Skip to main content

Synthesis, Characteristics, and Applications of Nanomaterials

  • Chapter
  • First Online:
Nanomaterials: The Building Blocks of Modern Technology

Part of the book series: Smart Nanomaterials Technology ((SNT))

  • 332 Accesses

Abstract

The field of nanotechnology is expanding rapidly and holds enormous potential for developing new materials and technologies. Nanomaterials, defined as materials with at least one dimension less than 100 nm, exhibit distinct physical, chemical, and biological properties that make them attractive for various applications. These applications range from electronics and energy to medicine and environmental remediation. This chapter presents an overview of the synthesis methods of nanomaterials, including top-down and bottom-up approaches, and discusses the unique properties that arise from their small size and high surface area-to-volume ratio. Moreover, we describe some of the most promising applications of nanomaterials, such as drug delivery, catalysis, sensors, and energy storage, and emphasize some of the challenges that require attention to enable their widespread use. Finally, we conclude by discussing the ethical and safety concerns linked with the production and use of nanomaterials and suggest some possible directions for future research in this thrilling field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heiligtag FJ, Niederberger M (2013) The fascinating world of nanoparticle research. Mater Today 16(7–8):262–271. https://doi.org/10.1016/j.mattod.2013.07.004

    Article  CAS  Google Scholar 

  2. Freestone I, Meeks N, Sax M, Higgitt C (2007) The Lycurgus cup—a roman nanotechnology. Gold Bull 40(4):270–277. https://doi.org/10.1007/BF03215599

    Article  CAS  Google Scholar 

  3. Santamaria A (2012) Historical overview of nanotechnology and nanotoxicology, pp 1–12. https://doi.org/10.1007/978-1-62703-002-1_1

  4. Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z (2019) An introduction to nanotechnology, pp 1–27. https://doi.org/10.1016/B978-0-12-813586-0.00001-8

  5. Al-Shuja’a O, Obeid A, El-Shekeil Y, Hashim M, Al-Washali Z (2017) New strategy for chemically attachment of imine group on multi-walled carbon nanotubes surfaces: synthesis, characterization and study of DC electrical conductivity. J Mater Sci Chem Eng 05(02):11–21. https://doi.org/10.4236/msce.2017.52002

  6. Binnig G, Rohrer H, Gerber Ch, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49(1):57–61. https://doi.org/10.1103/PhysRevLett.49.57

    Article  Google Scholar 

  7. Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1–6):1–152. https://doi.org/10.1016/j.surfrep.2005.08.003

    Article  CAS  Google Scholar 

  8. Sharifi S, Behzadi S, Laurent S, Laird Forrest M, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343. https://doi.org/10.1039/C1CS15188F

  9. Marques AC, Vale M, Vicente D, Schreck M, Tervoort E, Niederberger M (2021) Porous silica microspheres with immobilized titania nanoparticles for in-flow solar-driven purification of wastewater. Global Chall 5(5):2000116. https://doi.org/10.1002/gch2.202000116

    Article  Google Scholar 

  10. (2019) Nanomaterials definition matters. Nat Nanotechnol 14(3):193–193. https://doi.org/10.1038/s41565-019-0412-3

  11. Prasad S, Kumar V, Kirubanandam S, Barhoum A (2018) Engineered nanomaterials: nanofabrication and surface functionalization. In: Emerging applications of nanoparticles and architecture nanostructures. Elsevier, pp 305–340. https://doi.org/10.1016/B978-0-323-51254-1.00011-7

  12. Lyu H, Gao B, He F, Ding C, Tang J, Crittenden JC (2017) Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustain Chem Eng 5(11):9568–9585. https://doi.org/10.1021/acssuschemeng.7b02170

    Article  CAS  Google Scholar 

  13. Kumar PS et al (2014) Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energ Environ Sci 7(10):3192–3222. https://doi.org/10.1039/C4EE00612G

    Article  CAS  Google Scholar 

  14. Xu K, Chen J (2020) High-resolution scanning probe lithography technology: a review. Appl Nanosci 10(4):1013–1022. https://doi.org/10.1007/s13204-019-01229-5

    Article  CAS  Google Scholar 

  15. Nie M, Sun K, Meng DD (2009) Formation of metal nanoparticles by short-distance sputter deposition in a reactive ion etching chamber. J Appl Phys 106(5):054314. https://doi.org/10.1063/1.3211326

    Article  CAS  Google Scholar 

  16. Lieber CM, Chen C-C (1994) Preparation of fullerenes and fullerene-based materials, pp 109–148. https://doi.org/10.1016/S0081-1947(08)60578-0

  17. Park H, Reddy DA, Kim Y, Lee S, Ma R, Kim TK (2017) Synthesis of ultra-small palladium nanoparticles deposited on CdS nanorods by pulsed laser ablation in liquid: role of metal nanocrystal size in the photocatalytic hydrogen production. Chem Eur J 23(53):13112–13119. https://doi.org/10.1002/chem.201702304

    Article  CAS  Google Scholar 

  18. Wu Q et al (2016) In situ chemical vapor deposition of graphene and hexagonal boron nitride heterostructures. Curr Appl Phys 16(9):1175–1191. https://doi.org/10.1016/j.cap.2016.04.024

    Article  Google Scholar 

  19. Chai B, Xu M, Yan J, Ren Z (2018) Remarkably enhanced photocatalytic hydrogen evolution over MoS2 nanosheets loaded on uniform CdS nanospheres. Appl Surf Sci 430:523–530. https://doi.org/10.1016/j.apsusc.2017.07.292

    Article  CAS  Google Scholar 

  20. Znaidi L (2010) Sol–gel-deposited ZnO thin films: a review. Mater Sci Eng B 174(1–3):18–30. https://doi.org/10.1016/j.mseb.2010.07.001

    Article  CAS  Google Scholar 

  21. de Coelho Escobar C, dos Santos JHZ (2014) Effect of the sol–gel route on the textural characteristics of silica imprinted with RhodamineB. J Sep Sci 37(7):868–875. https://doi.org/10.1002/jssc.201301143

  22. Li W, Zhao D (2013) An overview of the synthesis of ordered mesoporous materials. Chem Commun 49(10):943–946. https://doi.org/10.1039/C2CC36964H

    Article  CAS  Google Scholar 

  23. Tomar RS, Jyoti A, Kaushik S (eds) (2020) Nanobiotechnology. In: Includes bibliographical references and index. Apple Academic Press. https://doi.org/10.1201/9780429292750

  24. Moriarty P (2001) Nanostructured materials. Rep Prog Phys 64(3):297–381. https://doi.org/10.1088/0034-4885/64/3/201

    Article  CAS  Google Scholar 

  25. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859. https://doi.org/10.1021/es8006904

    Article  CAS  Google Scholar 

  26. Fan X, Soin N, Li H, Li H, Xia X, Geng J (2020) Fullerene (C60) nanowires: the preparation, characterization, and potential applications. Energ Environ Mater 3(4):469–491. https://doi.org/10.1002/eem2.12071

    Article  CAS  Google Scholar 

  27. Beck MT, Mándi G (1997) Solubility of C60. Fullerene Sci Technol 5(2):291–310. https://doi.org/10.1080/15363839708011993

    Article  CAS  Google Scholar 

  28. Mercado BQ et al (2008) Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? The structure of a second egg-shaped endohedral fullerene—Gd3N@Cs(39663)-C82. J Am Chem Soc 130(25):7854–7855. https://doi.org/10.1021/ja8032263

    Article  CAS  Google Scholar 

  29. Bai H, Gao H, Feng W, Zhao Y, Wu Y (2019) Interaction in Li@Fullerenes and Li+@Fullerenes: first principle insights to Li-based endohedral fullerenes. Nanomaterials 9(4):630. https://doi.org/10.3390/nano9040630

    Article  CAS  Google Scholar 

  30. Pupysheva OV, Farajian AA, Yakobson BI (2008) Fullerene nanocage capacity for hydrogen storage. Nano Lett 8(3):767–774. https://doi.org/10.1021/nl071436g

    Article  CAS  Google Scholar 

  31. Gaboardi M et al (2017) Extending the hydrogen storage limit in fullerene. Carbon N Y 120:77–82. https://doi.org/10.1016/j.carbon.2017.05.025

    Article  CAS  Google Scholar 

  32. Chinnappan BA, Krishnaswamy M, Xu H, Hoque ME (2022) Electrospinning of biomedical nanofibers/nanomembranes: effects of process parameters. Polymers 14(18):3719

    Article  CAS  Google Scholar 

  33. Garg V, Mote RG, Fu J (2020) Facile fabrication of functional 3D micro-nano architectures with focused ion beam implantation and selective chemical etching. Appl Surf Sci 526:146644. https://doi.org/10.1016/j.apsusc.2020.146644

    Article  CAS  Google Scholar 

  34. Son HH, Seo GH, Jeong U, Shin DY, Kim SJ (2017) Capillary wicking effect of a cr-sputtered superhydrophilic surface on enhancement of pool boiling critical heat flux. Int J Heat Mass Transf 113:115–128. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.055

    Article  CAS  Google Scholar 

  35. Zhang D, Ye K, Yao Y, Liang F, Qu T, Ma W, Yang B, Dai Y, Watanabe T (2019) Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon 142:278–284. https://doi.org/10.1016/j.carbon.2018.10.062

    Article  CAS  Google Scholar 

  36. Maksimov RN, Osipov VV, Karagedov GR, Platonov VV, Yurovskikh AS, Orlov AN, Spirina AV, Shitov VA (2022) Laser ablation synthesis and characterization of Tb2O3 nanoparticles for magneto-optical ceramics. Inorganics 10(10):173. https://doi.org/10.3390/inorganics10100173

    Article  CAS  Google Scholar 

  37. Saeed M, Alshammari Y, Majeed SA, Al-Nasrallah E (2020) Chemical vapour deposition of graphene—synthesis, characterisation, and applications: a review. Molecules 25(17):3856. https://doi.org/10.3390/molecules25173856

    Article  CAS  Google Scholar 

  38. Navas D, Fuentes S, Castro-Alvarez A, Chavez-Angel E (2021) Review on sol-gel synthesis of perovskite and oxide nanomaterials. Gels 7(4):275. https://doi.org/10.3390/gels7040275

    Article  CAS  Google Scholar 

  39. Kumar CV, Pattammattel A (2017) Synthetic routes to graphene preparation from the perspectives of possible biological applications. In: Introduction to graphene, pp 17–44.https://doi.org/10.1016/b978-0-12-813182-4.00002-7

  40. Paramasivam G, Palem VV, Sundaram T, Sundaram V, Kishore SC, Bellucci S (2021) Nanomaterials: synthesis and applications in theranostics. Nanomaterials 11(12):3228. https://doi.org/10.3390/nano11123228

    Article  CAS  Google Scholar 

  41. Baig N, Kammakakam I, Falath W (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2(6):1821–1871. https://doi.org/10.1039/d0ma00807a

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tabrej Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, T., Singh, B., Manikandan, M. (2023). Synthesis, Characteristics, and Applications of Nanomaterials. In: Khan, T., Jawaid, M., Ahmad, K.A., Singh, B. (eds) Nanomaterials: The Building Blocks of Modern Technology. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-4149-0_2

Download citation

Publish with us

Policies and ethics