Skip to main content

Untargeted Metabolomics, Targeted Care: The Clinical Utilities of Bedside Metabolomics

  • Chapter
  • First Online:
Clinical Metabolomics Applications in Genetic Diseases
  • 297 Accesses

Abstract

The second decade of the twenty-first century saw a quiet revolution in the field of inborn errors of metabolism. Decades of extensive research into metabolic pathways of physiologically active cells and tissues, along with an improved resolution of high-throughput screening capabilities, brought forth the clinical metabolome. Clinicians can now take a metabolic snapshot while assessing their patients and receive invaluable information on pathological processes, rule in or rule out a proposed diagnosis, highlight early signs of decompensation, assess response to treatment, explore new disease biomarkers, and even suggest novel treatment options. In this chapter, we review the major strengths of clinical metabolomics as a diagnostic aid and its capabilities in promoting novel biomarker discovery. We also provide an outlook for how next-gen interpretation modalities (such as machine learning) are expected to revolutionize this field further to benefit patients worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang A, Sun H, Yan G, Wang P, Wang X. Metabolomics for biomarker discovery: moving to the clinic. Biomed Res Int. 2015;2015:354671.

    PubMed  PubMed Central  Google Scholar 

  2. Clish CB. Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harb Mol Case Stud. 2015;1(1):a000588.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ashrafian H, Sounderajah V, Glen R, Ebbels T, Blaise BJ, Kalra D, et al. Metabolomics: the stethoscope for the twenty-first century. Med Princ Pract. 2021;30(4):301–10.

    Article  PubMed  Google Scholar 

  4. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kalhan SC, Guo L, Edmison J, Dasarathy S, McCullough AJ, Hanson RW, et al. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism. 2011;60(3):404–13.

    Article  CAS  PubMed  Google Scholar 

  6. Mimmi MC, Finato N, Pizzolato G, Beltrami CA, Fogolari F, Corazza A, et al. Absolute quantification of choline-related biomarkers in breast cancer biopsies by liquid chromatography electrospray ionization mass spectrometry. Anal Cell Pathol (Amst). 2013;36(3–4):71–83.

    Article  CAS  PubMed  Google Scholar 

  7. Glunde K, Jacobs MA, Bhujwalla ZM. Choline metabolism in cancer: implications for diagnosis and therapy. Expert Rev Mol Diagn. 2006;6(6):821–9.

    Article  CAS  PubMed  Google Scholar 

  8. Lionel AC, Costain G, Monfared N, Walker S, Reuter MS, Hosseini SM, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med. 2018;20(4):435–43.

    Article  CAS  PubMed  Google Scholar 

  9. Srivastava S, Love-Nichols JA, Dies KA, Ledbetter DH, Martin CL, Chung WK, et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet Med. 2019;21(11):2413–21.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Manickam K, McClain MR, Demmer LA, Biswas S, Kearney HM, Malinowski J, et al. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23:2029.

    Article  PubMed  Google Scholar 

  11. Baxter SK, King MC. A time to sequence. JAMA Pediatr. 2017;171(12):e173435.

    Article  PubMed  Google Scholar 

  12. Theunissen TEJ, Nguyen M, Kamps R, Hendrickx AT, Sallevelt S, Gottschalk RWH, et al. Whole exome sequencing is the preferred strategy to identify the genetic defect in patients with a probable or possible mitochondrial cause. Front Genet. 2018;9:400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lehtonen JM, Auranen M, Darin N, Sofou K, Bindoff L, Hikmat O, et al. Diagnostic value of serum biomarkers FGF21 and GDF15 compared to muscle sample in mitochondrial disease. J Inherit Metab Dis. 2021;44(2):469–80.

    Article  CAS  PubMed  Google Scholar 

  14. Mancuso M, Klopstock T. Diagnosis and management of mitochondrial disorders. Berlin: Springer International; 2019.

    Book  Google Scholar 

  15. Friedman JM, Jones KL, Carey JC. Exome sequencing and clinical diagnosis, vol. 324. JAMA; 2020. p. 627.

    Google Scholar 

  16. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cooper GM. Parlez-vous VUS? Genome Res. 2015;25(10):1423–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bertier G, Hétu M, Joly Y. Unsolved challenges of clinical whole-exome sequencing: a systematic literature review of end-users’ views. BMC Med Genet. 2016;9(1):52.

    Google Scholar 

  19. Liu N, Xiao J, Gijavanekar C, Pappan KL, Glinton KE, Shayota BJ, et al. Comparison of untargeted metabolomic profiling vs traditional metabolic screening to identify inborn errors of metabolism. JAMA Netw Open. 2021;4(7):e2114155.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Alaimo JT, Glinton KE, Liu N, Xiao J, Yang Y, Reid Sutton V, et al. Integrated analysis of metabolomic profiling and exome data supplements sequence variant interpretation, classification, and diagnosis. Genet Med. 2020;22(9):1560–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amendola LM, Jarvik GP, Leo MC, McLaughlin HM, Akkari Y, Amaral MD, et al. Performance of ACMG-AMP variant-interpretation guidelines among nine Laboratories in the Clinical Sequencing Exploratory Research Consortium. Am J Hum Genet. 2016;98(6):1067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trujillano D, Bertoli-Avella AM, Kumar Kandaswamy K, Weiss ME, Köster J, Marais A, et al. Clinical exome sequencing: results from 2819 samples reflecting 1000 families. Eur J Hum Genet. 2017;25(2):176–82.

    Article  CAS  PubMed  Google Scholar 

  23. Shashi V, McConkie-Rosell A, Schoch K, Kasturi V, Rehder C, Jiang YH, et al. Practical considerations in the clinical application of whole-exome sequencing. Clin Genet. 2016;89(2):173–81.

    Article  CAS  PubMed  Google Scholar 

  24. Park KJ, Park S, Lee E, Park JH, Park JH, Park HD, et al. A population-based genomic study of inherited metabolic diseases detected through newborn screening. Ann Lab Med. 2016;36(6):561–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Atwal PS, Donti TR, Cardon AL, Bacino CA, Sun Q, Emrick L, et al. Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma. Mol Genet Metab. 2015;115(2–3):91–4.

    Article  CAS  PubMed  Google Scholar 

  26. Wassenberg T, Molero-Luis M, Jeltsch K, Hoffmann GF, Assmann B, Blau N, et al. Consensus guideline for the diagnosis and treatment of aromatic l-amino acid decarboxylase (AADC) deficiency. Orphanet J Rare Dis. 2017;12(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Saudubray JM, Baumgartner MR, Walter JH. Inborn metabolic diseases: diagnosis and treatment. Berlin, Heidelberg: Springer; 2016.

    Book  Google Scholar 

  28. Pearson TS, Gilbert L, Opladen T, Garcia-Cazorla A, Mastrangelo M, Leuzzi V, et al. AADC deficiency from infancy to adulthood: symptoms and developmental outcome in an international cohort of 63 patients. J Inherit Metab Dis. 2020;43(5):1121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fusco C, Leuzzi V, Striano P, Battini R, Burlina A, Spagnoli C. Aromatic L-amino acid decarboxylase (AADC) deficiency: results from an Italian modified Delphi consensus. Ital J Pediatr. 2021;47(1):13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luc QN, Querubin J. Clinical management of dystonia in childhood. Paediatr Drugs. 2017;19(5):447–61.

    Article  PubMed  Google Scholar 

  31. Kim R, Jeon B, Lee WW. A systematic review of treatment outcome in patients with Dopa-responsive dystonia (DRD) and DRD-plus. Mov Disord Clin Pract. 2016;3(5):435–42.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pappan KL, Kennedy AD, Magoulas PL, Hanchard NA, Sun Q, Elsea SH. Clinical metabolomics to segregate aromatic amino acid decarboxylase deficiency from drug-induced metabolite elevations. Pediatr Neurol. 2017;75:66–72.

    Article  PubMed  Google Scholar 

  33. Almontashiri NAM, Zha L, Young K, Law T, Kellogg MD, Bodamer OA, et al. Clinical validation of targeted and untargeted metabolomics testing for genetic disorders: a 3 year comparative study. Sci Rep. 2020;10(1):9382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodan LH, Anyane-Yeboa K, Chong K, Klein Wassink-Ruiter JS, Wilson A, Smith L, et al. Gain-of-function variants in the ODC1 gene cause a syndromic neurodevelopmental disorder associated with macrocephaly, alopecia, dysmorphic features, and neuroimaging abnormalities. Am J Med Genet A. 2018;176(12):2554–60.

    Article  CAS  PubMed  Google Scholar 

  35. Bupp CP, Schultz CR, Uhl KL, Rajasekaran S, Bachmann AS. Novel de novo pathogenic variant in the ODC1 gene in a girl with developmental delay, alopecia, and dysmorphic features. Am J Med Genet A. 2018;176(12):2548–53.

    Article  CAS  PubMed  Google Scholar 

  36. Marbaix AY, Noël G, Detroux AM, Vertommen D, Van Schaftingen E, Linster CL. Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair. J Biol Chem. 2011;286(48):41246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marbaix AY, Tyteca D, Niehaus TD, Hanson AD, Linster CL, Van Schaftingen E. Occurrence and subcellular distribution of the NADPHX repair system in mammals. Biochem J. 2014;460(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  38. Van Bergen NJ, Guo Y, Rankin J, Paczia N, Becker-Kettern J, Kremer LS, et al. NAD(P)HX dehydratase (NAXD) deficiency: a novel neurodegenerative disorder exacerbated by febrile illnesses. Brain. 2019;142(1):50–8.

    Article  PubMed  Google Scholar 

  39. Kremer LS, Danhauser K, Herebian D, Petkovic Ramadža D, Piekutowska-Abramczuk D, Seibt A, et al. NAXE mutations disrupt the cellular NAD(P)HX repair system and cause a lethal Neurometabolic disorder of early childhood. Am J Hum Genet. 2016;99(4):894–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Bergen NJ, Walvekar AS, Patraskaki M, Sikora T, Linster CL, Christodoulou J. Clinical and biochemical distinctions for a metabolite repair disorder caused by NAXD or NAXE deficiency. J Inherit Metab Dis. 2022;45(6):1028–38.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Manor J, Calame DG, Gijavanekar C, Tran A, Fatih JM, Lalani SR, et al. Niacin therapy improves outcome and normalizes metabolic abnormalities in an NAXD-deficient patient. Brain. 2022;145(5):e36–40.

    Article  PubMed  Google Scholar 

  42. Pillai NR, Amin H, Gijavanekar C, Liu N, Issaq N, Broniowska KA, et al. Hematologic presentation and the role of untargeted metabolomics analysis in monitoring treatment for riboflavin transporter deficiency. Am J Med Genet A. 2020;182(11):2781–7.

    Article  CAS  PubMed  Google Scholar 

  43. Amir F, Atzinger C, Massey K, Greinwald J, Hunter LL, Ulm E, et al. The clinical journey of patients with riboflavin transporter deficiency type 2. J Child Neurol. 2020;35(4):283–90.

    Article  PubMed  Google Scholar 

  44. Liu Z, Peng Q, Li J, Rao C, Lu X. BVVLS2 overlooked for 3 years in a pediatric patient caused by novel compound heterozygous mutations in SLC52A2 gene. Clin Chim Acta. 2021;523:402–6.

    Article  CAS  PubMed  Google Scholar 

  45. Kalafatic Z, Lipovac K, Jezerinac Z, Juretic D, Dumic M, Zurga B, et al. A liver urocanase deficiency. Metabolism. 1980;29(11):1013–9.

    Article  CAS  PubMed  Google Scholar 

  46. Espinós C, Pineda M, Martínez-Rubio D, Lupo V, Ormazabal A, Vilaseca MA, et al. Mutations in the urocanase gene UROC1 are associated with urocanic aciduria. J Med Genet. 2009;46(6):407–11.

    Article  PubMed  Google Scholar 

  47. Camp BW, Broman SH, Nichols PL, Leff M. Maternal and neonatal risk factors for mental retardation: defining the ‘at-risk’ child. Early Hum Dev. 1998;50(2):159–73.

    Article  CAS  PubMed  Google Scholar 

  48. Boyle CA, Yeargin-Allsopp M, Doernberg NS, Holmgreen P, Murphy CC, Schendel DE. Prevalence of selected developmental disabilities in children 3-10 years of age: the metropolitan Atlanta developmental disabilities surveillance program, 1991. MMWR CDC Surveill Summ. 1996;45(2):1–14.

    CAS  PubMed  Google Scholar 

  49. Keyfi F, Nasseri M, Nayerabadi S, Alaei A, Mokhtariye A, Varasteh A. Frequency of inborn errors of metabolism in a northeastern Iranian sample with high consanguinity rates. Hum Hered. 2018;83(2):71–8.

    Article  CAS  PubMed  Google Scholar 

  50. Afzal RM, Lund AM, Skovby F. The impact of consanguinity on the frequency of inborn errors of metabolism. Mol Genet Metab Rep. 2018;15:6–10.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Saad HA, Elbedour S, Hallaq E, Merrick J, Tenenbaum A. Consanguineous marriage and intellectual and developmental disabilities among Arab Bedouins children of the Negev region in southern Israel: a pilot study. Front Public Health. 2014;2:3.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jamra R. Genetics of autosomal recessive intellectual disability. Med Genet. 2018;30(3):323–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Glinton KE, Levy HL, Kennedy AD, Pappan KL, Elsea SH. Untargeted metabolomics identifies unique though benign biochemical changes in patients with pathogenic variants in UROC1. Mol Genet Metab Rep. 2019;18:14–8.

    Article  CAS  PubMed  Google Scholar 

  54. Kennedy AD, Pappan KL, Donti T, Delgado MR, Shinawi M, Pearson TS, et al. 2-Pyrrolidinone and Succinimide as clinical screening biomarkers for GABA-transaminase deficiency: anti-seizure medications impact accurate diagnosis. Front Neurosci. 2019;13:394.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ferreira EA, Veenvliet ARJ, Engelke UFH, Kluijtmans LAJ, Huigen M, Hoegen B, et al. Diagnosing, discarding, or de-VUSsing: a practical guide to (un)targeted metabolomics as variant-transcending functional tests. Genet Med. 2023;25(1):125–34.

    Article  CAS  PubMed  Google Scholar 

  56. Subramanian VS, Constantinescu AR, Benke PJ, Said HM. Mutations in SLC5A6 associated with brain, immune, bone, and intestinal dysfunction in a young child. Hum Genet. 2017;136(2):253–61.

    Article  CAS  PubMed  Google Scholar 

  57. Byrne AB, Arts P, Polyak SW, Feng J, Schreiber AW, Kassahn KS, et al. Identification and targeted management of a neurodegenerative disorder caused by biallelic mutations in SLC5A6. NPJ Genom Med. 2019;4:28.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Holling T, Nampoothiri S, Tarhan B, Schneeberger PE, Vinayan KP, Yesodharan D, et al. Novel biallelic variants expand the SLC5A6-related phenotypic spectrum. Eur J Hum Genet. 2022;1-11:439.

    Article  Google Scholar 

  59. Thistlethwaite LR, Petrosyan V, Li X, Miller MJ, Elsea SH, Milosavljevic A. CTD: an information-theoretic algorithm to interpret sets of metabolomic and transcriptomic perturbations in the context of graphical models. PLoS Comput Biol. 2021;17(1):e1008550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thistlethwaite LR, Li X, Burrage LC, Riehle K, Hacia JG, Braverman N, et al. Clinical diagnosis of metabolic disorders using untargeted metabolomic profiling and disease-specific networks learned from profiling data. Sci Rep. 2022;12(1):6556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kerkhofs M, Haijes HA, Willemsen AM, van Gassen KLI, van der Ham M, Gerrits J, et al. Cross-omics: integrating genomics with metabolomics in clinical diagnostics. Metabolites. 2020;10(5):206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Graham Linck EJ, Richmond PA, Tarailo-Graovac M, Engelke U, Kluijtmans LAJ, Coene KLM, et al. metPropagate: network-guided propagation of metabolomic information for prioritization of metabolic disease genes. NPJ Genom Med. 2020;5:25.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Smedley D, Jacobsen JO, Jäger M, Köhler S, Holtgrewe M, Schubach M, et al. Next-generation diagnostics and disease-gene discovery with the exomiser. Nat Protoc. 2015;10(12):2004–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bongaerts M, Bonte R, Demirdas S, Huidekoper HH, Langendonk J, Wilke M, et al. Integration of metabolomics with genomics: metabolic gene prioritization using metabolomics data and genomic variant (CADD) scores. Mol Genet Metab. 2022;136(3):199–218.

    Article  CAS  Google Scholar 

  65. Rentzsch P, Schubach M, Shendure J, Kircher M. CADD-splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 2021;13(1):31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Messa GM, Napolitano F, Elsea SH, di Bernardo D, Gao X. A Siamese neural network model for the prioritization of metabolic disorders by integrating real and simulated data. Bioinformatics. 2020;36(Suppl_2):i787–i94.

    Article  CAS  PubMed  Google Scholar 

  67. Garg U, Smith LD. Biomarkers in inborn errors of metabolism: clinical aspects and laboratory determination. Amsterdam: Elsevier Science; 2017.

    Google Scholar 

  68. Braverman NE, Raymond GV, Rizzo WB, Moser AB, Wilkinson ME, Stone EM, et al. Peroxisome biogenesis disorders in the Zellweger spectrum: an overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol Genet Metab. 2016;117(3):313–21.

    Article  CAS  PubMed  Google Scholar 

  69. Steinberg SJ, Raymond GV, Braverman NE, Moser AB. Zellweger spectrum disorder. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al., editors. GeneReviews(®). Seattle, WA: University of Washington; 1993.

    Google Scholar 

  70. Kim PK, Hettema EH. Multiple pathways for protein transport to peroxisomes. J Mol Biol. 2015;427(6 Pt A):1176–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wangler MF, Hubert L, Donti TR, Ventura MJ, Miller MJ, Braverman N, et al. A metabolomic map of Zellweger spectrum disorders reveals novel disease biomarkers. Genet Med. 2018;20(10):1274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ah Mew N, Simpson KL, Gropman AL, Lanpher BC, Chapman KA, Summar ML. Urea cycle disorders overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al., editors. GeneReviews(®). Seattle, WA: University of Washington; 1993.

    Google Scholar 

  73. Stone WL, Basit H, Jaishankar GB. Urea cycle disorders. In: StatPearls. Treasure Island, FL: StatPearls; 2022.

    Google Scholar 

  74. Sen K, Whitehead M, Castillo Pinto C, Caldovic L, Gropman A. Fifteen years of urea cycle disorders brain research: looking back, looking forward. Anal Biochem. 2022;636:114343.

    Article  CAS  PubMed  Google Scholar 

  75. Amayreh W, Meyer U, Das AM. Treatment of arginase deficiency revisited: guanidinoacetate as a therapeutic target and biomarker for therapeutic monitoring. Dev Med Child Neurol. 2014;56(10):1021–4.

    Article  PubMed  Google Scholar 

  76. Burrage LC, Thistlethwaite L, Stroup BM, Sun Q, Miller MJ, Nagamani SCS, et al. Untargeted metabolomic profiling reveals multiple pathway perturbations and new clinical biomarkers in urea cycle disorders. Genet Med. 2019;21(9):1977–86.

    Article  PubMed  PubMed Central  Google Scholar 

  77. De Deyn PP, Marescau B, Macdonald RL. Guanidino compounds that are increased in hyperargininemia inhibit GABA and glycine responses on mouse neurons in cell culture. Epilepsy Res. 1991;8(2):134–41.

    Article  PubMed  Google Scholar 

  78. Hanna-El-Daher L, Béard E, Henry H, Tenenbaum L, Braissant O. Mild guanidinoacetate increase under partial guanidinoacetate methyltransferase deficiency strongly affects brain cell development. Neurobiol Dis. 2015;79:14–27.

