Skip to main content
  • 240 Accesses

Abstract

Banana (Musa spp.) stands as one of the most important staple crops globally, catering to both food security and economic livelihoods in numerous tropical and subtropical regions. However, the banana industry faces significant challenges such as diseases, pests, climate change, and the need for improved nutritional content. Conventional plant protection and production practices have proved to be insufficient to combat the challenges in the form of new pathotypes and severe global climatic change. It necessitates the development of climate-resilient varieties with improved nutritional quality. Moreover, superior varieties of banana with improved metabolite production to fight biotic and abiotic constraints can also be developed. The triploid nature of the popular banana cultivars limits the use of conventional breeding techniques. Hence, genetic improvement emerges as a crucial approach to address these challenges and secure the sustainability of banana production. This chapter provides an extensive overview of the advancements in genetic improvement strategies for banana including in vitro mutation, gene transfer and RNA interference techniques. It also explains the advancements in genome editing and the contribution of functional genomics in the genetic improvement of banana. This chapter highlights the successes achieved through genetic improvement efforts, such as the development of disease-resistant and abiotic stress-tolerant varieties and banana with improved fruit quality, extended shelf life and architecture. Furthermore, the review addresses the regulatory considerations associated with genetically improved banana and identifies future challenges that must be addressed to fully realize the potential of these biotechnological advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alangar B, Thomas H, Ramasamy S (2016) Badnaviruses: the current global scenario. Viruses 8(6):177–205. https://doi.org/10.3390/v8060177

    Article  CAS  Google Scholar 

  • Ansari WA, Chandanshive SU, Bhatt V, Nadaf AB, Vats S, Katara JL, Sonah H, Deshmukh R (2020) Genome editing in cereals: approaches, applications and challenges. Int J of Mol Sci 21(11):4040–4071

    Article  CAS  Google Scholar 

  • Atkinson HJ, Grimwood S, Johnston K, Green J (2004) Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by a cystatin. Transgenic Res 13:135–142

    Article  CAS  PubMed  Google Scholar 

  • Avenot HF, Michailides TJ (2010) Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Prot 29:643–651

    Article  CAS  Google Scholar 

  • Awasthi P, Khan S, Lakhani H, Chaturvedi S, Kaur N, Singh J, Kesarwani AK, Tiwari S (2022) Transgene-free genome editing supports the role of carotenoid cleavage dioxygenase 4 as a negative regulator of β-carotene in banana. J Exp Bot 73:3401–3416

    CAS  Google Scholar 

  • Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL (2000) Genetic transformation of Cavendish banana (Musa spp. AAA group) cv. ‘Grand Nain’ via microprojectile bombardment. Plant Cell Rep 19:229–234

    Article  CAS  PubMed  Google Scholar 

  • Bhakta S, Tak H, Ganapathi TR (2021) Exploring diverse roles of micro RNAs in banana: current status and future prospective. Physiol Plant 173:1323–1334

    Article  CAS  PubMed  Google Scholar 

  • Bidabadi SS, Ghobadi C, Baninasab B (2012) Influence of salicylic acid on morphological and physiological responses of banana (Musa acuminata cv. 'Berangan', AAA) shoot tips to in vitro water stress induced by polyethylene glycol. Plant Omics 5:33–39

    CAS  Google Scholar 

  • Borth W, Perez E, Cheah K, Chen Y, Xie WS, Gaskill D, Khalil S, Sether D, Melzer M, Wang M et al (2011) Transgenic banana plants resistant to banana bunchy top virus infection. Acta Hortic 897:449–457

    Article  CAS  Google Scholar 

  • Burgyán J, Havelda Z (2011) Viral suppressors of RNA silencing. Trends Plant Sci 16:265–272. https://doi.org/10.1016/j.tplants.2011.02.010

    Article  CAS  PubMed  Google Scholar 

  • Carvalho CHS, Zehr UB, Gunaratna N et al (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet Mol Biol 27:259–269

    Article  CAS  Google Scholar 

  • Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Lin HJ, Ger MJ, Chow D, Feng TY (2000) The cloning and characterization of a hypersensitive response assisting protein that may be associated with the harpin-mediated hypersensitive response. Plant Mol Biol 43:429–438

