee AJ, Ling RS. Experience with the Exeter total hip replacement since 1970. Orthop Clin North Am. 1988;19:477–89.

    CAS  PubMed  Google Scholar 

  64. Ling RS. The use of a collar and precoating on cemented femoral stems is unnecessary and detrimental. Clin Orthop Relat Res. 1992;285:73–83.

    Article  Google Scholar 

  65. Verdonschot N, Huiskes R. Surface roughness of debonded straight-tapered stems in cemented THA reduces subsidence but not cement damage. Biomaterials. 1998;19:1773–9.

    Article  CAS  PubMed  Google Scholar 

  66. Schmitz MW, Busch VJ, Gardeniers JW, et al. Long-term results of cemented total hip arthroplasty in patients younger than 30 years and the outcome of subsequent revisions. BMC Musculoskelet Disord. 2013;14:37.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Berry D. Evolution of uncemented femoral component design. In: Pellicci PM, Tria AJ, Garvin KL, editors. Orthopaedic knowledge update: hip and knee recon- struction 2. 2nd ed. Rosemont: American Academy of Orthopaedic Surgeons; 2000.

    Google Scholar 

  68. Khanuja HS, Vakil JJ, Goddard MS, Mont MA. Cementless femoral fixation in total hip arthroplasty. J Bone Joint Surg Am. 2011;93(5):500–9.

    Article  PubMed  Google Scholar 

  69. Khanuja HS, Banerjee S, Jain D, Pivec R, Mont MA. Short bone-conserving stems in cementless hip arthroplasty. J Bone Joint Surg Am. 2014;96(20):1742–52.

    Article  PubMed  Google Scholar 

  70. Kheir MM, Drayer NJ, Chen AF. An update on Cementless femoral fixation in Total hip arthroplasty. J Bone Joint Surg. 2020;102(18):1646–61. https://doi.org/10.2106/jbjs.19.01397.

    Article  PubMed  Google Scholar 

  71. Morshed S, Bozic KJ, Ries MD, Malchau H, Colford JM. Comparison of cemented and uncemented fixation in total hip replacement: a meta-analysis. Acta Orthop. 2007;78(3):315–26.

    Article  PubMed  Google Scholar 

  72. Eskelinen A, Remes V, Helenius I, et al. Total hip arthroplasty for primary osteoarthrosis in younger patients in the Finnish arthroplasty register. 4,661 primary replacements followed for 0–22 years. Acta Orthop. 2005;76(1):28–41.

    Article  PubMed  Google Scholar 

  73. Mäkelä KT, Eskelinen A, Pulkkinen P, Paavolainen P, Remes V. Results of 3,668 primary total hip replacements for primary osteoarthritis in patients under the age of 55 years. Acta Orthop. 2011;82:521–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sands D, Schemitsch EH. The role of metal-on-metal bearings in total hip arthroplasty and hip resurfacing: review article. HSS J. 2017;13(1):2–6. https://doi.org/10.1007/s11420-016-9521-9.

    Article  PubMed  Google Scholar 

  75. Ahmad A, Mirza Y, Evans AR, Teoh KH. A comparative study between un- cemented and hybrid total hip arthroplasty in octogenarians. J Arthroplast. 2018;33(12):3719–23.

    Article  Google Scholar 

  76. Riley SA, Spears JR, Smith LS, Mont MA, Elmallah RK, Cherian JJ, Malkani AL. Cementless tapered femoral stems for total hip arthroplasty in octogenarians. J Arthroplast. 2016;31(12):2810–3.

    Article  Google Scholar 

  77. Stihsen C, Springer B, Nemecek E, Olischar B, Kaider A, Windhager R, Kubista B. Cementless total hip arthroplasty in octogenarians. J Arthroplast. 2017;32(6):1923–9.

    Article  Google Scholar 

  78. Abdel MP, Watts CD, Houdek MT, Lewallen DG, Berry DJ. Epidemiology of periprosthetic fracture of the femur in 32 644 primary total hip arthroplasties: a 40-year experience. Bone Joint J. 2016;98-B(4):461–7.

    Article  CAS  PubMed  Google Scholar 

  79. Gkagkalis G, Goetti P, Mai S, Meinecke I, Helmy N, Bosson D, Kutzner KP. Cementless short-stem total hip arthroplasty in the elderly patient - is it a safe option?: a prospective multicentre observational study. BMC Geriatr. 2019;19(1):112.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bedard NA, Burnett RA, DeMik DE, Gao Y, Liu SS, Callaghan JJ. Are Trends in total hip arthroplasty bearing surface continuing to change? 2007-2015 usage in a large database cohort. J Arthroplast. 2017;32(12):3777–81. https://doi.org/10.1016/j.arth.2017.07.044.

    Article  Google Scholar 

  81. Lindalen E, Thoen PS, Nordsletten L, Hovik RSM. Low wear rate at 6-year follow-up of vitamin E-infused cross-linked polyethylene: a randomised trial using 32- and 36-mm heads. Hip Int. 2018;29(4):355–62. https://doi.org/10.1177/1120700018798790.

    Article  PubMed  Google Scholar 

  82. Australian Orthopedic Association. National Joint Registry. 2017. https://aoanjrr.sahmri.com/annual-reports-2017.

  83. Burroughs BR, Hallstrom B, Golladay GJ, Hoeffel D, Harris WH. Range of motion and stability in total hip arthroplasty with 28-, 32-, 38-, and 44-mm femoral head sizes. J Arthroplast. 2005;20(1):11–9.

    Article  Google Scholar 

  84. Matsushita A, Nakashima Y, Jingushi S, Yamamoto T, Kuraoka A, Iwamoto Y. Effects of the femoral offset and the head size on the safe range of motion in total hip arthroplasty. J Arthroplast. 2009;24(4):646–51.

    Article  Google Scholar 

  85. Hammerberg EM, Wan Z, Dastane M, Dorr LD. Wear and range of motion of different femoral head sizes. J Arthroplast. 2010;25(6):839–43.

    Article  Google Scholar 

  86. Matsushita I, Morita Y, Ito Y, Gejo R, Kimura T. Activities of daily living after total hip arthroplasty. Is a 32-mm femoral head superior to a 26-mm head for improving daily activities? Int Orthop. 2011;35(1):25–9.

    Article  PubMed  Google Scholar 

  87. Delay C, Putman S, Dereudre G. Is there any range-of-motion advantage to using bearings larger than 36mm in primary hip arthroplasty: a case-control study comparing 36-mm and large-diameter heads. Orthop Traumatol Surg Res. 2016;102(6):735–40.

    Article  CAS  PubMed  Google Scholar 

  88. Hip knee and shoulder arthroplasty. 2018. Australian Orthopaedic Association National Joint Replacement Registry Annual.

    Google Scholar 

  89. Shah SM, Walter WL, Tai SM, Lorimer MF, de Steiger RN. Late dislocations after total hip arthroplasty: is the bearing a factor? J Arthroplast. 2017;32(9):2852–6.

    Article  Google Scholar 

  90. Deckard ER, Meneghini RM. Femoral head penetration rates of second-generation sequentially annealed highly cross-linked polyethylene at minimum five years. J Arthroplast. 2019;34(4):781–8.

    Article  Google Scholar 

  91. Lachiewicz PF, Heckman DS, Soileau ES, Mangla J, Martell JM. Femoral head size and wear of highly cross-linked polyethylene at 5 to 8 years. Clin Orthop Relat Res. 2009;467(12):3290–6.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Stambough JB, Pashos G, Wu N, Haynes JA, Martell JM, Clohisy JC. Gender differences in wear rates for 28- vs 32-mm ceramic femoral heads on modern highly cross-linked polyethylene at midterm follow-up in young patients undergoing total hip arthroplasty. J Arthroplast. 2016;31(4):899–905.

    Article  Google Scholar 

  93. Dyrkacz RM, Brandt JM, Ojo OA, Turgeon TR, Wyss UP. The influence of head size on corrosion and fretting behaviour at the head-neck interface of artificial hip joints. J Arthroplast. 2013;28(6):1036–40.

    Article  Google Scholar 

  94. Triantafyllopoulos GK, Elpers ME, Burket JC, Esposito CI, Padgett DE, Wright TM. Otto aufranc award: large heads do not increase damage at the head-neck taper of metal-on-polyethylene total hip arthroplasties. Clin Orthop Relat Res. 2016;474(2):330–8.

    Article  PubMed  Google Scholar 

  95. Cartner J, Aldinger P, Li C, Collins D. Characterization of femoral head taper corrosion features using a 22-year retrieval database. HSS J. 2017;13(1):35–41.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malhotra, R., Gautam, D., Rai, A. (2023). Implant Selection and Rationale for Use in Primary Total Hip Arthroplasty. In: Sharma, M. (eds) Hip Arthroplasty. Springer, Singapore. https://doi.org/10.1007/978-981-99-5517-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5517-6_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5516-9

  • Online ISBN: 978-981-99-5517-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics