Skip to main content

Occurrence of Nonlinear Electron Mobility in GaAs/InxGa1−xAs Coupled Double Quantum Well FET

  • Conference paper
  • First Online:
Micro and Nanoelectronics Devices, Circuits and Systems (MNDCS 2023)

Abstract

The mobility, µ of electrons shows oscillating behavior in an asymmetric GaAs/InxGa1-xAs Quantum Well (QW) Field Effect Transistor (FET) structure. So as to analyze µ, we take asymmetric doping concentrations, varying Nd1 in the substrate barrier and keeping Nd2 constant in surface barrier. The well widths W1 and W2 are also asymmetrically changed such that the sum (W1 + W2) remains constant. Resonance can be achieved for the subband energy states between the two QWs for a set of W1 and W2 by varying Nd1. A considerable variation is observed in spreading of subband wave functions near resonance that affect the subband mobilities through intersubband effects, thus causing a drop in µ. We show that dip in µ enhances by decreasing the difference in W1 and W2. The results of nonlinearity in µ can help in analyzing the characteristics of the QWFET devices near resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S.-H. Chen, W.-S. Liao, H.-C. Yang, S.-J. Wang, Y.-G. Liaw, H. Wang, H. Gu, M.-C. Wang, High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure. Nanoscale Res Lett 7, Article number: 431 (2012)

    Google Scholar 

  2. G. Dewey, M.K. Hudait, K. Lee, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, R. Chau, Carrier transport in high-mobility III–V quantum-well transistors and performance impact for high-speed low-power logic applications. IEEE Electron Device Lett. 29, 1094–1097 (2008)

    Article  Google Scholar 

  3. K.K. Bhuwalka et al., In0.53Ga0.47As-based nMOSFET design for low standby power applications. IEEE Trans. Electron Devices 62, 2816–2823 (2015)

    Google Scholar 

  4. A. Nishida, K. Hasegawa, R. Ohama, S. Fujikawa, S. Hara, H. I. Fujishiro, Comparative study on nano-scale III-V double-gate MOSFETs with various channel materials. Physica Status Solidi C 1413–1416 (2013)

    Google Scholar 

  5. S. Tewari, A. Biswas, A. Mallik, Impact of a spacer layer on the analog performance of asymmetric InP/InGaAs nMOSFETs. IEEE Trans. Electron Devices 63, 2313–2320 (2016)

    Article  Google Scholar 

  6. D.H. Kim, J.A. del Alamo, J.H. Lee, K.S. Seo, Logic suitability of 50-nm In0.7Ga0.3As HEMTs for beyond-CMOS applications. IEEE Trans. Electron Devices 54, 2606–2613 (2007)

    Google Scholar 

  7. J. Lin, T.W. Kim, D.A. Antoniadis, J.A. del Alamo, A self-aligned InGaAs quantum-well metal-oxide-semiconductor field-effect transistor fabricated through a lift-off-free front-end process. Appl. Phys. Express 5, 064002 (2012)

    Article  Google Scholar 

  8. H. Riel, L.-E. Wernersson, M. Hong, J.A. del Alamo, III–V Compound Semiconductor Transistors—From Planar to Nanowire Structures (Cambridge University Press, 2014), vol. 39

    Google Scholar 

  9. P. Bhattacharya, Properties of III–V Quantum Wells and Superlattices (INSPEC, IEE, London, 1996), p. 187

    Google Scholar 

  10. S. Chowdhury, Md. Jabed Iqbal, Nanostructure Physics of Coupled Quantum Well: Parametric Variation of Energy Spectrum (American Academic Press, 2015)

    Google Scholar 

  11. S. Panda, K.T. Dora, A.K. Panda, T. Sahu, Electron mobility in asymmetric GaN/AlGaN quantum well transistor structure: effect of alloy disorder scattering. Phys. Scr. 96, 124058 (2021)

    Article  Google Scholar 

  12. D.-D. Jin, S.-Y. Yang, L.-W. Zhang, H.-j. Li, H. Zhang, J.-x. Wang, T. Yang, X.-L. Liu, Q.-S. Zhu, Z.-G. Wang, Electron scattering in GaAs/InGaAs quantum wells subjected to an in-plane magnetic field. J. Appl. Phys. 113, 213711 (2013)

    Google Scholar 

  13. S.R. Panda, A. Sahu, S. Das, A.K. Panda, T. Sahu, Doping dependent nonlinear electron mobility in GaAs/InxGa1-xAs coupled quantum well pseudomorphic MODFET structure. Semiconductors 54, 788–795 (2020)

    Article  Google Scholar 

  14. L. Sodergren, N.S. Garigapati, M. Bor, E. Lind, Mobility of near surface MOVPE grown InGaAs/InP quantum wells. Appl. Phys. Lett. 117, 013102 (2020)

    Article  Google Scholar 

  15. D.A. Safonov, A.N. Vinichenko, N.I. Kargin, I.S. Vasil’evskii, Electron transport in PHEMT AlGaAs/InGaAs/GaAs quantum wells at different temperatures: influence of one-side δ-Si doping. Semiconductors 52, 189–194 (2018)

    Google Scholar 

  16. A. Babinski, J. Siwiec-Matuszyk, J.M. Baranowski, Transport and quantum electron mobility in the modulation Si d-doped pseudomorphic GaAs/In0.2Ga0.8As/Al0.2Ga0.8As quantum well grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 77, 999–1001 (2000)

    Google Scholar 

  17. N. Sahoo, A.K. Panda, T. Sahu, Electron mobility in AlxGa1−xAs based square-parabolic double quantum well HEMT structure—effect of asymmetric doping profile. Physica Status Solidi B 254, 1700221 (2017)

    Google Scholar 

  18. N. Sahoo, A.K. Sahu, S.K. Palo, Electron mobility in asymmetric coupled AlxGa1-xAs parabolic quantum well structure–Impact of external electric field. Physica B 608, 412798 (2021)

    Article  Google Scholar 

  19. DYu., Protasov, K.S. Zhuravlev, A.V. Rzhanov, The influence of impurity profiles on mobility of two-dimensional electron gas in AlGaAs/InGaAs/GaAs heterostructures modulation-doped by donors and acceptors. Solid-State Electron. 129, 66–72 (2017)

    Google Scholar 

  20. B.R. Bennett, T.F. Chick, J. Brad Boos, J.G. Champlain, A.A. Podpirka, Strained InGaAs/InAlAs quantum wells for complementary III–V transistors. J. Cryst. Growth 388, 92–97 (2014)

    Google Scholar 

  21. J. Pozela, K. Pozela, V. Juciene, A. Suziedelis, N. Zurauskiene, A.S. Shkolnik, Electron transport in modulation-doped InAlAs/InGaAs/InAlAs and AlGaAs/InGaAs/AlGaAs heterostructures. Lith. J. Phys. 51, 270–275 (2011)

    Article  Google Scholar 

  22. T. Sahu, S. Palo, P.K. Nayak, N. Sahoo, Enhancement of low temperature electron mobility due to an electric field in an InGaAs/InAlAs double quantum well structure. Semiconductors 48, 1318–1323 (2014)

    Article  Google Scholar 

  23. M. Mohapatra, A. Sahu, S.R. Panda, S. Das, T. Sahu, A.K. Panda, Nonlinear electron transport in GaAs/InGaAs asymmetric double-quantum-well pseudomorphic high-electron-mobility transistor structure. Jpn. J. Appl. Phys. 56, 064101 (2017)

    Article  Google Scholar 

  24. T. Ando, A.B. Fowler, F. Stern, Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982)

    Article  Google Scholar 

  25. K. Inoue, T. Matsuno, Electron mobilities in modulation-doped AlxGa1−xAs/GaAs and pseudomorphic AlxGa1−xAs/InyGa1−yAs quantum-well structures. Phys Rev. B 47, 3771–3778 (1993)

    Article  Google Scholar 

  26. T. Sahu, J. Patnaik, Low temperature electron mobility in a coupled quantum well system. Superlattices Microstruct. 30, 119–127 (2001)

    Article  Google Scholar 

  27. R.K. Nayak, S. Das, A.K. Panda, T. Sahu, Structural asymmetry induced size quantized nonmonotonous electron mobility in GaAs/AlxGa1-xAs double quantum well structure. Superlattices Microstruct. 89, 75–82 (2016)

    Article  Google Scholar 

  28. A.K. Panda, S.R. Panda, A. Sahu, S. Das, T. Sahu, Structural asymmetry induced nonmonotonic electron mobility in pseudomorphic double quantum well high electron mobility transistors. Phys. Scr. 95, 054003 (2020)

    Article  Google Scholar 

  29. Y. Zhang, Z. Wang, R. Guo, G. Liu, S. Xu, W. Bao, J. Zhang, Y. Hao, High performance InGaN double channel high electron mobility transistors with strong coupling effect between the channels. Appl. Phys. Lett. 113, 233503 (2018)

    Article  Google Scholar 

  30. S.R. Panda, M. Pradhan, T. Sahu, A.K. Panda, Study of nonmonotonic electron mobility due to influence of asymmetric structure parameters in pseudomorphic heterojunction field effect transistors. Phys. Scr. 97, 114006 (2022)

    Article  Google Scholar 

  31. N. Sahoo, T. Sahu, Mobility modulation in inverted delta doped coupled double quantum well structure. Physica B 498, 49–54 (2016)

    Article  Google Scholar 

  32. W.Y.-Sy Su, V.C.-P. Lu, C.-B. Wu, J.-S. Wang, J.-L. Shen, K.-C. Chiu, Temperature-dependent charge-carrier transport between Si-δ-doped layers and AlGaAs/InGaAs/AlGaAs quantum well with various spacer layer thicknesses measured by Hall-effect analysis. Sci. Rep. 10, Article number: 12503 (2020)

    Google Scholar 

  33. T. Sahu, N. Sahoo, Oscillating electron mobility in GaAs/AlxGa1-xAs double quantum well structure under applied electric field. Superlattices Microstruct. 77, 162–170 (2015)

    Article  Google Scholar 

  34. R.J. Choi, Y.B. Hahn, Efficient blue-light emitting diodes with InGaN/GaN triangular shaped multiple quantum wells. Appl. Phys. Lett. 82, 2764 (2003)

    Article  Google Scholar 

  35. S.K. Palo, T. Sahu, A.K. Panda, Effect of non-square structure potential on the multisubband electron mobility in double quantum well structure. Physica B 545, 62–68 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangita R. Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panda, S.R., Pradhan, M., Sahu, T., Panda, A.K. (2024). Occurrence of Nonlinear Electron Mobility in GaAs/InxGa1−xAs Coupled Double Quantum Well FET. In: Lenka, T.R., Saha, S.K., Fu, L. (eds) Micro and Nanoelectronics Devices, Circuits and Systems. MNDCS 2023. Lecture Notes in Electrical Engineering, vol 1067. Springer, Singapore. https://doi.org/10.1007/978-981-99-4495-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4495-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4494-1

  • Online ISBN: 978-981-99-4495-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics