Skip to main content
Log in

Effect of excitation wavelength and europium doping on the optical properties of nanoscale zinc oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study demonstrates a red light-emitting nano-phosphor material tailored by doping europium (Eu+3) ions in zinc oxide (ZnO), prepared using a solution based co-precipitation method. Instead of using acetates or nitrates based precursor for Eu+3 doping, here we directly used europium oxide (Eu2O3) as a precursor. The precursor showed a limited amount of solubility only up to 3% in an alcoholic solution. No phase change of any kind in x-ray diffraction (XRD) patterns indicates effective Eu+3 doping in ZnO. Also, the broadening of the XRD peaks confirms the reduction of size to the nanoscale. Further, the optical properties of pure ZnO and Eu+3-doped ZnO are elucidated using UV–Visible and photoluminescence (PL) spectroscopy. A redshift of 10 nm in the absorption edge from pure ZnO to 3% Eu+3-doped ZnO concentration is detected, indicating that Eu+3 ions occupy impurity trap levels below the conduction band. A regular increase in the excitation wavelength from 190 nm to 270 nm confirms that 226 nm excitation wavelength is the onset point for the emission from Eu+3 ions. The Eu+3-doped ZnO nanoparticles exhibit two emission peaks at 584 nm and 613 nm corresponding to 5D07F1 and 5D07F2 transition of Eu+3 ions at low excitation wavelengths of 254 nm and 270 nm. Out of these two peaks, 613 nm peak was the most intense suggesting that mostly 5D07F2 transitions are taking place. The intensity ratio of 5D07F2 / 5D07F1 for both excitation wavelengths of 254 nm and 270 nm is always greater than one confirms the efficient emission of red color from Eu+3 ions. In addition to that, the samples exhibit a high color purity value of 83.78 %, with CIE coordinates (0.60, 0.40) lying closer to the ideal red color CIE coordinates at an excitation wavelength of 254 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.G. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15(4), 383–396 (2016)

    Article  CAS  Google Scholar 

  2. L. Petti et al. Metal oxide semiconductor thin-film transistors for flexible electronics, (in English), Appl. Physics Rev Rev 3(2) 53 (2016), Art. no. 021303

  3. M. Grundmann et al. Oxide bipolar electronics: materials, devices and circuits, J. Phys. D-Appl. Phys. 49(21), (2016), Art. no. 213001.

  4. I. Choudhary, Deepak, Flexible substrate compatible solution processed P-N heterojunction diodes with indium-gallium-zinc oxide and copper oxide, Mater. Sci. Eng.: B. 218, 64-73 (2017)

  5. J.H. Park et al., All-solution-processed, transparent thin-film transistors based on metal oxides and single-walled carbon nanotubes. J. Mater. Chem. C 1(9), 1840–1845 (2013)

    Article  CAS  Google Scholar 

  6. R.F.P. Martins et al., Recyclable, flexible, low-power oxide electronics. Adv. Funct. Mater. 23(17), 2153–2161 (2013)

    Article  CAS  Google Scholar 

  7. S.K. Park, Y.H. Kim, J.I. Han, All solution-processed high-resolution bottom-contact transparent metal-oxide thin film transistors, J. Phys. D-Appl. Phys. 42(12), (2009) Art. no. 125102.

  8. C.Y. Koo et al., Sol-gel derived Ga-In-Zn-O semiconductor layers for solution-processed thin-film transistors. J. Korean Phys. Soc. 53(1), 218–222 (2008)

    Article  CAS  Google Scholar 

  9. C.D. Dimitrakopoulos, P.R.L. Malenfant, Organic thin film transistors for large area electronics, (in English). Adv. Mater. Rev. 14(2), 99 (2002)

    Article  CAS  Google Scholar 

  10. H. Hosono, M. Yasukawa, H. Kawazoe, Novel oxide amorphous semiconductors: transparent conducting amorphous oxides. J Non-Cryst Solids 203, 334–344 (1996)

    Article  CAS  Google Scholar 

  11. B. Ghanbari Shohany, A. Khorsand Zak, Doped ZnO nanostructures with selected elements—Structural, morphology and optical properties: A review. Ceram Int 46(5), 5507–5520 (2020)

    Article  CAS  Google Scholar 

  12. J. Wang, R. Chen, L. Xiang, S. Komarneni, Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram Int 44(7), 7357–7377 (2018)

    Article  CAS  Google Scholar 

  13. C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sustain Energy Rev 81, 536–551 (2018)

    Article  CAS  Google Scholar 

  14. A. Di Mauro, M.E. Fragalà, V. Privitera, G. Impellizzeri, ZnO for application in photocatalysis: from thin films to nanostructures. Mater. Sci. Semicond. Process. 69, 44–51 (2017)

    Article  CAS  Google Scholar 

  15. S.K. Arya, S. Saha, J.E. Ramirez-Vick, V. Gupta, S. Bhansali, S.P. Singh, Recent advances in ZnO nanostructures and thin films for biosensor applications: Review. Analytica Chimica Acta 737, 1–21 (2012)

    Article  CAS  Google Scholar 

  16. A. Wei, L. Pan, W. Huang, Recent progress in the ZnO nanostructure-based sensors. Mater. Sci. Eng.: B 176(18), 1409–1421 (2011)

    Article  CAS  Google Scholar 

  17. A.B. Djurišić, A.M.C. Ng, X.Y. Chen, ZnO nanostructures for optoelectronics: Material properties and device applications. Progress Quantum Electron 34(4), 191–259 (2010)

    Article  CAS  Google Scholar 

  18. S. Goel, B. Kumar, A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures. J. Alloys Comp. 816, 152491 (2020)

    Article  CAS  Google Scholar 

  19. V.S. Bhati, M. Hojamberdiev, M. Kumar, Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Rep. 6, 46–62 (2020)

    Article  Google Scholar 

  20. M. Alavi, A. Nokhodchi, An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydr. Polym. 227, 115349 (2020)

    Article  CAS  Google Scholar 

  21. J. Liu, Y. Wang, J. Ma, Y. Peng, A. Wang, A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. J. Alloys Compd. 783, 898–918 (2019)

    Article  CAS  Google Scholar 

  22. Y. Li et al., Study on the high magnetic field processed ZnO based diluted magnetic semiconductors. Ceram. Int. 45(16), 19583–19595 (2019)

    Article  CAS  Google Scholar 

  23. R. Ahmad, S.M. Majhi, X. Zhang, T.M. Swager, K.N. Salama, Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Adv. Colloid Interface Sci. 270, 1–27 (2019)

    Article  CAS  Google Scholar 

  24. P. Vishnukumar, S. Vivekanandhan, M. Misra, A.K. Mohanty, Recent advances and emerging opportunities in phytochemical synthesis of ZnO nanostructures. Mater. Sci. Semicond. Process. 80, 143–161 (2018)

    Article  CAS  Google Scholar 

  25. R. Kumar, A. Umar, G. Kumar, H.S. Nalwa, Antimicrobial properties of ZnO nanomaterials: A review. Ceram. Int. 43(5), 3940–3961 (2017)

    Article  CAS  Google Scholar 

  26. M. Norouzi et al., Thermoelectric energy harvesting using array of vertically aligned Al-doped ZnO nanorods. Thin Solid Films 619, 41–47 (2016)

    Article  CAS  Google Scholar 

  27. A. Tsukazaki et al., Blue light-emitting diode based on ZnO. Jpn. J. Appl. Phys. 44(21), 643–645 (2005)

    Article  CAS  Google Scholar 

  28. S.H. Khan, B. Pathak, ZnO based Photocatalytic Degradation Of Persistent Pesticides: A comprehensive review. Environ. Nanotechnol. Monitor. Manag. 100290 (2020).

  29. C. Yi et al., Nanoscale ZnO-based photosensitizers for photodynamic therapy. Photodiagn. Photodynam. Ther. 30, 101694 (2020)

    Article  CAS  Google Scholar 

  30. S. Kumar, G.-H. Kim, K. Sreenivas, R.P. Tandon, ZnO based surface acoustic wave ultraviolet photo sensor. J. Electroceram. 22(1), 198–202 (2009)

    Article  CAS  Google Scholar 

  31. V.B. Raj, H. Singh, A.T. Nimal, M.U. Sharma, V. Gupta, Oxide thin films (ZnO, TeO2, SnO2, and TiO2) based surface acoustic wave (SAW) E-nose for the detection of chemical warfare agents. Sensors Actuators B: Chem 178, 636–647 (2013)

    Article  CAS  Google Scholar 

  32. R. Singh, A. King, B.B. Nayak, Reddish emission of europium doped zinc oxide nanophosphor prepared through precipitation route using sodium borohydride. J. Alloys Compd. 792, 1191–1199 (2019)

    Article  CAS  Google Scholar 

  33. V. Guckan, V. Altunal, A. Ozdemir, V. Tsiumra, Y. Zhydachevskyy, Z. Yegingil, Calcination effects on europium doped zinc oxide as a luminescent material synthesized via sol-gel and precipitation methods. J. Alloys Compd. 823, 153878 (2020)

    Article  CAS  Google Scholar 

  34. M. Bian, H. Zhang, J. Zhang, Z. Li, Effects of post-annealing on photoluminescence of Eu-doped ZnO microsphere for single-component white-light materials. Optik 209, 164607 (2020)

    Article  CAS  Google Scholar 

  35. E.H.H. Hasabeldaim, O.M. Ntwaeaborwa, R.E. Kroon, E. Coetsee, H.C. Swart, Photoluminescence and cathodoluminescence of spin coated ZnO films with different concentration of Eu3+ ions. Vacuum 169, 108889 (2019)

    Article  CAS  Google Scholar 

  36. L.F. Koao, B.F. Dejene, H.C. Swart, S.V. Motloung, T.E. Motaung, Characterization of annealed Eu3+-doped ZnO flower-like morphology synthesized by chemical bath deposition method. Opt. Mater. 60, 294–304 (2016)

    Article  CAS  Google Scholar 

  37. S.M. Ahmed, P. Szymanski, L.M. El-Nadi, M.A. El-Sayed, Energy-transfer efficiency in Eu-Doped ZnO Thin Films: The effects of oxidative annealing on the dynamics and the intermediate defect states. ACS Appl. Mater. Interfaces 6(3), 1765–1772 (2014)

    Article  CAS  Google Scholar 

  38. P.P. Pal, J. Manam, Structural and photoluminescence studies of Eu3+ doped zinc oxide nanorods prepared by precipitation method. J. Rare Earths 31(1), 37–43 (2013)

    Article  CAS  Google Scholar 

  39. P. Dorenbos, E. van der Kolk, Location of lanthanide impurity levels in the III-V semiconductor GaN. Appl. Phys. Lett. 89(6), 061122 (2006)

    Article  CAS  Google Scholar 

  40. R.E.M. Khaidir et al., Exploring Eu3+-doped ZnO-SiO2 glass derived by recycling renewable source of waste rice husk for white-LEDs application. Results Phys. 15, 102596 (2019)

    Article  Google Scholar 

  41. E. Hasabeldaim, O.M. Ntwaeaborwa, R.E. Kroon, H.C. Swart, Structural, optical and photoluminescence properties of Eu doped ZnO thin films prepared by spin coating. J. Mol. Struct. 1192, 105–114 (2019)

    Article  CAS  Google Scholar 

  42. E. Wolska-Kornio, J. Kaszewski, B.S. Witkowski, Ł. Wachnicki, M. Godlewski, The effect of annealing on properties of europium doped ZnO nanopowders obtained by a microwave hydrothermal method. Opt. Mater. 59, 103–106 (2016)

    Article  CAS  Google Scholar 

  43. J.-C. Sin, S.-M. Lam, Hydrothermal synthesis of europium-doped flower-like ZnO hierarchical structures with enhanced sunlight photocatalytic degradation of phenol. Mater. Lett. 182, 223–226 (2016)

    Article  CAS  Google Scholar 

  44. S.A. Al Rifai, B.A. Kulnitskiy, Microstructural and optical properties of europium-doped zinc oxide nanowires. J. Phys. Chem. Solids 74(12), 1733–1738 (2013)

    Article  CAS  Google Scholar 

  45. J. Yang et al., Synthesis and optical properties of Eu-doped ZnO nanosheets by hydrothermal method. Mater. Sci. Semicond. Process. 14(3), 247–252 (2011)

    Article  CAS  Google Scholar 

  46. P.A.M. Nascimento, A.J.S. Silva, A.B. Andrade, R.S. Silva, M.V.D.S. Rezende, Effects of X-ray irradiation on the luminescent properties of Eu-doped LiSrPO4 phosphors produced using the sol-gel method with glucose. J. Phys. Chem. Solids 113, 26–30 (2018)

    Article  CAS  Google Scholar 

  47. K. Park, D.A. Hakeem, J.W. Pi, G.W. Jung, Emission enhancement of Eu3+-doped ZnO by adding charge compensators. J. Alloys Compd. 772, 1040–1051 (2019)

    Article  CAS  Google Scholar 

  48. A.R. Khataee, A. Karimi, R.D.C. Soltani, M. Safarpour, Y. Hanifehpour, S.W. Joo, Europium-doped ZnO as a visible light responsive nanocatalyst: Sonochemical synthesis, characterization and response surface modeling of photocatalytic process. Appl. Catal. A: General 488, 160–170 (2014)

    Article  CAS  Google Scholar 

  49. O. Lupan et al., Eu-doped ZnO nanowire arrays grown by electrodeposition. Appl. Surf. Sci. 282, 782–788 (2013)

    Article  CAS  Google Scholar 

  50. L. Luo et al., Enhanced ultraviolet lasing from europium-doped zinc oxide nanocrystals. Opt. Mater. 32(9), 1066–1070 (2010)

    Article  CAS  Google Scholar 

  51. R. Raji, R.G.A. Kumar, K.G. Gopchandran, Influence of local structure on luminescence dynamics of red emitting ZnO:Eu3+ nanostructures and its Judd-Ofelt analysis. J. Lumin. 205, 179–189 (2019)

    Article  CAS  Google Scholar 

  52. A. Gulino, I. Fragala, Deposition and characterization of transparent thin films of zinc oxide doped with Bi and Sb. Chemi. of Mater. 14(1), 116–121 (2002)

    Article  CAS  Google Scholar 

  53. X. Peng et al., Shape control of CdSe nanocrystals. Nature 404(6773), 59–61 (2000)

    Article  CAS  Google Scholar 

  54. V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83(10), 5447–5451 (1998)

    Article  CAS  Google Scholar 

  55. Ü. Özgür et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005)

    Article  CAS  Google Scholar 

  56. L.V. Trandafilović, D.J. Jovanović, X. Zhang, S. Ptasińska, M.D. Dramićanin, Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO: Eu nanoparticles. Appl. Catal. B: Environ. 203, 740–752 (2017)

    Article  CAS  Google Scholar 

  57. D. Raoufi, Synthesis and photoluminescence characterization of ZnO nanoparticles. J. Lumin. 134, 213–219 (2013)

    Article  CAS  Google Scholar 

  58. A. Ghosh, R.N.P. Choudhary, Optical emission and absorption spectra of Zn–ZnO core-shell nanostructures. J. Exp. Nanosci. 5(2), 134–142 (2010)

    Article  CAS  Google Scholar 

  59. H. Shahroosvand, M. Ghorbani-asl, Solution-based synthetic strategies for Eu doped ZnO nanoparticle with enhanced red photoluminescence. J. Lumin. 144, 223–229 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by the Department of Science and Technology (DST), New Delhi, India. The authors also acknowledge the help of Dr. ML Singla senior scientist CSIO Chandigarh for helping out with PL measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishan Choudhary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, I., Shukla, R., Sharma, A. et al. Effect of excitation wavelength and europium doping on the optical properties of nanoscale zinc oxide. J Mater Sci: Mater Electron 31, 20033–20042 (2020). https://doi.org/10.1007/s10854-020-04525-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04525-x

Navigation