Skip to main content

Dynamics of Perovskite Titanite Luminescent Materials

  • Chapter
  • First Online:
Advanced Materials for Solid State Lighting

Abstract

The chapter discussed the luminescence properties of perovskite titanate phosphor materials for various phosphor applications. The existing crystal structure of perovskite titanate materials is in the form of ABO3, which have incredible and diverse properties. The incorporation of rare-earth (RE) ions, as well as efficient energy transfer from host to RE ions and between RE ions, can improve the luminescence dynamics of perovskite titanate phosphors. Perovskite titanates’ unique properties, such as their relatively high thermal and chemical stability, low phonon energy, prominent physical properties and non-toxicity, make them an intriguing material to investigate further in various luminescence applications, particularly in harsh conditions, especially when doped with various RE ions for various nanoscale devices. The luminescence properties of RE ions and transition metals (TMs) incorporated into perovskite CaTiO3 and ZnTiO3 materials, as well as the role of efficient energy transfer, were also discussed. This chapter reports on the experimental work for both pure, RE ions and TMs doped CaTiO3 and ZnTiO3 phosphor materials as down- and up-converting materials. The advantages of enhancing the luminescence dynamics of CaTiO3 and ZnTiO3 phosphor materials have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Sasidharan, G. Jyothi, S. Sameera, K.G. Gopchandran, Perovskite titanates at the nanoscale: tunable luminescence by energy transfer and enhanced emission with Li+ co-doping. J. Solid State Chem. 288, 121449 (2020)

    Google Scholar 

  2. P. Rohilla, A.S. Rao, Synthesis optimisation and efficiency enhancement in Eu3+ doped barium molybdenum titanate phosphors for w-LED applications. Mater. Res. Bull. 150, 111753 (2022)

    Google Scholar 

  3. L.L. Noto, S.J. Mofokeng, F.V. Molefe, H.C. Swart, A.S. Tebele, M.S. Dhlamini, Luminescent dynamics of rare earth-doped CaTiO3 phosphors. Spectroscopy of Lanthanide Doped Oxide Materials, Woolhead Publishing Series in Electronic and Optical (2022), pp. 57–86

    Google Scholar 

  4. Z. Sun, G. Cao, Q. Zhang, Y. Li, H. Wang, Thermal stable Eu-doped CaTiO3 phosphors with morphology control for high power tricolor white LEDs. Mater. Chem. Phys. 132, 937–942 (2012)

    Article  Google Scholar 

  5. Z. Chen, X. Qin, Q. Zhang, Y. Li, H. Wang, Enhanced fluorescence and heat dissipation of calcium titanate red phosphor based on silver coating. J. Colloid Interface Sci. 459, 44–52 (2015)

    Article  ADS  Google Scholar 

  6. P. Singh, R.S. Yadar, S.B. Rai, Enhanced photoluminescence in a Eu3+ doped CaTiO3 perovskite phosphor via incorporation of alkali ions for white LEDs. J. Phys. Chem. Solids. 151, 109916 (2021)

    Google Scholar 

  7. M.G. Ha, M.R. Byeon, T.E. Hong, J.S. Bae, Y. Kim, S. Park et al., Sm3+-doped CaTiO3 phosphor: synthesis, structure, and photoluminescence properties. Ceram. Int. 38, 1365–1370 (2012)

    Article  Google Scholar 

  8. N. Suriyamurthy, B.S. Panigrahi, Investigations on luminescence of rare earths doped CaTiO3: Pr3+ phosphor. J. Rare Earths. 28, 488–493 (2010)

    Article  Google Scholar 

  9. A.C. Eduardo, A.T. de Figueiredo, M.S. Li, E. Longo, Structural disorder-dependent upconversion in Er3+/Yb3+-doped calcium titanate. Ceram. Int. 40, 15981 (2014)

    Article  Google Scholar 

  10. Z. Yang, K. Zhu, Z. Song, D. Zhou, Z. Yin, L. Yan et al., Significant reduction of upconversion luminescence emission in CaTiO3: Yb, Er inverse opals. Thin Solid Films 519, 5696 (2011)

    Article  ADS  Google Scholar 

  11. P.J. Deren, R. Mahiou, R. Pazik, K. Lemanski, W. Strek, P. Boutinaud, Upconversion emission in CaTiO3:Er3+ nanocrystals. J. Lumin. 128, 797–799 (2008)

    Article  Google Scholar 

  12. B. Zhu, Q. Yang, W. Zhang, S. Cui, B. Yang, Q. Wang et al., A high sensitivity dual-mode optical thermometry based on charge compensation in ZnTiO3: M (M = Eu3+, Mn4+) hexagonal prisms. Spectrochim Acta A Mol. 274, 121101 (2022)

    Article  Google Scholar 

  13. S.E. Elhadi, Y. Lu, C. Liu, Blue and green emission from Ho3+ doped zinc titanate phosphor thin films by sol-gel. Mater. Res. Express. 7, 016402 (2022)

    Article  ADS  Google Scholar 

  14. J. Dutta, M. Chakraborty, V.K. Rai, Investigation on ZnTiO3 codoped Er3+/Yb3+ nanophosphors with enhanced upconversion emission and in temperature sensing application. Optik 233, 166558 (2021)

    Google Scholar 

  15. S.J. Mofokeng, L.L. Noto, R.E. Kroon, O.M. Ntwaeaborwa, M.S. Dhlamini, Up-conversion luminescence and energy transfer mechanism in ZnTiO3:Er3+, Yb3+ phosphor. J. Lumin. 223, 117192 (2020)

    Article  Google Scholar 

  16. S.J. Mofokeng, L.L. Noto, K.O. Obodo, O.M. Ntwaeaborwa, R.E. Kroon, M.S. Dhlamini, Synthesis and up-conversion properties of Er3+ doped ZnTiO3-Zn2TiO4 composite phosphor. J. Vac. Sci. Technol. 38, 052802 (2020)

    Article  Google Scholar 

  17. M.U. Ahmad, A.R. Akib, M.M.S. Raihan, A.B. Shams, ABO3 Perovskites’ formability prediction and crystal structure classification using machine learning, in International Conference on Innovations in Science. Engineering and Technology (ICISET) (2022), pp. 480–485

    Google Scholar 

  18. G. Mamba, P.J. Mafa, V. Muthuraj, A. Mashayekh-Salehi, S. Royer, T.I.T. Nkambule, et al., Heterogeneous advanced oxidation processes over stoichiometric ABO3 perovskite nanostructures. Mater. Today Nano. 18, 100184 (2022)

    Google Scholar 

  19. N. Ashurov, B.L. Oksengendler, S. Maksimov, S. Rashiodvaa, A.R. Ishteev, D.S. Saranin, et al., Current state and perspectives for organo-halide perovskite solar cells. Part 1. Crystal structures and thin film formation, morphology, processing, degradation, stability improvement by carbon nanotubes. A review. Mod. Electron. Mater. 3, 1–25 (2017)

    Google Scholar 

  20. W. Gao, Y. Zhu, G. Yuan, J.M.A. Liu, review of flexible perovskite oxide ferroelectric films and their application. J Materiomics 6, 1–16 (2020)

    Article  Google Scholar 

  21. Z. Yi, N.H. Ladi, X. Shai, H. Li, Y. Shen, M. Wang, Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications? A review. Nanoscale Adv. 1, 1276–1289 (2019)

    Article  ADS  Google Scholar 

  22. L. Huang, X. Huang, J. Yan, Y. Liu, H. Jiang, H. Zhang, Research progresses on the application of perovskite in adsorption and photocatalytic removal of water pollutants. J. Hazard Mater. 442, 130024 (2022)

    Article  Google Scholar 

  23. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. 3, 2485–2534 (2015)

    Article  Google Scholar 

  24. G. Pilania, P.V. Balachandran, J.E. Gubernatis, T. Lookman, Classification of ABO3 perovskite solids: a machine learning study. Acta Crystallogr B: Struct. Sci. Cryst. 71, 507–513 (2015)

    Article  Google Scholar 

  25. C. Li, K.C.K. Soh, P. Wu, Formability of ABO3 perovskites. J. Alloys Compd. 372, 40–48 (2004)

    Google Scholar 

  26. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr B: Struct. Sci. Cryst. 64, 702–707 (2008)

    Article  Google Scholar 

  27. M. Humayun, H. Ullah, M. Usman, A. Habibi-Yangjeh, A.A. Tahir, C. Wang, W. Luo, Perovskite-type lanthanum ferrite based photocatalysts: preparation, properties, and applications. J. Energy Chem. 66, 314–338 (2022)

    Google Scholar 

  28. Q. Fan, J. Yang, C. Deng, J. Zhang, J. Cao, Electronic structure and optical properties of CaTiO3: an ab initio study, in Proceedings of the SPIE 9794, Sixth International Conference on Electronics and Information Engineering (3 December 2015) , p. 97942I. https://doi.org/10.1117/12.2203278

  29. R. Ali, M. Yashima, Space group and crystal structure of the Perovskite CaTiO3 from 296 to 1720 K. J. Solid State Chem. 178, 2867–2872 (2005)

    Article  ADS  Google Scholar 

  30. U.O. Bhagwat, J.J. Wu, A.M. Asiri, Synthesis of Mg-TiO3 nanoparticles for photocatalytic applications. Chem. Select 4, 788–796 (2019)

    Google Scholar 

  31. D.V. Mlotswa, L.L. Noto, S.J. Mofokeng, K.O. Obodo, V.R. Orante-Barron, B.M. Mothudi, Luminescence dynamics of MgGa2O4 prepared by solution combustion synthesis. Opt. Mater. 109, 110134 (2020)

    Google Scholar 

  32. R. Ashiri, A. Nemati, M.S. Ghamsari, S. Sanjabi, M. Aalipour, A modified method for barium titanate nanoparticles synthesis. Mater. Res. Bull. 46, 2291–2295 (2011)

    Article  Google Scholar 

  33. C.A. Oliveiran, E. Longo, J.A. Varela, M.A. Zaghete, Synthesis and characterization of lead zirconate titanate (PZT) obtained by two chemical methods. Ceram. Int. 40, 1717–1722 (2014)

    Article  Google Scholar 

  34. G.S. Ezat, S.A. Hussen, S.B. Aziz, Structure and optical properties of nanocomposites based on polystyrene (PS) and calcium titanate (CaTiO3) perovskite nanoparticles. Optik 241, 166963 (2021)

    Article  ADS  Google Scholar 

  35. Y. Li, S. Niu, J. Wang, W. Zhou, Y. Wang, K. Han et al., Mesoporous SrTiO3 perovskite as a heterogeneous catalyst for biodiesel production: experimental and DFT studies. Renew. Energy 184, 164–175 (2022)

    Article  Google Scholar 

  36. P. Goel, S. Sundriyal, V. Shrivastav, S. Mishra, D.P. Dubal, K.H. Kim et al., Perovskite materials as superior and powerful platforms for energy conversion and storage applications. Nano Energy 80, 105552 (2021)

    Article  Google Scholar 

  37. S. Eitssayeam, U. Intatha, K. Pengpat, G. Rujijanagul, K.J.D. MacKenzie, T. Tunkasiri, Effect of the solid-state synthesis parameters on the physical and electronic properties of perovskite-type Ba(Fe,Nb)0.5O3 ceramics. Curr. Appl. Phys. 9, 993–996 (2009)

    Google Scholar 

  38. S.K. AbdulKareem, S.A. Ajeel, Effect of annealing temperatures on the structural and crystalline properties of CaTiO3 powder synthesized via conventional solid-state method. Mater. Today: Proc. 42, 2674–2679 (2021)

    Article  Google Scholar 

  39. L.L. Noto, S.S. Pitale, M.A. Gusowki, J.J. Terblans, O.M. Ntwaeaborwa, H.C. Swart, Afterglow enhancement with In3+ codoping in CaTiO3:Pr3+ red phosphor. Powder Technol. 237, 141–146 (2013)

    Article  Google Scholar 

  40. S. Ayed, H. Abdelkefi, H. Khemakhem, A. Matoussi, Solid state synthesis and structural characterization of zinc titanates. J. Alloys Compd. 677, 185–189 (2016)

    Article  Google Scholar 

  41. S. Ghanbarnezhad, A. Nematia, R. Naghizadeh, Low temperature synthesis of zinc-titanate ultra fine powders. APCBEE Proc. 5, 6–10 (2013)

    Article  Google Scholar 

  42. J. Yu, D. Li, L. Zhu, X. Xu, Application of ZnTiO3 in quantum-dot-sensitized solar cells and numerical simulations using first-principles theory. J. Alloys Compd. 681, 88–95 (2016)

    Article  Google Scholar 

  43. T. Surendar, S. Kumar, V. Shanker, Influence of La-doping on phase transformation and photocatalytic properties of ZnTiO3 nanoparticles synthesized via modified sol–gel method. Phys. Chem. Chem. Phys. 16, 728–735 (2014)

    Article  Google Scholar 

  44. R. Chen, D. Chen, Enhanced luminescence properties of CaTiO3:Pr3+ phosphor with addition of SiO2 by solid-state reaction. Spectrochim Acta A Mol. 127, 256–260 (2014)

    Article  ADS  Google Scholar 

  45. L.L. Noto, O.M. Ntwaeaborwa, J.J. Terblans, H.C. Swart, Dependence of luminescence properties of CaTiO3:Pr3+ on different TiO2 polymorphs. Power Technol. 256, 477–548 (2014)

    Article  Google Scholar 

  46. Q. Yin, K. Qiu, Y. Chen, J. Liu, X. Xiao, Enhancements of luminescent properties of CaTiO3: Dy3+, Pr3+ via doping M+ = (Li+, Na+, K+). Mater. Lett. 266, 127488 (2020)

    Article  Google Scholar 

  47. L.L. Noto, S.K.K. Shaat, D. Poelman, M.S. Dhlamini, B.M. Mothudi, H.C. Swart, Cathodoluminescence mapping and thermoluminescence of Pr3+ doped in a CaTiO3/CaGa2O4 composite phosphor. Ceram. Int. 42, 9779–9784 (2016)

    Article  Google Scholar 

  48. C. Zuo, W. Tang, Y. Li, C. Ma, X. Yuan, Z. Wen, Y. Cao, The deep red fluorescent transparent ceramics of Pr3+ doped BaZr0.16Mg0.28Ta0.56O3 based on 3P03F2 transition. Mater. Res. Bull. 148, 111667 (2022)

    Google Scholar 

  49. Q. Fu, J.L. Li, T. He, G.W. Yang, Band-engineered CaTiO3 nanowires for visible light photocatalysis. Int. J. Appl. Phys. 113, 104303 (2013)

    Article  ADS  Google Scholar 

  50. D.R. Taikar, S.J. Dhoble, White light emission via Pb2+ to Dy3+ energy transfer mechanism in CaTiO3 phosphor. Optik 261, 169215 (2022)

    Article  ADS  Google Scholar 

  51. G. Blasse, Energy transfer in oxidic phosphors. Phys. Lett. A. 28(6), 444–445 (1968)

    Article  ADS  Google Scholar 

  52. Z. Jieqiang, F. Yanwei, C. Zhaoyang, W. Junhua, Z. Pengjun, H. Bin, Enhancing the photoluminescence intensity of CaTiO3:Eu3+ red phosphors with magnesium. J. Rare Earths. 33(10), 1036–1040 (2015)

    Article  Google Scholar 

  53. O.M. Ntwaeaborwa, S.J. Mofokeng, V. Kumar, R.E. Kroon, Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles. Spectrochim Acta A Mol. 182, 42–49 (2017)

    Article  ADS  Google Scholar 

  54. W. Liu, Q. Liu, J. Ni, Z. Zhou, G. Liu, (Ba, Sr)TiO3:RE perovskite phosphors (RE = Dy, Eu): nitrate pyrolysis synthesis, enhanced photoluminescence, and reversible emission against heating. RSC Adv. 8(37), 20781 (2018)

    Article  ADS  Google Scholar 

  55. L. Yang, Z. Cai, L. Yang, J. Hu, Z. Zhao, Z. Liu, Solid state synthesis, luminescence and afterglow enhancements of CaTiO3:Pr3+ by Ga3+ cooping. J. Lumin. 197, 339–342 (2018)

    Article  Google Scholar 

  56. L. Mengting, J. Baoxiang, Synthesis and photoluminescence properties of ZnTiO3:Eu3+ red phosphors via sol-gel method. J. Rare Earths. 33(3), 231–239 (2015)

    Article  Google Scholar 

  57. S.J. Mofokeng, L.L. Noto, M.S. Dhlamini, Photoluminescence properties of ZnTiO3:Eu3+ phosphor with enhanced red emission by Al3+ charge compensation. J. Lumin. 228, 117569 (2020)

    Article  Google Scholar 

  58. J. Dutta, M. Chakraborty, V.K. Ra, Investigation on ZnTiO3 codoped Er3+/Yb3+ nanophosphors with enhanced upconversion emission and in temperature sensing application. Optik. 233, 166558 (2021)

    Google Scholar 

  59. M. An, L. Li, Q. Wu, H. Yu, X. Gao, W. Zu, J. Guan, Y. Yu, CdS QDs modified three-dimensional ordered hollow spherical ZnTiO3- ZnO-TiO2 composite with improved photocatalytic performance. J. Alloys Compd. 895, 162638 (2022)

    Article  Google Scholar 

  60. S. Vargas-Villanueva, D.A. Torres-Ceron, S. Amaya-Roncancio, I.D. Arellano-Ramírez, J.S. Riva, E. Restrepo-Parra, Study of the incorporation of S in TiO2/SO42− Coatings produced by PEO process through XPS and DFT. Appl. Surf. Sci. 599, 153811 (2022)

    Google Scholar 

  61. T. Song, L. Liu, F. Xu, Y. Pan, M. Qian, D. Li, R. Yang, Multi-dimensional characterizations of washing durable ZnO/phosphazene-siloxane coated fabrics via ToF-SIMS and XPS. Polym. Test. 114, 107684 (2022)

    Article  Google Scholar 

  62. J. Ren, L. Zheng, Y. Su, P. Meng, Q. Zhou, H. Zeng, T. Zhang, H. Yu, Competitive adsorption of Cd(II), Pb(II) and Cu(II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations. J. Chem. Eng. 445, 136778 (2022)

    Article  Google Scholar 

  63. I. Rajani, B.V. Rao, Chapter 9 Theory of luminescence and materials, in Luminescence: Theory and Applications of Rare Earth Activated Phosphors, ed. by R. Tiwari, V. Dubey, V. Singh, M.E.Z Saucedo (De Gruyter, Berlin, Boston, 2021), pp. 215–226

    Google Scholar 

  64. G.L. Bhagyalekshmi, D.N. Rajendran, Luminescence dynamics of Eu3+ activated and co-activated defect spinel zinc titanate nanophosphor for applications in WLEDs. J. Alloys Compd. 850, 156660 (2021)

    Article  Google Scholar 

  65. G.L. Bhagyalekshmi, A.P.N. Sha, D.N. Rajendran, Luminescence kinetics of low temperature nano ZnTiO3:Eu3+ red spinel under NUV excitation. Mater. Sci. Mater. Electron. 30, 10673–10685 (2019)

    Article  Google Scholar 

  66. I.E. Kolesnikov, D.V. Mamonova, M.A. Kurochkin, E.Y. Kolesnikov, E. Lähderanta, Eu3+-doped ratiometric optical thermometers: experiment and Judd-Ofelt modelling. Opt. Mater. 112, 110797 (2021)

    Article  Google Scholar 

  67. S. Iranpour, A.R. Bahrami, S. Nekooei, A.S. Saljooghi, M.M. Matin, Improving anti-cancer drug delivery performance of magnetic mesoporous silica nanocarriers for more efficient colorectal cancer therapy. J. Nanobiotechnol. 19(1), 1–22 (2021)

    Article  Google Scholar 

  68. S. Lei, H. Fan, X. Ren, J. Fang, L. Ma, Z. Liu, Novel sintering and band gap engineering of ZnTiO3 ceramics with excellent microwave dielectric properties. J. Mater. Chem. C. 5(16), 4040–4047 (2017)

    Article  Google Scholar 

  69. B. Zhu, Q. Yang, W. Zhang, S. Cui, B. Yang, Q. Wang, et al., A high sensitivity dual-mode optical thermometry based on charge compensation in ZnTiO3:M (M=Eu3+, Mn4+) hexagonal prisms. Spectrochim. Acta A Mol. 274, 121101 (2022)

    Google Scholar 

  70. Y. Yan, H. Gao, J. Tian, F. Tan, H. Zheng, W. Zhang, Ferromagnetic enhancement in ZnTiO3 films induced by Co doping. Ceram. Int. 45(9), 11309–11315 (2019)

    Article  Google Scholar 

  71. X. Jaramillo-Fierro, S. González, F. Medina, La-doped ZnTiO3/TiO2 nanocomposite supported on ecuadorian diatomaceous earth as a highly efficient photocatalyst driven by solar light. Molecules 26(20), 6232 (2021)

    Google Scholar 

  72. P. Biehl, M. von der Lühe, S. Dutz, F.H. Schacher, Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings. Polym. (Basel) 10(1), 91 (2018)

    Article  Google Scholar 

  73. D.K. Singh, J. Manam, Structural and photoluminescence studies of red emitting CaTiO3:Eu3+ perovskite nanophosphors for lighting applications. Mater. Sci. Mater. Electron. 27(10), 10371–10381 (2016)

    Article  Google Scholar 

  74. J. Nanayakkara, S. Kasuni, DMI interaction and domain evolution in magnetic heterostructures with perpendicular magnetic anisotropy, Dissertation, 2018

    Google Scholar 

  75. E. Korkmaz, N.O. Kalaycioglu, Influence of doping different rare earth ions on the luminescence of CaTiO3-based phosphors. J. Chin Chem. Soc. 59(11), 1390–1393 (2012)

    Article  Google Scholar 

  76. J. Huang, S. Hu, M. Ju, S. Li, Exploration of the novel structures and electronic properties for Nd3+ doped CaTiO3. Mater. Chem. Phys. 266, 124525 (2021)

    Article  Google Scholar 

  77. J.A. Dawson, X. Li, C.L. Freeman, J.H. Harding, D.C. Sinclair, The application of a new potential model to the rare-earth doping of SrTiO3 and CaTiO3. J. Mater. Chem. C. 1(8), 1574–1582 (2013)

    Article  Google Scholar 

  78. S. Katyayan, S. Agrawal, Optical behavior of Eu2+ and Yb2+ doped alkaline earth metal titanate perovskite phosphors. Optik 219, 165284 (2020)

    Article  ADS  Google Scholar 

  79. T. Krenek, T. Kovarik, J. Pola, T. Stich, D. Docheva, Nano and micro-forms of calcium titanate: synthesis, properties and application. Open Ceram. 8, 100177 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Mofokeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mofokeng, S.J. et al. (2023). Dynamics of Perovskite Titanite Luminescent Materials. In: Kumar, V., Sharma, V., Swart, H.C. (eds) Advanced Materials for Solid State Lighting. Progress in Optical Science and Photonics, vol 25. Springer, Singapore. https://doi.org/10.1007/978-981-99-4145-2_4

Download citation

Publish with us

Policies and ethics