Skip to main content

Advertisement

Log in

Mutations in SLC5A6 associated with brain, immune, bone, and intestinal dysfunction in a young child

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The human sodium-dependent multivitamin transporter (hSMVT) is a product of the SLC5A6 gene and mediates biotin, pantothenic acid, and lipoate uptake in a variety of cellular systems. We report here the identification of mutations R94X, a premature termination, and R123L, a dysfunctional amino acid change, both in exon 3 of the SLC5A6 gene in a child using whole genome-scanning. At 15 months of age, the child showed failure to thrive, microcephaly and brain changes on MRI, cerebral palsy and developmental delay, variable immunodeficiency, and severe gastro-esophageal reflux requiring a gastrostomy tube/fundoplication, osteoporosis, and pathologic bone fractures. After identification of the SLC5A6 mutations, he responded clinically to supplemental administration of excess biotin, pantothenic acid, and lipoate with improvement in clinical findings. Functionality of the two mutants was examined by 3H-biotin uptake assay following expression of the mutants in human-derived intestinal HuTu-80 and brain U87 cells. The results showed severe impairment in biotin uptake in cells expressing the mutants compared to those expressing wild-type hSMVT. Live cell confocal imaging of cells expressing the mutants showed the R94X mutant to be poorly tolerated and localized in the cytoplasm, while the R123L mutant was predominantly retained in the endoplasmic reticulum. This is the first reporting of mutations in the SLC5A6 gene in man, and suggests that this gene is important for brain development and a wide variety of clinical functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baez-Saldana A, Gutierrez-Ospina G, Chimal-Monroy J, Fernandez-Mejia C, Saavedra R (2009) Biotin deficiency in mice is associated with decreased serum availability of insulin-like growth factor-1. Eur J Nutr 48:137–144

    Article  CAS  PubMed  Google Scholar 

  • Balamurugan K, Ortiz A, Said HM (2003) Biotin uptake by human intestinal and liver epithelial cells: role of the SMVT system. Am J Physiol 285:G73–G77

    CAS  Google Scholar 

  • Banares FF, Lacruz AA, Gine JJ, Esteve M, Gassull MA (1989) Vitamin statues in patients with inflammatory bowel disease. Am J Gastroenterol 84:744–748

    Google Scholar 

  • Bilska A, Wlodek L (2005) Lipoic acid—the drug of the future? Pharmacol Rep 57:570–577

    CAS  PubMed  Google Scholar 

  • Bonjour JP (1980) Vitamins and alcoholism. Int J Vitam Nutr Res 50:321–338

    CAS  PubMed  Google Scholar 

  • Bonjour JP (1984) Biotin. In: Machlin LJ (ed) Handbook of vitamins: nutritional, biochemical and clinical aspects. Marcel Dekker Inc., New York, pp 403–435

    Google Scholar 

  • Boycott KM, Beaulieu CL, Kernohan KD, Gebril OH, Mhanni A, Chudley AE, Redl D, Qin W, Hampson S, Küry S, Tetreault M, Puffenberger EG, Scott JN, Bezieau S, Reis A, Uebe S, Schumacher J, Hegele RA, McLeod DR, Galvez-Peralta M, Majewski J, Ramaekers VT, Nebert DW, Innes AM, Parboosingh JS, Abou Jamra R (2015) Autosomal-recessive intellectual disability with cerebellar atrophy syndrome caused by mutation of the manganese and zinc transporter gene SLC39A8. Am J Hum Genet 97:886–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui J, Le G, Yang R, Shi Y (2009) Lipoic acid attenuates high fat diet-induced chronic oxidative stress and immunosuppression in mice jejunum: a microarray analysis. Cell Immunol 260:44–50

    Article  CAS  PubMed  Google Scholar 

  • Follis RH, Wintrobe MM (1945) A comparison of the effects of pyridoxine and pantothenic acid deficiencies on the nervous tissues of swine. J Exp Med 81:539–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosal A, Lambrecht N, Subramanya SB, Kapadia R, Said HM (2013) Conditional knockout of the Slc5a6 gene in mouse intestine impairs biotin absorption. Am J Physiol Gastrointest Liver Physiol 304:G64–G71

    Article  CAS  PubMed  Google Scholar 

  • Ipas H, Guttin A, Issartel JP (2015) Exosomal microRNAs in tumoral U87 MG versus normal astrocyte cells. Microrna 4:131–145

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen JC, Wilson C, Cunningham V, Glamuzina E, Prosser DO, Love DR, Burgess T, Taylor J, Swan B, Hill R, Robertson SP, Snell RG, Lehnert K (2016) Brain dopamine-serotonin vesicular transport disease presenting as a severe infantile hypotonic parkinsonian disorder. J Inherit Metab Dis 39:305–308

    Article  CAS  PubMed  Google Scholar 

  • Kono S, Miyajima H, Yoshida K, Togawa A, Shirakawa K, Suzuki H (2009) Mutations in a thiamine-transporter gene and Wernicke’s-like encephalopathy. N Engl J Med 360:1792–1794

    Article  CAS  PubMed  Google Scholar 

  • Krause KH, Bonjour J, Berlit P, Kochen W (1985) Biotin status of epileptics. Ann New York Acad Sci 447:297–313

    Article  CAS  Google Scholar 

  • Kuo YM, Hayflick SJ, Gitschier J (2007) Deprivation of pantothenic acid elicits a movement disorder and azoospermia in a mouse model of pantothenate kinase-associated neurodegeneration. J Inherit Metab Dis 30:310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroishi T (2015) Regulation of immunological and inflammatory functions by biotin. Can J Physiol Pharmacol 93:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ma QG, Zhao LH, Wei H, Duan GX, Zhang JY, Ji C (2014) Effects of lipoic acid on immune function, the antioxidant defense system, and inflammation-related genes expression of broiler chickens fed aflatoxin contaminated diets. Int J Mol Sci 15:5649–5662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez DL, Tsuchiya Y, Gout I (2014) Coenzyme A biosynthetic machinery in mammalian cells. Biochem Soc Trans 42:1112–1117

    Article  CAS  PubMed  Google Scholar 

  • Mock DM, Stadler DD, Stratton SL, Mock NI (1997) Biotin status assessed longitudinally in pregnant women. J Nutr 127:710–716

    CAS  PubMed  Google Scholar 

  • Moiseenok AG, Komar VI, Khomich TI, Kanunnikova NP, Slyshenkov VS (2000) Pantothenic acid in maintaining thiol and immune homeostasis. BioFactores 11:53–55

    Article  CAS  Google Scholar 

  • Ozand PT, Gascon GG, Al Essa M, Joshi S, Al Jishi E, Bakheet S, Al Watban J, Al-Kawi MZ, Dabbagh O (1998) Biotin-responsive basal ganglia disease: a novel entity. Brain 121:1267–1279

    Article  PubMed  Google Scholar 

  • Palaniyappan A, Alphonse R (2011) Immunomodulatory effect of DL-α-lipoic acid in aged rats. Exp Gerontol 46:709–715

    Article  CAS  PubMed  Google Scholar 

  • Prasad PD, Wang H, Kekuda R, Fujita T, Fei Y, Devoe LD, Leibach FH, Ganapathy V (1997) Cloning and functional expression of a cDNA encoding a mammalian sodium-dependent vitamin transporter mediating the uptake of pantothenate, biotin, and lipoate. J Biol Chem 273:7501–7506

    Article  Google Scholar 

  • Quick M, Shi L (2015) The sodium/multivitamin transporter: a multipotent system with therapeutic implications. Vitam Horm 98:63–100

    Article  CAS  PubMed  Google Scholar 

  • Retterer K, Juusola J, Cho MT, Vitazka P, Millan F, Gibellini F, Vertino-Bell A, Smaoui N, Neidich J, Monaghan KG, McKnight D, Bai R, Suchy S, Friedman B, Tahiliani J, Pineda-Alvarez D, Richard G, Brandt T, Haverfield E, Chung WK, Bale S (2016) Clinical application of whole-exome sequencing across clinical indications. Genet Med 18:696–704

    Article  CAS  PubMed  Google Scholar 

  • Roberts JL, Moreau R (2015) Emerging role of alpha-lipoic acid in the prevention and treatment of bone loss. Nutr Rev 73:116–125

    Article  PubMed  Google Scholar 

  • Seidner G, Alvarez MG, Yeh JI, O’Driscoll KR, Klepper J, Stump TS, Wang D, Spinner NB, Birnbaum MJ, De Vivo DC (1998) GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood–brain barrier hexose carrier. Nat Genet 18:188–191

    Article  CAS  PubMed  Google Scholar 

  • Spilioti M, Evangeliou AE, Tramma D, Theodoridou Z, Metaxas S, Michailidi S, Bonti E, Frysira H, Haidopoulou A, Asprangathou D, Tsalkidis AJ, Kardaras P, Wevers RA, Jakobs C, Gibson KM (2013) Evidence for treatable inborn errors of metabolism in a cohort of 187 Greek patients with autism spectrum disorder (ASD). Front Hum Neurosci 7:858–870

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramanian VS, Marchant JS, Boulware MJ, Ma TY, Said HM (2009) Membrane targeting and intracellular trafficking of the human sodium-dependent multivitamin transporter in polarized epithelial cells. Am J Physiol Cell Physiol 296:C663–C671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweetman L, Nyhan WL (1986) Inheritable biotin-treatable disorders and associated phenomena. Ann Rev Nutr 6:314–343

    Article  Google Scholar 

  • Thevenon J, Milh M, Feillet F, St-Onge J, Duffourd Y, Jugé C, Roubertie A, Héron D, Mignot C, Raffo E, Isidor B, Wahlen S, Sanlaville D, Villeneuve N, Darmency-Stamboul V, Toutain A, Lefenvre M, Chouchane M, Huet F, Lafon A, de Saint Martin A, Lesca G, El Chehadeh S, Thauvin-Robinet C, Masurel-Paulet A, Odent S, Villard L, Phillippe C, Faivre L, Riviere JB (2014) Mutations in SLC13A5 cause autosomal-recessive epileptic encephalopathy with seizure onset in the first days of life. Am J Hum Genet 95:113–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida Y, Ito K, Ohtsuki S, Kubo Y, Suzuki T, Terasaki T (2015) Major involvement of Na(+)-dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells. J Neurochem 134:97–112

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Huang W, Fei YJ, Xia H, Yang-Feng T, Leibach FH, Devoe LD, Ganapathy V, Prasad PD (1999) Human placental Na+-dependent multivitamin transporter: cloning, functional expression, gene structure and chromosomal localization. J Biol Chem 274:14875–14883

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Nagai Y, Taniguchi A, Ebara S, Kimura S, Fukui T (2009) Effect of biotin deficiency on embryonic development in mice. Nutrition 25:78–84

    Article  CAS  PubMed  Google Scholar 

  • Wolf B (2001) Disorders of biotin metabolism. In: Scriver CR, Beaudet AL, Aly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic and molecular basis of inherited diseases. McGraw-Hill, New York, pp 3935–3962

    Google Scholar 

  • Wolf B (2013) Biotinidase deficiency. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K (eds) Gene reviews. University of Washington, Seattle [Internet (no page number)]

  • Zehnfenning B, Wiriyasermkul P, Carlson DA, Quick M (2015) Interaction of α-Lipoic acid with the human Na+/multivitamin transporter (hSMVT). J Biol Chem 290:16372–16382

    Article  Google Scholar 

Download references

Acknowledgements

We thank the patient’s family for their participation in this study. This study was supported by the Dept. of VA and NIH grants DK58057 and DK56057 (HMS), DK107474 (VSS), and the Gordon Foundation (PJB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid M. Said.

Additional information

P. J. Benke and H. M. Said contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, V.S., Constantinescu, A.R., Benke, P.J. et al. Mutations in SLC5A6 associated with brain, immune, bone, and intestinal dysfunction in a young child. Hum Genet 136, 253–261 (2017). https://doi.org/10.1007/s00439-016-1751-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-016-1751-x

Keywords

Navigation