    Article  CAS  PubMed  Google Scholar 

  79. Ostojic SM. Safety of dietary Guanidinoacetic acid: a villain of a good guy? Nutrients. 2021;14(1):75.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ingoglia F, Chong JL, Pasquali M, Longo N. Creatine metabolism in patients with urea cycle disorders. Mol Genet Metab Rep. 2021;29:100791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grace RF, Bianchi P, van Beers EJ, Eber SW, Glader B, Yaish HM, et al. Clinical spectrum of pyruvate kinase deficiency: data from the pyruvate kinase deficiency natural history study. Blood. 2018;131(20):2183–92.

    Article  CAS  PubMed  Google Scholar 

  82. Bianchi P, Fermo E, Glader B, Kanno H, Agarwal A, Barcellini W, et al. Addressing the diagnostic gaps in pyruvate kinase deficiency: consensus recommendations on the diagnosis of pyruvate kinase deficiency. Am J Hematol. 2019;94(1):149–61.

    Article  CAS  PubMed  Google Scholar 

  83. Van Dooijeweert B, Broeks MH, Verhoeven-Duif NM, Van Beers EJ, Nieuwenhuis EES, Van Solinge WW, et al. Untargeted metabolic profiling in dried blood spots identifies disease fingerprint for pyruvate kinase deficiency. Haematologica. 2021;106(10):2720–5.

    Article  PubMed  Google Scholar 

  84. Wang D, Pascual JM, De Vivo D. Glucose transporter type 1 deficiency syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al., editors. GeneReviews(®). Seattle, WA: University of Washington; 1993.

    Google Scholar 

  85. Tang M, Monani UR. Glut1 deficiency syndrome: new and emerging insights into a prototypical brain energy failure disorder. Neurosci Insights. 2021;16:26331055211011507.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wibisono C, Rowe N, Beavis E, Kepreotes H, Mackie FE, Lawson JA, et al. Ten-year single-center experience of the ketogenic diet: factors influencing efficacy, tolerability, and compliance. J Pediatr. 2015;166(4):1030–6.e1.

    Article  Google Scholar 

  87. Klepper J, Akman C, Armeno M, Auvin S, Cervenka M, Cross HJ, et al. Glut1 deficiency syndrome (Glut1DS): state of the art in 2020 and recommendations of the international Glut1DS study group. Epilepsia Open. 2020;5(3):354–65.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Almuqbil M, Go C, Nagy LL, Pai N, Mamak E, Mercimek-Mahmutoglu S. New paradigm for the treatment of glucose transporter 1 deficiency syndrome: low glycemic index diet and modified high amylopectin cornstarch. Pediatr Neurol. 2015;53(3):243–6.

    Article  PubMed  Google Scholar 

  89. Cappuccio G, Pinelli M, Alagia M, Donti T, Day-Salvatore DL, Veggiotti P, et al. Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet. PloS One. 2017;12(9):e0184022.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Miller MJ, Bostwick BL, Kennedy AD, Donti TR, Sun Q, Sutton VR, Elsea SH. Chronic Oral L-Carnitine Supplementation Drives Marked Plasma TMAO Elevations in Patients with Organic Acidemias Despite Dietary Meat Restrictions. JIMD Rep. 2016;30:39–44. https://doi.org/10.1007/8904_2016_539. Epub 2016 Mar 3. PMID: 26936850; PMCID: PMC5110437.

  91. Kennedy AD, Miller MJ, Beebe K, Wulff JE, Evans AM, Miller LA, et al. Metabolomic profiling of human urine as a screen for multiple inborn errors of metabolism. Genet Test Mol Biomarkers. 2016;20(9):485–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. El-Hattab AW. Serine biosynthesis and transport defects. Mol Genet Metab. 2016;118(3):153–9.

    Article  CAS  PubMed  Google Scholar 

  93. Glinton KE, Benke PJ, Lines MA, Geraghty MT, Chakraborty P, Al-Dirbashi OY, et al. Disturbed phospholipid metabolism in serine biosynthesis defects revealed by metabolomic profiling. Mol Genet Metab. 2018;123(3):309–16.