    Article  CAS  PubMed  Google Scholar 

  • Chen YF, Chen W, Huang X, Hu X, Zhao JT, Gong Q, Li XJ, Huang XL (2013) Fusarium wilt-resistant lines of Brazil banana (Musa spp., AAA) obtained by EMS-induced mutation in a micro-cross-section cultural system. Plant Pathol 62:112–119

    Article  CAS  Google Scholar 

  • Dale J, James A, Paul JY et al (2017) Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat Commun 8:1496–1503. https://doi.org/10.1038/s41467-017-01670-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature:213–217. https://doi.org/10.1038/nature11241

  • Dou T, Shao X, Hu C, Liu S, Sheng O, Bi F, Deng G, Ding L, Li C, Dong T, Gao H, He W, Peng X, Zhang S, Huo H, Yang Q, Yi G (2020) Host-induced gene silencing of Foc TR4 ERG6/11 genes exhibits superior resistance to Fusarium wilt of banana. Plant Biotechnol J 18(1):11–13. https://doi.org/10.1111/pbi.13204

    Article  CAS  PubMed  Google Scholar 

  • Dash P, Rai R (2016) Translating the banana genome to delineate stress resistance, dwarfing, parthenocarpy and mechanisms of fruit ripening. Front Plant Sci 7:1543–1550. https://doi.org/10.3389/fpls.2016.01543

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Mattia J, Vernerey MS, Yvon M, Pirolles E, Villegas M, Gaafar Y, Ziebell H, Michalakis Y, Zeddam JL, Blanc S (2020) Route of a multipartite nanovirus across the body of its aphid vector. J Virol 94:e01998–e01919

    Article  PubMed  PubMed Central  Google Scholar 

  • Dou TX, Hu CH, Sun XX, Shao XH, Wu JH, Ding LJ, Gao J, He WD, Biswas MK, Yang QS, Yi GJ (2016) MpMYBS3 as a crucial transcription factor of cold signalling confers the cold tolerance of banana. Plant Cell Tissue Organ Cult 125:93–106

    Article  CAS  Google Scholar 

  • Elayabalan S, Kalaiponmani K, Subramaniam S, Selvarajan R, Panchanathan R, Muthuvelayoutham R, Kumar KK, Balasubramanian P (2013) Development of Agrobacterium-mediated transformation of highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease. World J Microbiol Biotechnol 29:589–596. https://doi.org/10.1007/s11274-012-1214-z

    Article  CAS  PubMed  Google Scholar 

  • Elayabalan S, Subramaniam S, Selvarajan R (2017) Construction of BBTV rep gene RNAi vector and evaluate the silencing mechanism through injection of Agrobacterium tumefaciens transient expression system in BBTV Infected Hill Banana plants cv. Virupakshi (AAB). Ind J Nat Sci 7:976–997

    Google Scholar 

  • Elitzur T, Yakir E, Quansah L, Zhangjun F, Vrebalov J, Khayat E, Giovannoni JJ, Friedman H (2016 May) Banana MaMADStranscription factors are necessary for fruit ripening and molecular tools to promote shelf-life and food security. Plant Physiol 171(1):380–391. https://doi.org/10.1104/pp.15.01866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sayed E, Mahfouze S, Shaltout A, El-Dougdoug K, Sayed R (2011) Mutation breeding of banana cv.‘Grand-Nain’for resistance to some banana viruses using biotechnology and physical mutagens. Afr J Plant Sci Biotechnol 5:35–40

    Google Scholar 

  • Fairbairn DJ, Cavallaro AS, Bernard M, Mahalinga-Iyer J, Graham MW, Botella JR (2007) Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta 226:1525–1533

    Article  CAS  PubMed  Google Scholar 

  • Gadani F, Mansky LM, Medici R, Miller WA, Hill JH (1990) Genetic engineering of plants for virus resistance. Arch Virol 115:1–21. https://doi.org/10.1007/BF01310619

    Article  CAS  PubMed  Google Scholar 

  • Ganapathi TR, Suprasanna P, Bapat VA, Kulkarni VM, Rao PS (1999) Somatic embryogenesis and plant regeneration from male flower buds in banana. Curr Sci 76:1228–1231

    Google Scholar 

  • Ganapathi TR, Higgs NS, Balint-Kurti PJ, Arntzen CJ, May GD, Van Eck JM (2001) Agrobacterium-mediated transformation of embryogenic cell suspensions of the banana cultivar Rasthali (AAB). Plant Cell Rep 20:157–162

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Dou T, He W, Sheng O, Bi F, Deng G, Gao H, Dong T, Li C, Zhang S, Yi G (2021) MaMAPK3-MaICE1-MaPOD P7 pathway, a positive regulator of cold tolerance in banana. BMC Plant Biol 21:1–8

    Article  CAS  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2012) Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS One 7:e39557. https://doi.org/10.1371/journal.pone.0039557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghag SB, Shekhawat UK, Ganapathi TR (2014a) Native cell-death genes as candidates for developing wilt resistance in transgenic banana plants. AoB Plants 6:plu037. https://doi.org/10.1093/aobpla/plu037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2014b) Host induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnol J 12:541–553. https://doi.org/10.1111/pbi.12158

    Article  CAS  PubMed  Google Scholar 

  • Golding JB, Shearer D (1998) Postharvest biology and technology application of 1-MCP and propylene to identify ethylene dependent ripening processes in mature banana fruit. Postharvest Biol Technol 14:87–89

    Article  CAS  Google Scholar 

  • Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11:192–198

    Article  CAS  PubMed  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251. https://doi.org/10.1038/418244a

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CH, Wei YR, Huang YH, Yi GJ (2013) An efficient protocol for the production of chit42 transgenic Furenzhi banana (Musa spp. AA group) resistant to Fusarium oxysporum. In Vitro Cell Dev Biol Plant 49:584–592

    Article  CAS  Google Scholar 

  • Hu C, Sheng O, Deng G, He W, Dong T, Yang Q, Dou T, Li C, Gao H, Liu S, Yi G (2021) CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-carboxylate oxidase 1) promotes the shelf life of banana fruit. Plant Biotechnol J 19(4):654–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail IA, Salama MI, Hamid NA, Sadik AS (2005) Production of transgenic banana plants conferring tolerance to salt stress. Ann Agric Sci (Cairo) 50:263–279

    Google Scholar 

  • Ismail RM, El-Domyati FM, Wagih EE, Sadik AS, Abdelsalam AZE (2011) Construction of banana bunchy top nanovirus-DNA-3 encoding the coat protein gene and its introducing into banana plants cv. Williams. J Genet Eng Biotechnol 9(1):35–41. https://doi.org/10.1016/j.jgeb.2011.05.012

    Article  CAS  Google Scholar 

  • Khanna H, Becker D, Kleidon J et al (2004) Centrifugation assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and lady finger AAB). Mol Breed 14:239–252. https://doi.org/10.1023/B:MOLB.0000047771.34186.e8

    Article  CAS  Google Scholar 

  • Krishna B, Kadu AA, Vyavhare SN, Chaudhary RS, Joshi SS, Patil AB, Subramaniam VR, Sane PV (2013) RNAi-mediated resistance against banana bunchy top virus (BBTV) in ‘GrandNain’ banana. Int Soc Hortic Sci 974:157–164. AGRIS

    Google Scholar 

  • Kulkarni VM, Ganapathi TR, SuprasannaP BVA (2007) In vitro mutagenesis in banana (Musa spp.) using gamma irradiation. In: Jain SM, Häggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Dordrecht, pp 543–559

    Chapter  Google Scholar 

  • Kumar SGB, Ganapathi TR, Bapat VA (2004) Edible vaccines: current status and future prospects. Physiol Mol Biol Plants 10:37–47

    Google Scholar 

  • Kumar GS, Ganapathi TR, Revathi CJ, Srinivas L, Bapat VA (2005) Expression of hepatitis B surface antigen in transgenic banana plants. Planta 222:484–493

    Article  CAS  PubMed  Google Scholar 

  • Kumar GBS, Srinivas L, Ganapathi TR (2011) Iron fortification of banana by the expression of soybean ferritin. Biol Trace Elem Res 142(2):232–241. https://doi.org/10.1007/s12011-010-8754-6

    Article  CAS  PubMed  Google Scholar 

  • Lekshmi RS, Soni KB, Alex S, Nair DS, Sreekantan L, Reghunath BR (2016) A rapid protocol for somatic embryogenesis mediated regeneration in banana (Musa spp.) cv. Nendran. J Hortic Sci 11:116–123

    Article  Google Scholar 

  • Lekshmi RS, Ck H, Soni KB, Alex S (2021) Transgenic banana plants carrying ihpRNA cassette targeting viral replicase gene show resistance against Banana bract mosaic virus. J Hortic Sci Biotechnol 96:324–329. https://doi.org/10.1080/14620316.2020.1853613

    Article  CAS  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficient TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392. https://doi.org/10.1038/nbt.2199

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang K, Xie H, Wang DW, Xu CL, Huang X, Wu WJ, Li DL (2015) Cathepsin B cysteine proteinase is essential for the development and pathogenesis of the plant parasitic nematode Radopholussimilis. Int J Biol Sci 11(9):1073–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HJ, Cheng HY, Chen CH, Huang HC, Feng TY (1997) Plant amphipathic proteins delay the hypersensitive response caused by Pseudomonas syringae pv. syringae. Physiol Mol Plant Pathol 51:367–376

    Article  CAS  Google Scholar 

  • Magambo B, Harjeet K, Arinaitwe G, Tendo S, Arinaitwe IK, Kubiriba J, Tushemereirwe W, Dale J (2016) Inhibition of cell death as an approach for development of transgenic resistance against Fusarium wilt disease. Afr J Biotechnol 15:786–797

    Article  CAS  Google Scholar 

  • Mahdavi F, Sariah M, Maziah M (2012) Expression of rice thaumatin-like protein gene in transgenic banana plants enhances resistance to Fusarium wilt. Appl BiochemBiotechnol 166:1008–1019

    CAS  Google Scholar 

  • Mahmood M, Bidabadi SS, Ghobadi C, Gray DJ (2012) Effect of methyl jasmonate treatments on alleviation of polyethylene glycol-mediated water stress in banana (Musa acuminata cv.‘Berangan’, AAA) shoot tip cultures. Plant Growth Reg 68:161–169

    Article  CAS  Google Scholar 

  • Mandadi KK, Scholthof KB (2013) Plant immune responses against viruses: how does a virus cause disease? Plant Cell 25:1489–1505. https://doi.org/10.1105/tpc.113.111658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marriott J, Palmer JK (1980) Bananas—physiology and biochemistry of storage and ripening for optimum quality. Crit Rev Food Sci Nutr 13:41–88

    Article  CAS  PubMed  Google Scholar 

  • Maxmen A (2019) CRISPR might be the banana’s only hope against a deadly fungus. Nat 574(7776):15. https://doi.org/10.1038/d41586-019-02770-7

    Article  CAS  Google Scholar 

  • May GD, Afza R, Mason HS, Wiecko A, Novak FJ, Arntzen CJ (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Biotechnology 13:486–492

    CAS  Google Scholar 

  • Maziah M, Sreeramanan S, Puad A, Sariah M (2007) Production of transgenic banana cultivar, rastali (AAB) via Agrobacterium-mediated transformation with a rice chitinase gene. J Plant Sci 2:504–517

    Article  CAS  Google Scholar 

  • Mohandas S, Sowmya HD, Saxena AK, Meenakshi S, Rani RT, Mahmood R (2013) Transgenic banana cv. Rasthali (AAB, Silk gp) harboring Ace-AMP1gene imparts enhanced resistance to Fusarium oxysporumf.sp. cubense race. Sci Hortic 164:392–399

    Article  CAS  Google Scholar 

  • Morais-LinoLS, Santos-Serejo JA dos, Silva S de O. e .et al (2008). Cell suspension culture and plant regeneration of a Brazilian plantain, cultivar Terra. PesquiAgropecu Bras43(10): 1325–1330. https://doi.org/10.1590/S0100-204X2008001000010

  • Namukwaya B, Tripathi L, Tripathi JN, Arinaitwe G, Mukasa SB, Tushemereirwe WK (2012) Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease. Transgenic Res 21:855–865

    Article  CAS  PubMed  Google Scholar 

  • Nandhakumar N, Kumar K, Sudhakar D, Soorianathasundaram K (2018) Plant regeneration, developmental pattern and genetic fidelity of somatic embryogenesis derived Musa spp. J Genet EngBiotechnol 16:587–598. https://doi.org/10.1016/j.jgeb.2018.10.001

    Article  Google Scholar 

  • Negi S, Tak H, Ganapathi TR (2015) Cloning and functional characterization of MusaVND1 using transgenic banana plants. Transgenic Res 24:571–585. https://doi.org/10.1007/s11248-014-9860-6

    Article  CAS  PubMed  Google Scholar 

  • Negi S, Tak H, Ganapathi TR (2016) Functional characterization of secondary wall deposition regulating transcription factors MusaVND2 and MusaVND3 in transgenic banana plants. Protoplasma 253:431–446. https://doi.org/10.1007/s00709-015-0822-5

    Article  CAS  PubMed  Google Scholar 

  • Negi S, Tak H, Ganapathi TR (2018) A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H2O2 content. Plant Mol Biol 96:457–471. https://doi.org/10.1007/s11103-018-0710-4

    Article  CAS  PubMed  Google Scholar 

  • Novak FJ, Afza R, Duren MV, Perea-Dallos M, Conger BV, Xiaolang T (1989) Somatic embryogenesis and plant regeneration in suspension cultures of dessert (AA and AAA) and cooking (ABB) bananas (Musa spp.). Biotechnology 7:154–159

    Google Scholar 

  • Ntui VO, Tripathi JN, Tripathi L (2020) Robust CRISPR/Cas9 mediated genome editing tool for banana and plantain (Musa spp.). Cur Plant Biol 21:100128–100138. https://doi.org/10.1016/j.cpb.2019.100128

    Article  Google Scholar 

  • Ortiz R, Vuylsteke D (1995) Factors influencing seed set in Triploid Musa spp. L and production of diploid hybrids. Ann Bot 75:151–155

    Article  Google Scholar 

  • Paul JY, Becker DK, Dickman MB, Harding RM, Khanna HK, Dale JL (2011) Apoptosis-related genes confer resistance to Fusarium wilt in transgenic ‘Lady Finger’ bananas. Plant Biotechnol J 9:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Paul JY, Khanna H, Kleidon J, Hoang P, Geijskes J, Daniells J, Zaplin E, Rosenberg Y, James A, Mlalazi B, Deo P (2017) Golden bananas in the field: elevated fruit pro-vitamin A from the expression of a single banana transgene. Plant Biotechnol J 15:520–532

    Article  CAS  PubMed  Google Scholar 

  • Paul JY, Harding R, Tushemereirwe W, Dale J (2018) Banana21: from gene discovery to deregulated golden bananas. Front Plant Sci 9:558–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Pei XW, Chen SK, Wen RM, Ye S, Huang JQ, Zhang YQ, Wang BS, Wang ZA, Jia SR (2005) Creation of transgenic banana expressing human lysozyme gene for Panama wilt resistance. J Integr Plant Biol 47:971–977

    Article  CAS  Google Scholar 

  • Pillay M (2011) In: Pillay M, Tenkouano A (eds) Banana breeding: progress and challenges, 1st edn. CRC Press, Boca Raton, FL, p 383. https://doi.org/10.1201/b10514

    Chapter  Google Scholar 

  • Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11:745–770. https://doi.org/10.1038/nrmicro3120

    Article  CAS  PubMed  Google Scholar 

  • Qi T, Zhu X, Tan C, Liu P, Guo J, Kang Z, Guo J (2018) Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust. Plant Biotechnol J 16:797–807

    Article  CAS  PubMed  Google Scholar 

  • Robinson JC (1996) Bananas and plantains. CAB International, Wallinford, pp 172–174

    Google Scholar 

  • Roderick H, Tripathi L, Babirye A, Wang D, Tripathi J, Urwin PE, Atkinson HJ (2012) Generation of transgenic plantain (Musa spp.) with resistance to plant pathogenic nematodes. Mol Plant Pathol 13:842–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roderick H, Urwin PE, Atkinson HJ (2018) Rational design of biosafe crop resistance to a range of nematodes using RNA interference. Plant Biotechnol J 16:520–529

    Article  CAS  PubMed  Google Scholar 

  • Rustagi A, Jain S, Kumar D, Shekhar S, Jain M, Bhat V, Sarin NB (2015) High efficiency transformation of banana [Musa acuminata L. cv. Matti (AA)] for enhanced tolerance to salt and drought stress through overexpression of a peanut salinity-induced pathogenesis-related class 10 protein. Mol Biotechnol 57:27–35. https://doi.org/10.1007/s12033-014-9798-1

    Article  CAS  PubMed  Google Scholar 

  • Sági L, Remy S, Panis B, Swennen R, Volckaert G (1994) Transient gene expression in electroporated banana (Musa spp., cv. ‘Bluggoe’, ABB group) protoplasts isolated from regenerable embryogenetic cell suspensions. Plant Cell Rep 13:262–266. https://doi.org/10.1007/bf00233316

    Article  PubMed  Google Scholar 

  • Sági L, Panis B, Remy S, Schoofs H, Smet KD, Swennen R et al (1995) Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Biotechnology 13:481–485. https://doi.org/10.1038/nbt0595-481

    Article  PubMed  Google Scholar 

  • Said EM, Mahmoud RA, Al-Akshar R, Safwat G (2015) Drought stress tolerance and enhancement of banana plantlets in vitro. Austin J BiotechnolBioeng 2(2):1040–1046

    Google Scholar 

  • Santamaría JM, Hernández-Portilla D, Chi-Manzanero B, Espadas F, Castaño E, Iturriaga G, Rodríguez-Zapata LC (2009) Incorporation of two trehalose biosynthetic genes in banana increases trehalose levels and protects the photosynthetic apparatus from salt-stress damage. J Hortic Sci Biotechnol 84:665–671

    Article  Google Scholar 

  • Santos E, Remy S, Thiry E, Windelinckx S, Swennen R, Sági L (2009) Characterization and isolation of a T-DNA tagged banana promoter active during in vitro culture and low temperature stress. BMC Plant Biol 9:1–5

    Article  Google Scholar 

  • Schillberg S, Finnern R (2021) Plant molecular farming for the production of valuable proteins–Critical evaluation of achievements and future challenges. J Plant Physiol 258-259:153359. https://doi.org/10.1016/j.jplph.2020.153359

    Article  CAS  PubMed  Google Scholar 

  • Schmidt SM, Belisle M, Frommer WB (2020) The evolving landscape around genome editing in agriculture: Many countries have exempted or move to exempt forms of genome editing from GMO regulation of crop plants. EMBO Rep 21(6):e50680. https://doi.org/10.15252/embr.202050680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao X, Wu S, Dou T, Zhu H, Hu C, Huo H, He W, Deng G, Sheng O, Bi F, Gao H (2020) Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene-modified semi-dwarf banana. Plant Biotechnol J 18(1):17–19

    Article  CAS  PubMed  Google Scholar 

  • Shekhawat UKS, Ganapathi TR (2013) MusaWRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS One 8(10):e75506. https://doi.org/10.1371/journal.pone.0075506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shekhawat UKS, Ganapathi TR, Hadapad AB (2012) Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. J Gen Virol 93:1804–1813. https://doi.org/10.1099/vir.0.041871-0

    Article  CAS  PubMed  Google Scholar 

  • Shekhawat UK, Srinivas L, Ganapathi TR (2011) MusaDHN-1, a novel multiple stress-inducible SK (3)-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234(5):915–932. https://doi.org/10.1007/s00425-011-1455-3

    Article  CAS  PubMed  Google Scholar 

  • Shimwela MM, Blackburn JK, Jones JB, Nkuba J, Narouei-Khandan HA, Ploetz RC, Beed F, Van Bruggen AH (2017) Local and regional spread of banana Xanthomonas wilt (BXW) in space and time in Kagera, Tanzania. Plant Pathol 66:1003–1014

    Article  Google Scholar 

  • Simmonds NW, Shepherd K (1955) The taxonomy and origins of the cultivated bananas. Bot J Linnean Soc 55:302–312. https://doi.org/10.1111/j.1095-8339.1955.tb00015.x

    Article  Google Scholar 

  • Smith MK, Hamill SD, Langdon PW, Giles JE, Doogan VJ, Pegg KG (2006) Towards the development of a Cavendish banana resistant to race 4 of fusarium wilt: gamma irradiation of micropropagated Dwarf Parfitt (Musa spp., AAA group, Cavendish subgroup). Aust J Exp Agric 46:107–113

    Article  Google Scholar 

  • Sreedharan S, Shekhawat UK, Ganapathi TR (2012) MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. Plant Mol Biol 80:503–517

    Article  CAS  PubMed  Google Scholar 

  • Sreedharan S, Shekhawat UK, Ganapathi TR (2013) Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses. Plant Biotechnol J 11:942–952. https://doi.org/10.1111/pbi.12086

    Article  CAS  PubMed  Google Scholar 

  • Sreedharan S, Shekhawat UK, Ganapathi TR (2015) Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2; 6) in transgenic banana plants signals its pivotal role in salt tolerance. Plant Mol Biol 88:41–52

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam K, Subramanyam K, Sailaja KV et al (2011) Highly efficient Agrobacterium -mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep 30:425–436

    Article  CAS  PubMed  Google Scholar 

  • Sunisha C, Sowmya HD, Usharani TR, Umesha M, Gopalkrishna HR, Saxena A (2020) Deployment of stacked antimicrobial genes in banana for stable tolerance against Fusarium oxysporum f. sp. cubense through genetic transformation. Mol Biotechnol 62:8–17. https://doi.org/10.1007/s12033-019-00219-w

    Article  CAS  PubMed  Google Scholar 

  • Tak H, Negi S, Ganapathi TR, Bapat VA (2016) Molecular farming: prospects and limitation. In: Mohandas S, Ravishankar KV (eds) Banana: genomics and transgenic approaches for genetic improvement. Springer, Cham, pp 261–275

    Chapter  Google Scholar 

  • Tak H, Negi S, Ganapathi TR (2017) Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. Protoplasma 254:803–816

    Article  CAS  PubMed  Google Scholar 

  • Tak H, Negi S, Rajpurohit YS, Misra HS, Ganapathi TR (2020) MusaMPK5, a mitogen activated protein kinase is involved in regulation of cold tolerance in banana. Plant PhysiolBiochem 146:112–123

    CAS  Google Scholar 

  • Thangavelu R, Gopi M, Pushpakanth P, Loganathan M, Edwin Raj E, Marimuthu N, Prabakaran M, Uma S (2021) First Report of Fusarium oxysporum f. sp. cubense VCG 0125 and VCG 01220 of Race 1 Infecting Cavendish Bananas (Musa sp. AAA) in India. Plant Dis 105:1215. https://doi.org/10.1094/PDIS-09-20-2052-PDN

    Article  Google Scholar 

  • Thomazella DP, Seong K, Mackelprang R, Dahlbeck D, Geng Y, Gill US, Qi T, Pham J, Giuseppe P, Lee CY, Ortega A (2021) Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proc Natl Acad Sci 118(27):e2026152118. https://doi.org/10.1073/pnas.2026152118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi L, Mwaka H, Tripathi JN, Tushemereirwe WK (2010) Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. musacearum. Mol. Plant Pathol 11(6):721–731

    CAS  Google Scholar 

  • Tripathi JN, Lorenzen J, Bahar O, Ronald P, Tripathi L (2014) Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum. Plant Biotechnol J 12:663–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi L, Babirye A, Roderick H, Tripathi JN, Changa C, Urwin PE, Tushemereirwe WK, Coyne D, Atkinson HJ (2015) Field resistance of transgenic plantain to nematodes has potential for future African food security. Sci Rep 5:8127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi JN, Ntui VO, Ron M et al (2019) CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Biol 2:46. https://doi.org/10.1038/s42003-019-0288-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi L, Ntui VO, Tripathi JN (2020) CRISPR/Cas9-based genome editing of banana for disease resistance. Curr Opin Plant Biol 56:118–126

    Article  CAS  PubMed  Google Scholar 

  • Tripathi JN, Ntui VO, Shah T, Tripathi L (2021) CRISPR/Cas9-mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease. Plant Biotechnol J 19(7):1291–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Asten PJ, Fermont AM, Taulya G (2011) Drought is a major yield loss factor for rainfed East African highland banana. Agric Water Manage 98:541–552

    Article  Google Scholar 

  • Van Harten AM (1998) Mutation breeding theory and practical applications. Cambridge University Press, Cambridge, p 353

    Google Scholar 

  • Velasquez AHI, Ruiz CAA, Junior SDO (2010) Ethanol production process from banana fruit and its lignocellulosic residues: energy analysis. Energy 35:3081–3087

    Article  Google Scholar 

  • Vishnevetsky J, White TL, Palmateer AJ, Flaishman M, Cohen Y, Elad Y, Velcheva M, Hanania U, Sahar N, Dgani O, Perl A (2011) Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Res 20:61–72. https://doi.org/10.1007/s11248-010-9392-7

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Jones LM, Urwin PE, Atkinson HJ (2011) A synthetic peptide shows retro-and anterograde neuronal transport before disrupting the chemo sensation of plant-pathogenic nematodes. PLoS One 6:e17475. https://doi.org/10.1371/journal.pone.0017475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhang J, Jia C, Liu J, Li Y, Yin X, Xu B, Jin Z (2012) De novo characterization of the banana root transcriptome and analysis of gene expression under Fusarium oxysporum f. sp. Cubense tropical race 4 infection. BMC Genomics 13:1–9. https://doi.org/10.1186/1471-2164-13-650

    Article  CAS  Google Scholar 

  • Wang Z, Miao H, Liu J, Xu B, Yao X, Xu C, Zhao S, Fang X, Jia C, Wang J, Zhang J (2019) Musa balbisiana genome reveals subgenome evolution and functional divergence. Nat Plants 5:810–821. https://doi.org/10.1038/s41477-019-0452-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang A, Li Y, Xu Y, Wei Q, Wang J, Lin F, Gong D, Liu F, Wang Y, Peng L, Li J (2021) A novel Banana mutant “RF 1” (Musa spp. ABB, Pisang Awak subgroup) for improved agronomic traits and enhanced cold tolerance and disease resistance. Front Plant Sci 12:730718. https://doi.org/10.3389/fpls.2021.730718

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Borthakur D, Bressan A (2016) Localization of Banana bunchy top virus and cellular compartments in gut and salivary gland tissues of the aphid vector Pentalonia nigronervosa. Insect Sci 23:591–602. https://doi.org/10.1111/1744-7917.12211

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Hu W, Liu J, Zhang J, Jia C, Miao H, Xu B, Jin Z (2014) A banana aquaporin gene, MaPIP1; 1, is involved in tolerance to drought and salt stresses. BMC Plant Biol 14:1–4

    Article  CAS  Google Scholar 

  • Xu G, Yuan M, Ai C, Liu L, Zhuang E, Karapetyan S (2017) uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature 545:491–494. https://doi.org/10.1038/nature22372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Hu W, Liu J, Song S, Hou X, Jia C, Li J, Miao H, Wang Z, Tie W, Xu B, Jin Z (2020) An aquaporin gene MaPIP2-7 is involved in tolerance to drought, cold and salt stresses in transgenic banana (Musa acuminata L.). Plant PhysiolBiochem 147:66–76. https://doi.org/10.1016/j.plaphy.2019.12.011

    Article  CAS  Google Scholar 

  • Xu Y, Hu W, Song S, Ye X, Ding Z, Liu J, Wang Z, Li J, Hou X, Xu B, Jin Z (2023) MaDREB1F confers cold and drought stress resistance through common regulation of hormone synthesis and protectant metabolite contents in banana. Hortic Res 10(2):uhac275. https://doi.org/10.1093/hr/uhac275

    Article  PubMed  Google Scholar 

  • Yadav K, Patel P, Srivastava AK, Ganapathi TR (2017) Overexpression of native ferritin gene MusaFer1 enhances iron content and oxidative stress tolerance in transgenic banana plants. PLoS One 12:e0188933. https://doi.org/10.1371/journal.pone.0188933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yip MK, Lee SW, Su KC, Lin YH, Chen TY, Feng TY (2011) An easy and efficient protocol in the production of pflp transgenic banana against Fusarium wilt. Plant Biotechnol Rep 5:245–254. https://doi.org/10.1007/s11816-011-0179-y

    Article  Google Scholar 

  • Zhang T, Jin Y, Zhao J, Gao F, Zhou B, Fang Y, Guo H (2016) Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticillium dahliae. Mol Plant 9:939–942

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yuan L, Staehelin C, Li Y, Ruan J, Liang Z, Xie Z, Wang W, Xie J, Huang S (2019) The LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE 1 protein of banana is required for perception of pathogenic and symbiotic signals. New Phytol 223(3):1530–1546. https://doi.org/10.1111/nph.15888

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soni KB .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

KB, S., T, A., Jadhav, P.R., Alex, S. (2023). Genetic Improvement of Banana. In: Tiwari, S., Koul, B. (eds) Genetic Engineering of Crop Plants for Food and Health Security. Springer, Singapore. https://doi.org/10.1007/978-981-99-5034-8_15

Download citation

Publish with us

Policies and ethics