Skip to main content
Log in

Luminescence kinetics of low temperature nano ZnTiO3:Eu3+ red spinel under NUV excitation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study discusses the synthesis and characterization of rare form of low temperature cubic spinel phase of ZnTiO3, whose synthesis is a challenging task for researchers. Powder XRD pattern confirms the formation of single phase spinel form of ZnTiO3 crystallizes in cubic lattice. The average crystallite size obtained from TEM analysis and Scherrer’ method is about 7–8 nm. Trivalent Eu ions in host lattice are confirmed by XPS spectroscopy. Photoluminescence spectral analysis infers that ZnTiO3:xEu3+ (x = 0.25%, 0.5%, 0.75%, 1%, 1.25%) nanophosphors show strong red emission corresponding to the forced electric dipole transition 5D07F2 under near UV excitation. Hypersensitive 5D07F2 transition indicates inversion antisymmetry crystal field around Eu3+ environment, favourable to improve red color purity. The type of multipolar interaction responsible for florescence quenching is also discussed. The color co-ordinate of all samples estimated from emission spectra is comparable to the national television standard committee value of red emission. The compositional dependence of Judd–Offlet parameters were evaluated and discussed. Eu doped spinels with defects associated structure shows better luminescent LED applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P.V. Dollen, S. Pimputkar, J.S. Speck, Angew. Chem. Int. Ed. 53, 13978 (2014)

    Article  Google Scholar 

  2. E.F. Schubert, Light-emitting Diodes, 2nd edn. (Cambridge University Press, Cambridge, 2003), pp. 1–10

    Google Scholar 

  3. N. Zheludev, Nat. Photon. 1, 189 (2007)

    Article  Google Scholar 

  4. M. Pineda, J.L.G. Fierro, J.M. Palaciosa, C. Cilleruelo, E. García, J. Appl. Surf. Sci 119, 1–10 (1997)

    Article  Google Scholar 

  5. C. Li, Y. Bando, M. Nakamura, N. Kimizuka, H. Kito, Mater. Res. Bull. 35, 351–358 (1961)

    Article  Google Scholar 

  6. H.T. Kim, Y. Kim, M. Valant, D. Suvorov, J. Am. Ceram. Soc. 84, 1081–1086 (2001)

    Article  Google Scholar 

  7. S.A. Mayén-Hernández, G. Torres-Delgado, R. Castanedo-Pérez, M.G. Villarreal, A. Cruz-Orea, J.G.M. Alvarez, O. Zelaya-Angel, J. Mater. Sci.: Mater. 18, 1127–1130 (2007)

    Google Scholar 

  8. A.C. Chaves, S.J.G. Lima, R.C.M.U. Araujo, M.A.M.A. Maurera, E. Longo, P.S. Pizani, L.G.P. Simoes, L.E.B. Soledade, A.G. Souza, I.M.G.D. Santos, J. Solid State Chem. 179, 985–992 (2006)

    Article  Google Scholar 

  9. F.H. Dulin, D.E. Rase, J. Am. Ceram. Soc. 43, 125 (1960)

    Article  Google Scholar 

  10. O. Yamaguchi, M. Morimi, H. Kawabata, K. Shimizu, J. Am. Ceram. Soc. 70, 97 (1987)

    Google Scholar 

  11. R.K. Datta, R. Roy, J. Am. Ceram. Soc. 50, 578–583 (1967)

    Article  Google Scholar 

  12. D.P. Dutta, A. Singh, A.K. Tyagi, J. Environ. Chem. Eng. 2, 2177–2187 (2014)

    Article  Google Scholar 

  13. S. Lew, A. F. Sarofim, M. Flytzai-Nestephanopoulos, Chem. Eng. Sci. 47, 1421–1431 (1992)

    Article  Google Scholar 

  14. S.K. Manik, S.K. Pradhan, E. Physica 33, 69–76 (2006)

    Article  Google Scholar 

  15. A. Chaouchi, S. Marinel, M. Aliouat, S.J. d’Astorg, Eur. Ceram. Soc. 27, 2561–2566 (2007)

    Article  Google Scholar 

  16. X. Liu, M. Zhao, F. Gao, L. Zhao, C.J. Tian, Alloys Compd. 450, 440–445 (2008)

    Article  Google Scholar 

  17. K.M. Girish, R. Naik, S.C. Prashantha, H. Nagabhushana, H.P. Nagaswarupa, K.S. Anantha Raju, H.B. Premkumar, S.C. Sharma, B.M. Nagabhushana, Spectrochim. Acta: Part A Mol. Biomol. Spectrosc. 138, 857–865 (2015)

  18. J. Mrázek, L. Spanhel, G. Chadeyron, V. Matějec, J. Phys. Chem. C 114, 2843–2852 (2010)

    Article  Google Scholar 

  19. D.M. Jnaneshwara, D.N. Avadhani, B. Daruka Prasad, H. Nagabhushana, B.M. Nagabhushana, S.C. Sharma, S.C. Prashantha, C. Shivakumara, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 132, 256–262 (2014)

  20. P.B. Devaraja, D.N. Avadhani, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, H.P. Nagaswarupa, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 847–851 (2014)

    Article  Google Scholar 

  21. D. Chikte, S.K. Omanwar, S.V. Moharil, J. Lumin. 142, 180–183 (2013)

    Article  Google Scholar 

  22. P. Scherrer, G. Nachrichten, N. von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 2, 98 (1918)

  23. B. Pal, D. Sarkar, P.K. Giri, Appl. Surf. Sci. 356, 804–811 (2015)

    Article  Google Scholar 

  24. R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, Ceram. Int. 39, 2283–2292 (2013)

    Article  Google Scholar 

  25. I.R. Galindo, T. Viveros, D. Chadwick, Iran. Eng. Chem. Res. 46, 1138 (2007)

    Article  Google Scholar 

  26. T. Ohno, T. Mitsui, M. Matsumura, Chem. Lett. 32, 364 (2003)

    Article  Google Scholar 

  27. Y.J. Kang, D.S. Kim, S.H. Lee, J. Park, J. Chang, J.Y. Moon, G. Lee, J. Yoon, Y. Jo, M.H. Jung, J. Phys. Chem. C 111, 14956 (2007)

    Article  Google Scholar 

  28. J. Lu, K.M.N. Yang, Efficient. Ind. Eng. Chem. Res. 47, 1095 (2008)

    Article  Google Scholar 

  29. A. Phuruangrat, O. Yayapao, T. Thongtem, S. Thongtem, J. Nanomater. 367529, 9 (2014)

    Google Scholar 

  30. Y.P. Du, Y.W. Zhang, L.D. Sun, C.H. Yan, J. Phys. Chem. C 112, 12234–12241 (2008)

    Article  Google Scholar 

  31. L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Hu, Y. Zhao, J. Mater. Chem. 22, 966–974 (2012)

    Article  Google Scholar 

  32. B.P. Singh, A.K. Parchur, R.S. Ningthoujam, A.A. Ansari, P. Singh, S.B. Rai, DaltonTrans 43, 4779–4789 (2014)

    Article  Google Scholar 

  33. Z. Yang, Z. Ye, Z. Xu, B. Zhao, Physica E 42, 116–119 (2009)

    Article  Google Scholar 

  34. L. Wang, H. Kang, D. Xue, C. Liu, J. Cryst. Growth 311, 611 (2009)

    Article  Google Scholar 

  35. N. Pal, M. Paul, A. Bhaumik, Appl. Catal. A 393, 153 (2011)

    Article  Google Scholar 

  36. L. Budigia, M. Rao Nasinaa, K. Shaika, S. Amaravadib, J. Chem. Sci. 127, 509–518 (2015)

    Article  Google Scholar 

  37. C. Malarkodi, S. Rajeshkumar, K. Paulkumar, M. Vanaja, G. Gnanajobitha, G. Annadurai, Bioinorg. Chem. Appl. 2014, 347167 (2014)

    Article  Google Scholar 

  38. S. Pulipati, S.H. Parveen, R.K. Babu, J. Pharmacogn. Phytochem. 2, 189 (2013)

    Google Scholar 

  39. S.K. Das, M.K. Bhunia, A. Bhaumik, Dalton Trans. 39, 4382–4390 (2010)

    Article  Google Scholar 

  40. W.H. Zhang, J.L. Shi, L.Z. Wang, D.S. Yan, Chem. Mater. 12, 1408–1413 (2000)

    Article  Google Scholar 

  41. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solid. 15, 627–637 (1966)

    Article  Google Scholar 

  42. K.-W. Huang, W.-T. Chen, C.-I. Chu, S.-F. Hu, H.-S. Sheu, B.-M. Cheng, J.-M. Chen, R.-S. Liu, Chem. Mater. 24, 2220 (2012)

    Article  Google Scholar 

  43. Y.-C. Li, Y.H. Chang, Y.-F. Lin, Y.-S. Changand, Y.-J. Lin, J. Alloy. Compd. 439, 367 (2007)

    Article  Google Scholar 

  44. O.M. Ntwaeaborwa, S.J. Mofokeng, V. Kumar, R.E. Kroon, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 18242–49 (2017)

  45. H. Liu, Y. Hao, H. Wang, J. Zhao, P. Huang, B. Xu, J. Lumin. 131, 2422–2426 (2011)

    Article  Google Scholar 

  46. L. Lin, X. Sun, Y. Jiang, Y. He, Nanoscale 5, 12518–12531 (2013)

    Article  Google Scholar 

  47. G.S. Ofelt, J. Chem. Phys. 37, 511–520 (1962)

    Article  Google Scholar 

  48. L. Zhou, J. Wei, J. Wu, F. Gong, L. Yi, J. Huang, J. Alloys Compd. 476, 390 (2009)

    Article  Google Scholar 

  49. B.V. Rao, K. Jang, H.S. Lee, S.S. Yi, J.H. Jeong, J. Alloys Compd. 496, 251 (2010)

    Article  Google Scholar 

  50. S.J. Garcia, L.E. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, 1st edn. (John Wiley & Sons Ltd., 2005), pp. 189–190

  51. G.H. Mhlongo, M.S. Dhlamini, H.C. Swart, O.M. Ntwaeaborwa, K.T. Hillie, Opt. Mater. 33, 1495 (2011)

    Article  Google Scholar 

  52. R.J. Yu, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, K. Jang, S.S. Yi, J.K. Jang, J. Alloy. Compd. 576, 236–241 (2013)

    Article  Google Scholar 

  53. A.T.N. Kumar, L. Zhu, J.F. Christian, A.A. Demidov, P.M. Champion, J. Phys. Chem. B. 105, 7847 (2001)

    Article  Google Scholar 

  54. M. Tanaka, G. Nishimura, T. Kushida, Phys. Rev. B 49, 16917 (1994)

    Article  Google Scholar 

  55. K.N. Kumar, R. Padma, L. Vijayalakshmi, J.S.M. Nithya, M. Kang, J. Lumin. 182, 208–219 (2017)

    Article  Google Scholar 

  56. Y.S. Chang, J. Electron. Mater. 37, 1024–1028 (2008)

    Article  Google Scholar 

  57. E. Snoeks, A. Lagendijk, A. Polman, Phys. Rev. Lett. 74, 2459–2462 (1995)

    Article  Google Scholar 

  58. J.L. Ferrari, K.O. Lima, L.J.Q. Maia, S.J.L. Ribeiro, A.S.L. Gomes, R.R. Gonçalves, J. Nanosci. Nanotechnol. 11, 2540–2544 (2011)

    Article  Google Scholar 

  59. B.R. Judd, Phys. Rev. 127, 750–761 (1962)

    Article  Google Scholar 

  60. C.A. Kodaira, H.F. Brito, M. Cláudia, F.C. Felinto, J. Solid State Chem. 171, 401–407 (2003)

    Article  Google Scholar 

  61. P. Kumari, J. Manam, Spectrochim. Acta A 152, 109 (2016)

    Article  Google Scholar 

  62. S. Som, A.K. Kunti, V. Kumar, V. Kumar, S. Dutta, M. Chowdhury, S.K. Sharma, J.J. Terblans, H.C. Swart, J. Appl. Phys. 115, 193101 (2014)

    Article  Google Scholar 

  63. P.K. Baitha, J. Manam, Bull. Mater. Sci. 39, 1233–1243 (2016)

    Article  Google Scholar 

  64. G.P. Darshan, H.B. Premkumar, H. Nagabhushana, S.C. Sharma, S.C. Prashanth, B.D. Prasad, J. Coll. Int. Sci. 464, 206–218 (2016)

    Article  Google Scholar 

  65. C. Gorller-Walrand, K. Binnemans, Spectral intensities of fef transitions, in: Handbook on the Physics and Chemistry of Rare Earths, vol 25 (North-Holland, Amsterdam, 1998), p. 101

  66. C.G. Walrand, K. Binnemans, in Handbook on the Physics and Chemistry of Rare Earths (North-Holland, Amsterdam, 1998), pp. 101–264

  67. R. Naik, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, H.P. Nagaswarupa, K.S. Anantharaju, B.M. Nagabhushana, H.B. Premkumar, K.M. Girish, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 140, 516–523 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their conscientious thankfulness to DST-FIST for providing characterization facilities in the Department of Physics, Govt. College for Women, Trivandrum. The authors are grateful to NIIST, Trivandrum, CLIF Kariavattom and STIC, Cochin for providing facilities for the analysis of the prepared samples. The authors Bhagyalekshmi G L and Neethu Sha A P wish to acknowledge University of Kerala, Trivandrum for providing fellowship for doing the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Bhagyalekshmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagyalekshmi, G.L., Neethu Sha, A.P. & Rajendran, D.N. Luminescence kinetics of low temperature nano ZnTiO3:Eu3+ red spinel under NUV excitation. J Mater Sci: Mater Electron 30, 10673–10685 (2019). https://doi.org/10.1007/s10854-019-01413-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01413-x

Navigation