    Article  CAS  PubMed  Google Scholar 

  94. Ferreira CR, Goorden SMI, Soldatos A, Byers HM, Ghauharali-van der Vlugt JMM, Beers-Stet FS, et al. Deoxysphingolipid precursors indicate abnormal sphingolipid metabolism in individuals with primary and secondary disturbances of serine availability. Mol Genet Metab. 2018;124(3):204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Litwack G. Chapter 7 - Glycogen and Glycogenolysis. In: Litwack G, editor. Human biochemistry. Boston: Academic Press; 2018. p. 161–81.

    Chapter  Google Scholar 

  96. Banne E, Meiner V, Shaag A, Katz-Brull R, Gamliel A, Korman S, et al. Transaldolase deficiency: a new case expands the phenotypic Spectrum. JIMD Rep. 2016;26:31–6.

    Article  PubMed  Google Scholar 

  97. Shayota BJ, Donti TR, Xiao J, Gijavanekar C, Kennedy AD, Hubert L, et al. Untargeted metabolomics as an unbiased approach to the diagnosis of inborn errors of metabolism of the non-oxidative branch of the pentose phosphate pathway. Mol Genet Metab. 2020;131(1–2):147–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Buzkova J, Nikkanen J, Ahola S, Hakonen AH, Sevastianova K, Hovinen T, et al. Metabolomes of mitochondrial diseases and inclusion body myositis patients: treatment targets and biomarkers. EMBO Mol Med. 2018;10(12):e9091.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sharma R, Reinstadler B, Engelstad K, Skinner OS, Stackowitz E, Haller RG, et al. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J Clin Invest. 2021;131(2):e136055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yatsuga S, Fujita Y, Ishii A, Fukumoto Y, Arahata H, Kakuma T, et al. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Ann Neurol. 2015;78(5):814–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Evans B. How autism became autism: the radical transformation of a central concept of child development in Britain. Hist Human Sci. 2013;26(3):3–31.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sandin S, Lichtenstein P, Kuja-Halkola R, Hultman C, Larsson H, Reichenberg A. The heritability of autism Spectrum disorder. JAMA. 2017;318(12):1182–4.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Colvert E, Tick B, McEwen F, Stewart C, Curran SR, Woodhouse E, et al. Heritability of autism Spectrum disorder in a UK population-based twin sample. JAMA Psychiatry. 2015;72(5):415–23.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Schaefer GB, Mendelsohn NJ. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med. 2013;15(5):399–407.

    Article  CAS  PubMed  Google Scholar 

  105. Ghaziuddin M, Al-Owain M. Autism spectrum disorders and inborn errors of metabolism: an update. Pediatr Neurol. 2013;49(4):232–6.

    Article  PubMed  Google Scholar 

  106. Žigman T, Petković Ramadža D, Šimić G, Barić I. Inborn errors of metabolism associated with autism Spectrum disorders: approaches to intervention. Front Neurosci. 2021;15:673600.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Glinton KE, Elsea SH. Untargeted metabolomics for autism spectrum disorders: current status and future directions. Front Psych. 2019;10:647.

    Article  Google Scholar 

  108. Ritz B, Yan Q, Uppal K, Liew Z, Cui X, Ling C, et al. Untargeted metabolomics screen of mid-pregnancy maternal serum and autism in offspring. Autism Res. 2020;13(8):1258–69.

    Article  PubMed  Google Scholar 

  109. Courraud J, Ernst M, Svane Laursen S, Hougaard DM, Cohen AS. Studying autism using untargeted metabolomics in newborn screening samples. J Mol Neurosci. 2021;71(7):1378–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Smith AM, Natowicz MR, Braas D, Ludwig MA, Ney DM, Donley ELR, et al. A metabolomics approach to screening for autism risk in the Children’s autism metabolome project. Autism Res. 2020;13(8):1270–85.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ford L, Kennedy AD, Goodman KD, Pappan KL, Evans AM, Miller LAD, et al. Precision of a clinical metabolomics profiling platform for use in the identification of inborn errors of metabolism. J Appl Lab Med. 2020;5(2):342–56.

    Article  PubMed  Google Scholar 

  112. Kennedy AD, Pappan KL, Donti TR, Evans AM, Wulff JE, Miller LAD, et al. Elucidation of the complex metabolic profile of cerebrospinal fluid using an untargeted biochemical profiling assay. Mol Genet Metab. 2017;121(2):83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kennedy AD, Wittmann BM, Evans AM, Miller LAD, Toal DR, Lonergan S, et al. Metabolomics in the clinic: a review of the shared and unique features of untargeted metabolomics for clinical research and clinical testing. J Mass Spectrom. 2018;53(11):1143–54.

    Article  CAS  PubMed  Google Scholar 

  114. Waters D, Adeloye D, Woolham D, Wastnedge E, Patel S, Rudan I. Global birth prevalence and mortality from inborn errors of metabolism: a systematic analysis of the evidence. J Glob Health. 2018;8(2):021102.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah H. Elsea .

Editor information

Editors and Affiliations

Glossary

Dried blood spot (DBS)

A method of whole blood sample collection in which a small amount of fresh blood is blotted onto an absorbent filter paper, followed by drying. This method provides a convenient storage and shipment platform and is widely used for newborn screening. Typically, a small punch from the DBS paper is eluted with phosphate-buffered saline, availing the sample for testing.

Elevation/reduction (of a metabolite)

In the context of this chapter, a metabolite is considered reduced (insufficient) or elevated (in excess) when UM reveals a Z-score ≥+2 or ≤−2. The Z-score is the number of standard deviations that a data point differs from the population means, representing the relative level of a given metabolite. Raw values for individual metabolites are log2-transformed, and the relative Z-score is calculated compared to a lab-specific reference population [91, 111,112,113].

Inborn error of metabolism (IEM)

A heterogeneous group of mostly inherited disorders involving a failure of the certain metabolic pathway(s) to break down or store biomolecules (typically carbohydrates, lipids, or amino acids) in the cell. Although any given inborn error of metabolism is rare, taken as a group, inborn errors of metabolism occur in 1 in 2000 births [114].

Molecular confirmation

A suspected diagnosis, as suggested by biochemical testing such as UM, is said to be molecularly confirmed when genomic sequencing reveals pathogenic variants, either monoallelic for autosomal dominant or X-linked disorders or biallelic for recessive disorders in the gene associated with the metabolic abnormality. Sequencing can be targeted for the specific gene(s) or untargeted as exome or genome sequencing. In the latter case, further confirmation by Sanger sequencing may be performed to validate the variants identified.

Reference population

A lab-specific reference population created by performing UM on samples received in the clinical laboratory, with careful inclusion and exclusion of clinical samples to ensure pathways and analytes are covered for comprehensive clinical assessment. Raw data for each metabolite are median scaled, log2 transformed, extreme outliers removed, and Z-scores generated based on the mean and standard deviation in this reference population [91, 111,112,113].

Traditional screening methods

Screening tools for certain common abnormalities indicative of diseases. While there is no definition per se for traditional screening methods, they usually include organic acids measured in urine (urine organic acids, UOA); measurements of standard amino acids in plasma (PAA); and carnitine conjugates of fatty acids (acylcarnitine profile, ACP). ACP and PAA are examples of TM where predefined biochemicals are quantitatively measured compared to known standards. UOA is a semiquantitative, untargeted analysis in which analytes are qualitatively compared against a few laboratory-specific internal standards. UOA and PAA are typically performed by liquid chromatography (LC) and/or gas chromatography (GC) coupled with mass spectrometry (MS). In contrast, ACP is performed by tandem MS/MS, where indicators are aimed at detecting carnitine daughter ions.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manor, J., Elsea, S.H. (2023). Untargeted Metabolomics, Targeted Care: The Clinical Utilities of Bedside Metabolomics. In: Abdel Rahman, A.M. (eds) Clinical Metabolomics Applications in Genetic Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-5162-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5162-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5161-1

  • Online ISBN: 978-981-99-5162-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics