Skip to main content

ZnO-Based Phosphors Materials

  • Chapter
  • First Online:
Advanced Materials for Solid State Lighting

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 25))

  • 275 Accesses

Abstract

The chapter discussed the optical properties of ZnO phosphor for a wide-ranging emission application. The existing luminescence characteristics of ZnO phosphor can be enhanced by the introduction of native defects as well as electronic impurity doping. Special characteristics of ZnO phosphor, like its large exciton binding energy and wide bandgap, make it an interesting material to explore, especially when doped with various elements for various nanoscale lighting devices. Additionally, the distribution and interaction of defects in undoped and doped ZnO phosphors as well as their luminescence dynamics were discussed. We presented the experimental work for the undoped and doped ZnO phosphor materials as down- and up-converting phosphors. As a result, the advantages associated with advancing the luminescence characteristics of ZnO phosphor materials were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.E. Rivera-Enriquez, A.L. Fernandez-Osorio, Synthesis of YVO4:Eu3+ nanophosphors by the chemical coprecipitation method at room temperature. J. Lumin. 236, 118110 (2021)

    Google Scholar 

  2. K. Laxminarayana, K. Srikanth, M. Narsimulu, L. Narsihma, M.S. Kumar, M. Srinivas, Luminescence studies of europium and terbium doped calcium orthosilicate phosphors. Mater. Today: Proc. 59, 742–746 (2022)

    Article  Google Scholar 

  3. E.D. Kim, Y.R. Do, I.H. Oh, Y.D. Huh, Preparation and photoluminescence properties of transparent suspensions of Ca(Y1-xEux)2(MoO4)4 nanophosphors. Opt. Mater. 119, 111394 (2021)

    Article  Google Scholar 

  4. I. Gupta, S. Singh, S. Bhagwan, D. Singh, Rare earth (RE) doped phosphors and their emerging applications: a review. Ceram Int. 47, 19282–19303 (2021)

    Article  Google Scholar 

  5. S.J. Mofokeng, V. Kumar, R.E. Kroon, S.H. Cho, O.M. Ntwaeaborwa, Enhanced red emission of Eu3+ in ZnO-TiO2:Dy3+, Eu3+ nanocomposites by UV downconversion process. J. Vac. Sci. Technol. 37, 022901 (2019)

    Article  Google Scholar 

  6. T.P. Mokoena, E.C. Linganiso, V. Kumar, H.C. Swart, S.H. Cho, O.M. Ntwaeaborwa, Up-conversion luminescence in Yb3+-Er3+/Tm3+ co-doped Al2O3-TiO2 nano-composites. J. Colloid Interface Sci. 496, 87–99 (2017)

    Article  ADS  Google Scholar 

  7. E. Mosquera, J.E. Diosa, Luminescence of ZnO/MgO phosphors. Optik 243, 167416–167422 (2021)

    Article  ADS  Google Scholar 

  8. H. Rai, N. Kondal, A review on defect related emissions in undoped ZnO nanostructures. Mater. Today: Proc. 48, 1320–1324 (2022)

    Google Scholar 

  9. V. Kumar, H.C. Swart, O.M. Ntwaeaborwa, R.E. Kroon, J.J. Terblans, S.K.K. Shaat et al., Origin of the red emission in zinc oxide nanophosphors. Mater. Lett. 101, 57–60 (2013)

    Article  Google Scholar 

  10. D.K. Sharma, S. Shukla, K.K. Sharma, V. Kumar, A review on ZnO: fundamental properties and applications. Mater. Today: Proc. 49, 3028–3035 (2022)

    Article  Google Scholar 

  11. G.A.S. Josephine, S. Ramachandran, A. Sivasamy, Nanocrystalline ZnO doped lanthanide oxide: an efficient photocatalyst for the degradation of malachite green dye under visible light irradiation. J. Saudi Chem. Soc. 19, 549–556 (2015)

