Skip to main content

Biodegradation Control of Ocean-Degradable Plastics by Photo-Switching

  • Chapter
  • First Online:
Photo-switched Biodegradation of Bioplastics in Marine Environments
  • 91 Accesses

Abstract

As the global production of plastics increases, marine pollution caused by plastic waste has become a growing problem. Biodegradable plastics are therefore expected to become an environmentally low-impact material. However, biodegradable plastics are subject to microbial action during use, and biodegradation progresses moment by moment, resulting in a decrease in molecular weight and physical properties, which makes them unreliable as a material and has been an obstacle to their widespread use. In order for biodegradable plastics to be widely used, they are required to maintain their physical properties as a product without biodegrading during a certain period of use in the ocean, and at the same time, they are required to decompose quickly after being discharged into the ocean. In other words, a switch function is required to maintain mechanical and other physical properties during use and to decompose quickly after use. “Light” is expected to serve as a switch for biodegradation, since the material is often exposed to sunlight during use and is not exposed to light after use, such as in the ocean. Therefore, we focused on the antibacterial activity of photocatalysts, composited biodegradable plastics with visible-light-sensitive photocatalysts, and evaluated the antibacterial activity (suppression of biodegradation) of the resulting composites under light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stemming the Tide: Land-Based Strategies for a Plastic-Free Ocean. McKinsey & Company Report (2015)

    Google Scholar 

  2. S.C. Gall, R.C. Thompson, Mar. Pollut. Bull. 92, 170 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. J.R. Jambeck et al., Science 347, 768 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. The new plastics economy: rethinking the future of plastics. World Economic Forum Report (2016)

    Google Scholar 

  5. APEC Marine Resources Conservation Working Group, Economy Report—China (2009)

    Google Scholar 

  6. M. Eriksen et al., PLoS ONE 9, e111913 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  7. E.J. Carpenter et al., Science 177, 85 (1972)

    Article  CAS  PubMed  Google Scholar 

  8. J P. Kershaw et al., Sources fate and effects of microplastics in the marine environment: part 2 of a global assessment. GESAMP Report (2015)

    Google Scholar 

  9. D. Yang et al., Environ. Sci. Technol. 49, 13622 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. H. Sashiwa, et al. Mar. Drugs 16 (2018). https://doi.org/10.3390/md16010034

  11. D. Briassoulis, J. Polym. Environ. 12, 65 (2004)

    Article  CAS  Google Scholar 

  12. V. Siracusa et al., Trends Food Sci. Technol. 19, 634 (2008)

    Article  CAS  Google Scholar 

  13. L.S. Nair, C.T. Laurencin, Prog. Polym. Sci. 32, 762 (2007)

    Article  CAS  Google Scholar 

  14. G.E. Luckachan, C.K.S. Pillai, J. Polym. Environ. 19, 637 (2011)

    Article  CAS  Google Scholar 

  15. M.M. Reddy et al., Prog. Polym. Sci. 38, 1653 (2013)

    Article  CAS  Google Scholar 

  16. D.N. Bikiaris, Polym. Degrad. Stabil. 98, 1908 (2013)

    Article  CAS  Google Scholar 

  17. M. Nerantzaki et al., Polym. Degrad. Stabil. 108, 257 (2014)

    Article  CAS  Google Scholar 

  18. K. Fukushima et al., Eur. Polym. J. 47, 139 (2011)

    Article  CAS  Google Scholar 

  19. L.N. Luduena et al., J. Appl. Polym. Sci. 128, 2648 (2013)

    Article  CAS  Google Scholar 

  20. J.W. Rhim et al., Prog. Polym. Sci. 38, 1629 (2013)

    Article  CAS  Google Scholar 

  21. D. Mondal et al., J. Appl. Polym. Sci. 131, 40079 (2014)

    Article  Google Scholar 

  22. B. Tomsic et al., Polym. Degrad. Stabil. 96, 1286 (2011)

    Article  CAS  Google Scholar 

  23. D. Klemencic et al., Carb. Polym. 80, 426 (2010)

    Article  CAS  Google Scholar 

  24. K. Hashimoto et al., Jpn. J. Appl. Phys. 44, 8269 (2005)

    Article  CAS  Google Scholar 

  25. T. Ochiai, A. Fujishima, J. Photochem. Photobiol. 13, 247 (2012)

    Article  CAS  Google Scholar 

  26. M. Miyauchi et al., Environ. Sci. Technol. 42, 4551 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. S.P. Yew et al., Polym. Degrad. Stabil. 91, 1800 (2006)

    Article  CAS  Google Scholar 

  28. N. Sridewi et al., Polym. Degrad. Stabil. 91, 2931 (2006)

    Article  CAS  Google Scholar 

  29. V.A. Najjar, J. Fisher, Fed. Proc. 11, 264 (1952)

    Google Scholar 

  30. R. Shukuya, G.W. Schwert, J. Biol. Chem. 235, 1649 (1960)

    Article  CAS  PubMed  Google Scholar 

  31. A.D. Homola, E.E. Dekker, Biochemistry 6, 2624 (1967)

    Article  Google Scholar 

  32. N. Kawasaki et al., Polymer 46, 9987 (2005)

    Article  CAS  Google Scholar 

  33. N. Yamano et al., Polym. Degrad. Stabil. 108, 116 (2014)

    Article  CAS  Google Scholar 

  34. N. Kawasaki et al., J. Appl. Polym. Sci. 126, 425 (2012)

    Article  Google Scholar 

  35. N. Yamano et al., Polym. Degrad. Stabil. 137, 281 (2017)

    Article  CAS  Google Scholar 

  36. A. Nakayama et al., Polym. Degrad. Stabil. 98, 1882 (2013)

    Article  CAS  Google Scholar 

  37. N. Yamano et al., J. Polym. Environ. 21, 528 (2013)

    Article  CAS  Google Scholar 

  38. N. Yamano et al., J. Polym. Environ. 16, 141 (2008)

    Article  CAS  Google Scholar 

  39. K. Hashimoto et al., J. Appl. Polym. Sci. 54, 1579 (1994)

    Article  CAS  Google Scholar 

  40. K. Tachibana et al., Polym. Degrad. Stabil. 95, 912 (2010)

    Article  CAS  Google Scholar 

  41. N. Yamano et al., Polym. Degrad. Stabil. 166, 230 (2019)

    Article  CAS  Google Scholar 

  42. Fine ceramics (advanced ceramics, advanced technical ceramics)—Test method for antibacterial activity of semiconducting photocatalytic materials under indoor lighting environment. ISO 17094 (2014)

    Google Scholar 

  43. A. Masui et al., Polym. Degrad. Stabil. 167, 44 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by JSPS Grants-in-Aid for Scientific Research 15K05593, NEDO Feasibility Study Program “Novel Marine Biodegradable Materials Based on Polyamide”, and Grant-in-Aid from moon-shot Project (JPNP18016) “Development of photo-switching ocean-degradable plastics with edibility” of NEDO, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Masui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masui, A. (2023). Biodegradation Control of Ocean-Degradable Plastics by Photo-Switching. In: Kaneko, T. (eds) Photo-switched Biodegradation of Bioplastics in Marine Environments. Springer, Singapore. https://doi.org/10.1007/978-981-99-4354-8_8

Download citation

Publish with us

Policies and ethics