    Article  Google Scholar 

  12. S.G. Kumar, R. Kavitha, Lanthanide ions doped ZnO based photocatalysts. Sep. Purif. Technol. 274, 118853 (2021)

    Article  Google Scholar 

  13. S.J. Mofokeng, L.L. Noto, R.E. Kroon, O.M. Ntwaeaborwa, M.S. Dhlamini, Up-conversion luminescence and energy transfer mechanism in ZnTiO3: Er3+, Yb3+ phosphor. J. Lumin. 223, 117192–117200 (2020)

    Article  Google Scholar 

  14. R. Kamal, H. Hafez, Novel down-converting single-phased white light Pr3+ doped BaWO4 nanophosphors material for DSSC applications. Opt. Mater. 121, 111646 (2021)

    Article  Google Scholar 

  15. A.V.R.K. Rao, V. Chelvam, Defects induced multicolor down- and up-conversion fluorescence in Se doped ZnO nanorods by single wavelength excitation. Opt. Mater. 107, 110122 (2020)

    Article  Google Scholar 

  16. M. Zhang, M. Jia, T. Sheng, Z. Fu, Multifunctional optical thermometry based on the transition metal ions doped down-conversion Gd2ZnTiO6:Bi3+, Mn4+ phosphors. J. Lumin. 229, 117653 (2021)

    Article  Google Scholar 

  17. M.A. Qamar, M. Javed, S. Shahid, M. Sher, Fabrication of g-C3N4/transition metal (Fe Co, Ni, Mn and Cr)-doped ZnO ternary composites: excellent visible light active photocatalysts for the degradation of organic pollutants from wastewater. Mater. Res. Bull. 147, 111630–111643 (2022)

    Article  Google Scholar 

  18. S.J. Mofokeng, Synthesis and characterization of zinc oxide-titanium dioxide nanocomposite co-doped with dysprosium and europium. Masters’ Thesis, University of the Free State (2019)

    Google Scholar 

  19. C.B. Onga, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sust. Energ. Rev. 81, 536–551 (2018)

    Article  Google Scholar 

  20. P.D. Nellist, S.J. Pennycook, Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111–124 (1999)

    Article  Google Scholar 

  21. R.L. Parker, Growth rates of potassium crystal from the vapor phase. J. Chem. Phys. 37, 1600–1607 (1962)

    Article  ADS  Google Scholar 

  22. V.A. Nebolsin, A.A. Shchetinin, Role of surface energy in the vapor–liquid–solid growth of silicon. Inorg. Mater. 39, 899–903 (2003)

    Article  Google Scholar 

  23. M. Ohring, Materials science of thin films, deposition and structure: Chapter 1—A review of materials science, materials science of thin films, 2nd edn 1–56 (2002)

    Google Scholar 

  24. D.B. Williams, C.B. Carter, Transmission electron microscopy (2009), p. 775. https://doi.org/10.1007/978-0-387-76501-3

  25. Y. Ding, P.X. Gao, Z.L. Wang, Catalyst−nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO. J. Am. Chem. Soc. 126, 2066–2072 (2004)

    Article  Google Scholar 

  26. D. Vogel, P. Kruger, J. Pollmann, Self-interaction and relaxation-corrected pseudopotentials for II-VI semiconductors. Phys. Rev. B54, 5495–5505 (1996)

    Article  ADS  Google Scholar 

  27. M.A. Borysiewicz, ZnO as a functional material, a review. Crystals 9, 505–534 (2019)

    Article  Google Scholar 

  28. E. Nowak, M. Szybowicz, A. Stachowiak, W. Koczorowski, D. Schulz, K. Paprocki et al., A comprehensive study of structural and optical properties of ZnO bulk crystals and polycrystalline films grown by sol-gel method. Appl. Phys. A. 126, 552–564 (2020)

    Article  ADS  Google Scholar 

  29. H. Morkoc, U. Ozgur, Zinc oxide: fundamentals, materials and device technology, pp. 1–74. ISBN: 978-3-527-40813-9

    Google Scholar 

  30. G. Wisz, I. Virt, P. Sagan, P. Potera, R. Yavorskyi, Structural, optical and electrical properties of zinc oxide layers produced by pulsed laser deposition method. Nanoscale Res. Lett. 12, 253–260 (2017)

    Article  ADS  Google Scholar 

  31. R. Dingle, Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide. Phys. Rev. Lett. 23, 579–581 (1969)

    Article  ADS  Google Scholar 

  32. Q.X. Zhao, P. Klason, M. Willander, H.M. Zhong, W. Lu, J.H. Yang, Deep-level emissions influenced by O and Zn implantations in ZnO. Appl. Phys. Lett. 87, 211912 (2005)

    Article  ADS  Google Scholar 

  33. N.O. Korsunska, L.V. Borkovska, B.M. Bulakh, L.Y. Khomenkova, V.I. Kushnirenko, I.V. Markevich, The influence of defect drift in external electric field on green luminescence of ZnO single crystals. J. Lumin. 103, 733–740 (2003)

    Article  Google Scholar 

  34. Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang et al., Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. Int. J. Appl. Phys. 68, 403–411 (1996)

    Google Scholar 

  35. A.B. Djurisic, W.C.H. Choy, V.A.L. Roy, Y.H. Leung, C.Y. Kwong, K.W. Cheah et al., Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures. Adv. Funct. Mater. 14, 856–864 (2004)

    Article  Google Scholar 

  36. I. Shalish, H. Temkin, V. Narayanamurti, Size-dependent surface luminescence in ZnO nanowires. Phys. Rev. B69, 245401 (2004)

    Article  ADS  Google Scholar 

  37. M. Gratzel, Conversion of sunlight to electric power by nanocrystalline dye sensitized solar cells. J. Photochem. Photobiol. 164, 3–14 (2004)

    Article  Google Scholar 

  38. A.T. Le, M. Ahmadipour, S.Y. Pung, A review on ZnO-based piezoelectric nanogenerators: synthesis, characterization techniques, performance enhancement and applications. J. Alloys Compd. 844, 156172 (2020)

    Article  Google Scholar 

  39. A. Sulciute, K. Nishimura, E. Gilshtein, F. Cesano, G. Viscardi, A.G. Nasibulin et al., ZnO nanostructures application in electrochemistry: influence of morphology. J. Phys. Chem. C. 125, 1472–1482 (2021)

    Article  Google Scholar 

  40. O.M. Ntwaeaborwa, S.J. Mofokeng, V. Kumar, R.E. Kroon, Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 182, 42–49 (2017)

    Article  ADS  Google Scholar 

  41. F.I.H. Rhouma, F. Belkhiria, E. Bouzaiene, M. Daoudi, K. Taibi, J. Dhahri et al., The structure and photoluminescence of a ZnO phosphor synthesized by the sol gel method under praseodymium doping. RSC Adv. 9, 5206–5217 (2019)

    Article  ADS  Google Scholar 

  42. A. Ali, A.R. Phull, M. Zia, Elemental zinc to zinc nanoparticles: is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns. Nanotechnol. Rev. 7(5), 413–441 (2018)

    Article  Google Scholar 

  43. P.B. Taunk, R. Das, D.P. Bisen, R.K. Tamrakar, Structural characterization and photoluminescence properties of zinc oxide nano particles synthesized by chemical route method. J. Radiat. Res. Appl. Sci. 8, 433–438 (2015)

    Google Scholar 

  44. W. Guo, Z. Xu, T. Li, Metal-based semiconductor nanomaterials for thin-film solar cells, in Multifunctional Photocatalytic Materials for Energy, ed. by Z. Lin, M. Ye, M. Wang (Woodhead Publishing, China, 2018), pp. 153–185

    Google Scholar 

  45. T. Li, H. Cai, C. Li, X. Liu, F. Huang, Rocksalt-zincblende–wurtzite mixed-phase ZnO crystals with high activity as photocatalysts for visible-light-driven water splitting. Front. Chem. 8, 351–358 (2020)

    Google Scholar 

  46. G.K. Weldegebrieal, Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: a review. Inorg. Chem. Commun. 120, 108140 (2020)

    Article  Google Scholar 

  47. D. Banerjee, A.K. Kar, Effect of hydroxide ion concentration on the evolution of nanostructures and structure correlated luminescence of ZnO nanopowders. Opt. Mater. 89, 430–440 (2019)

    Article  ADS  Google Scholar 

  48. C. Rajkumar, R.K. Srivastava, UV–visible photoresponse properties of self-seeded and polymer mediated ZnO flower-like and biconical nanostructures. Results Phys. 15, 102647 (2019)

    Article  Google Scholar 

  49. P. Sharma, S.K. Tiwari, P.B. Barman, Abnormal red shift in photoluminescence emission of ZnO nanowires. J. Lumin. 251, 119231 (2022)

    Article  Google Scholar 

  50. P. Kumari, K.P. Misra, S. Chattopadhyay, S. Samanta, A brief review on transition metal ion doped ZnO nanoparticles and its optoelectronic applications. Mater. Today: Proc. 43, 3297–3302 (2021)

    Article  Google Scholar 

  51. M. Achehboune, M. Khenfouch, I. Boukhoubza, I. Derkaoui, L. Leontie, A. Carlescu et al., Optimization of the luminescence and structural properties of Er-doped ZnO nanostructures: effect of dopant concentration and excitation wavelength. J. Lumin. 246, 118843 (2022)

    Article  Google Scholar 

  52. S.K. Mishra, U.K. Tripathi, R. Kumar, R.K. Shukla, Defects mediated optical emissions and efficient photodetection characteristics of sol–gel derived Ag-doped ZnO nanostructures for UV sensor. Mater. Lett. 308, 131242 (2022)

    Article  Google Scholar 

  53. F. Zhou, Y. Li, Y. Tang, F. Gao, W. Jing, Y. Du et al., A novel flexible non-enzymatic electrochemical glucose sensor of excellent performance with ZnO nanorods modified on stainless steel wire sieve and stimulated via UV irradiation. Ceram. Int. 48, 14395–14405 (2022)

    Article  Google Scholar 

  54. I. Ahmad, S. Shukrullah, M.Y. Naz, H.N. Bhatti, M. Ahmad, E. Ahmed et al., Recent progress in rare earth oxides and carbonaceous materials modified ZnO heterogeneous photocatalysts for environmental and energy applications. J. Environ. Chem. Eng. 10, 107762 (2022)

    Article  Google Scholar 

  55. Y. Zhao, Y. Zhong, H. Chang, W. Liu, Z. Xiao, Y. Zhong et al., Luminescent properties of Tm3+-Dy3+ co-doped P2O5-SrO-BaO-B2O3-ZnO glasses for white LED applications. J. Non Cryst. Solids 573, 121121 (2021)

    Article  Google Scholar 

  56. L.M. Chepyga, G. Jovicic, A. Vetter, A. Osvet, C.J. Brabec, M. Batentschuk, Photoluminescence properties of thermographic phosphors YAG: Dy and YAG: Dy, Er doped with boron and nitrogen. Appl. Phys. B. 122, 212 (2016)

    Article  ADS  Google Scholar 

  57. L. Li, M. Dou, Y. Yan, Y. Li, F. Ling, S. Jiang et al., Insight into energy transfer, color tuning, and white emission in Tm3+ and Dy3+ codoped Ca8ZnLa(PO4)7 phosphors. Opt. Mater. 102, 109808 (2020)

    Article  Google Scholar 

  58. Q. Shi, K. Ling, S. Duan, X. Wang, S. Xu, D. Zhang et al., Single-phased emission-tunable Mg and Ce co-doped ZnO quantum dots for white LEDs. Spectrochim Acta A Mol. 231, 118096 (2020)

    Article  Google Scholar 

  59. V. Sivakumar, D. Sivaganesh, J.N. Gopal, M. Muthuvinayagam, J.M. Kim, P.K. Kannan et al., Enhancement of intrinsic green emission in phase pure ZnO. Physica B. 644, 414155 (2022)

    Article  Google Scholar 

  60. H. Shen, X. Shi, Z. Wang, Z. Hou, C. Xu, L. Duan et al., Defects control and origins of blue and green emissions in sol-gel ZnO thin films. Vacuum 202, 111201 (2022)

    Article  ADS  Google Scholar 

  61. V. Kumar, A. Pandey, S.K. Swami, O.M. Ntwaeaborwa, H.C. Swart, V. Dutta, Synthesis and characterization of Er3+-Yb3+ doped ZnO upconversion nanoparticles for solar cell application. J. Alloys Compd. 766, 429–435 (2018)

    Article  Google Scholar 

  62. O.A. Lipina, L.L. Surat, A.Y. Chufarov, A.P. Tyutyunnik, V.G. Zubkov, Upconversion luminescence and ratiometric temperature sensing behavior of Er3+/Yb3+-codoped CaY2Ge3O10 germanate. Mendeleev Commun. 31, 113–115 (2021)

    Article  Google Scholar 

  63. J. Hu, R. Wang, Z. Wei, X. Wu, F. Wang, L. Liu et al., Strong red upconversion luminescence and optical thermometry of Yb3+/Er3+ Co-doped β-Ba2ScAlO5 phosphor. J. Alloys Compd. 895, 162692 (2022)

    Article  Google Scholar 

  64. P. Vishnukumar, S. Vivekanandhan, M. Misra, A.K. Mohanty, Recent advances and emerging opportunities in phytochemical synthesis of ZnO nanostructures. Mater. Sci. Semicond. Process. 80, 143–161 (2018)

    Article  Google Scholar 

  65. V. Gurylev, T. Perng, Defect engineering of ZnO: review on oxygen and zinc vacancies. J. Eur. Ceram. Soc. 41, 4977–4996 (2021)

    Article  Google Scholar 

  66. N. Kamarulzaman, M.F. Kasim, R. Rusdi, Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale Res. Lett. 10, 346–358 (2015)

    Article  ADS  Google Scholar 

  67. A. Saboor, S.M. Shah, H. Hussain, Band gap tuning and applications of ZnO nanorods in hybrid solar cell: Ag-doped verses Nd-doped ZnO nanorods. Mater. Sci. Semicond. Process. 93, 215–225 (2019)

    Article  Google Scholar 

  68. J. Singh, P. Kumar, K.S. Hui, K.N. Hui, K. Ramam, R.S. Tiwari et al., Synthesis, band-gap tuning, structural and optical investigations of Mg doped ZnO nanowires. Cryst. Eng. Comm. 14, 5898–5904 (2012)

    Article  Google Scholar 

  69. A.K. Zak, R. Razali, W.H. Abd Majid, M. Darroudi, Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int J. Nanomedicine. 6, 1399–1403 (2011)

    Google Scholar 

  70. S.C. Das, R.J. Green, J. Podder, T.Z. Regier, G.S. Chang, A. Moewes, Band gap tuning in ZnO through Ni doping via spray pyrolysis. J Phys. Chem. C. 117, 12745–12753 (2013)

    Article  Google Scholar 

  71. L. Fan, Y. Gao, A. Hayakawa, S. Hochgreb, Simultaneous, two-camera, 2D gas-phase temperature and velocity measurements by thermographic particle image velocimetry with ZnO tracers. Exp. Fluids 58, 1–12 (2017)

    Article  Google Scholar 

  72. S. Singh, P. Thiyagarajan, K.M. Kant, D. Anita, S. Thirupathiah, N. Rama, et al., Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano. J. Phys. D Appl. Phys. 40, 6312–6327 (2007)

    Google Scholar 

  73. I. Choudhary, R. Shukla, A. Sharma, K.K. Raina, Effect of excitation wavelength and europium doping on the optical properties of nanoscale zinc oxide. J. Mater. Sci. Mater. Electron. 31, 20033–20042 (2020)

    Article  Google Scholar 

  74. T. Ahmed, Solid state metathesis synthesis for ZnO-based materials towards applications in light-emitting diodes and ultra-violet-sensing devices, Masters Thesis, Memorial University of Newfoundland (2018)

    Google Scholar 

  75. J.S. Wilson, Sensor Technology Handbook (2005)

    Google Scholar 

  76. A. Nahhas (ed.) Zinc oxide based nano materials and devices. IntechOpen, London (2019). https://doi.org/10.5772/intechopen.78819

  77. S.K. Singh, D. Dutta, S. Das, A. Dhar, M.C. Paul, Synthetic and structural investigation of ZnO nano-rods, hydrothermally grown over Au coated optical fiber for evanescent field-based detection of aqueous ammonia. Mater. Sci. Semicond. Process. 107, 104819–104829 (2020)

    Article  Google Scholar 

  78. M. Kosowska, P. Listewnik, D. Majchrowicz, M. Rycewicz, M. Bechelany, Y. Fleger et al., Microscale diamond protection for a ZnO coated fiber optic sensor. J. Sci. Rep. 10, 19141–19149 (2020)

    Google Scholar 

  79. J. Hecht, City of Light: The Story of Fiber Optics (Oxford University Press, hardcover, 1999), pp. 1–348

    Google Scholar 

  80. Optical fibre. https://www.priyamstudycentre.com/2021/07/optical-fiber.html. Accessed 03 Mar 2022

  81. Z. Yang, L. Jiang, J. Wang, F. Liu, J. He, A. Liu, et al., Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sens. Actuators B Chem. 326, 128828 (2021)

    Google Scholar 

  82. S. Agarwal, S. Kumar, H. Agrawal, M.G. Moinuddin, M. Kumar, S.K. Sharma et al., An efficient hydrogen gas sensor based on hierarchical Ag/ZnO hollow microstructures. Sens. Actuators B Chem. 346, 130510 (2021)

    Google Scholar 

  83. A.K. Sood, Z.L. Wang, D.L. Polla, N.K. Dhar, T. Manzur, A.F.M. Anwar, ZnO nanostructures for optoelectronic applications. Optoelectron. Mat. Devices, 173–196 (2011)

    Google Scholar 

  84. P. Kaur, K. Rahul, S. Kaur, V. Kumar, A. Kandasami, D.P. Singh, Temperature-dependent characteristics of ZnO phosphors from synchrotron-based vacuum ultraviolet photoluminescence spectroscopy. Eur. Phys. J. Plus. 137, 142–148 (2022)

    Google Scholar 

  85. A.S. Ibraheam, J.M. Rzaij, M.A. Fakhri, A.W. Abdulwahhab, Structural, optical and electrical investigations of Al:ZnO nanostructures as UV photodetector synthesized by spray pyrolysis technique. Mater. Res. Express. 6, 055916 (2019)

    Google Scholar 

  86. L.L. Noto, H.C. Swart, B.M. Mothudi, P.S. Mbule, M.S. Dhlamini, The dynamics of luminescence, in Luminescence - An Outlook on the Phenomena and Their Applications (2016).https://doi.org/10.5772/65050

  87. A schematic showing colour pixel matrix. https://encryptedtbn0.gstatic.com/images?q=tbn:ANd9GcTZEV8Ds23frKXQ1o2xKhIlKLrrvow1zvRXzw2_YkRcA4SJxFi2kPhVrHY7v815ksy5HHU&usqp=CAU. Accessed 02 March 2022

    Google Scholar 

  88. K. Fabitha, M.S.R. Rao, Ho3+-doped ZnO nano phosphor for low-threshold sharp red light emission at elevated temperatures. Opt. Soc. 34, 2485–2492 (2017)

    Article  ADS  Google Scholar 

  89. R. Fouladi-Fard, R. Aali, S. Mohammadi-Aghdam, S. Mortazavi-derazkola, The surface modification of spherical ZnO with Ag nanoparticles: a novel agent, biogenic synthesis, catalytic and antibacterial activities. Arab. J. Chem. 15, 103658 (2022)

    Google Scholar 

  90. A.L Abed, W.K. Khalef, E.T. Salim, Synthesis, characterization and optoelectronic device application of ZnO nano structure. J. Phys. Conf. Ser 1795, 012031 (2002)

    Google Scholar 

  91. A.B. Djuriic, A.M.C. Ng, X.Y. Chen, ZnO nanostructures for optoelectronics: material properties and device applications. Prog. Q. Electron. 34, 191–259 (2010)

    Google Scholar 

  92. A.H. Sabry, W.Z.W. Hasan, M.A. Kadir, M.A.M. Radzi, S. Shafie, Processing and monitoring algorithm for solar-powered smart home in DC-environment system based on RF-radio node, in Lecture Notes in Compututer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10607 (2017), pp. 304–314

    Google Scholar 

  93. T. Dittrich, Basic Characteristics and Characterization of Solar Cells, Materials Concepts for Solar Cells, 2nd edn. (2018), pp. 3–43

    Google Scholar 

  94. J. Jiang, J. Pi, J. Cai, The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. 2018, 1–18 (2018)

    Google Scholar 

  95. S. Chaudhary, A. Umar, K.K. Bhasin, S. Baskoutas, Chemical sensing applications of ZnO nanomaterials. J. Mater. 11, 1–38 (2018)

    Google Scholar 

  96. Y. Sun, L. Chen, Y. Bao, Y. Zhang, J. Wang, M. Fu et al., The applications of morphology controlled ZnO in catalysis. Catalysts 6, 188–198 (2016)

    Article  Google Scholar 

  97. K. Omri, N. Alonizan, Effects of ZnO/Mn concentration on the micro-structure and optical properties of ZnO/Mn–TiO2 nano-composite for applications in photo-catalysis. J. Inorg. Organomet. Polym. Mater. 29, 203–212 (2019)

    Article  Google Scholar 

  98. A.K. Shukla, ed. (n.d.) Nanoparticles and Their Biomedical Applications (Springer, Singapore, 2020), pp. 1–275

    Google Scholar 

  99. J. Kaszewski, P. Kielbik, E. Wolska, B. Witkowski, L. Wachnicki, Z. Gajewski, et al., Tuning the luminescence of ZnO: Eu nanoparticles for applications in biology and medicine. Opt. Mater. 80, 77–86 (2018)

    Google Scholar 

  100. X. Zhang, M.Q. Le, V.C. Nguyen, J.F. Mogniotte, J.F. Capsal, D. Grinberg et al., Characterization of micro-ZnO/PDMS composite structured via dielectrophoresis—toward medical application. Mater. Des. 208, 109912 (2021)

    Article  Google Scholar 

  101. J. Jiang, J. Pi, J. Cai, The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. 2018, 1–18 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Mofokeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mofokeng, S.J. et al. (2023). ZnO-Based Phosphors Materials. In: Kumar, V., Sharma, V., Swart, H.C. (eds) Advanced Materials for Solid State Lighting. Progress in Optical Science and Photonics, vol 25. Springer, Singapore. https://doi.org/10.1007/978-981-99-4145-2_3

Download citation

Publish with us

Policies and ethics