Skip to main content

Recovery and Removal of Textile Dyes Through Adsorption Process

  • Chapter
  • First Online:
Nanohybrid Materials for Treatment of Textiles Dyes

Part of the book series: Smart Nanomaterials Technology ((SNT))

  • 150 Accesses

Abstract

Textile dyes released in the effluents of textile industries are a major source of environmental pollution. These dyes are non-biodegradable due to the aromatic structure and are recalcitrant in nature. Thus, the metabolic pathways of complete biodegradation are not clearly understood. The increasing concentrations of these dyes are a threat to aquatic life forms and human beings. The bioaccumulation and biomagnifications of these chemicals in the fauna and flora are a major cause of concern. More than 40% of these chemicals are well known carcinogens, and thus, the removal of these dyes from the water bodies is crucial. Biodegradation of these chemicals is possible; however, several factors influence the process. In spite of the use of microorganisms like bacteria, algae and fungi, commercial application of the process is still not promising. An alternative method is biosorption that uses microorganisms and agricultural waste residues to remove textile dyes by adsorption process. The process of adsorption helps removal of these dyes from industrial effluents. Though the mechanism of adsorption is not fully understood, the use of various other adsorbants like clay, coal-based adsorbants, activated carbon, zeolites, alumina, magnetic biosorbants, polyelectrolytes, etc., have been studied during the last three decades. The use of nanomaterials has been reported as an efficient, cost effective and eco-friendly method for textile dye removal. Therefore, the present review summarises the adsorption process, mechanism of adsorption, the types of adsorbants and their potential in large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krithika T, Kavitha R, Dinesh M, Angayarkanni J (2021) Assessment of ligninolytic bacterial consortium for the degradation of azo dye with electricity generation in a dual-chambered microbial fuel cell. Environ Challenges 4:100093. https://doi.org/10.1016/j.envc.2021.100093

    Article  CAS  Google Scholar 

  2. Chequer FD, De Oliveira GR, Ferraz EA, Cardoso JC, Zanoni MB, De Oliveira DP (2013) Textile dyes: dyeing process and environmental impact. Eco-Friendly Text Dyeing Finish 6(6):151–176. https://doi.org/10.5772/53659

    Article  CAS  Google Scholar 

  3. Thiruppathi K, Rangasamy K, Ramasamy M, Muthu D (2021) Evaluation of textile dye degrading potential of ligninolytic bacterial consortia. Environ Challenges 4:100078. https://doi.org/10.1016/j.envc.2021.100078

    Article  CAS  Google Scholar 

  4. Gambhir RS, Kapoor V, Nirola A, Sohi R, Bansal V (2012) Water pollution: impact of pollutants and new promising techniques in purification process. J Hum Ecol 37(2):103–109. https://doi.org/10.1080/09709274.2012.11906453

    Article  Google Scholar 

  5. Hassan MM, Carr CM (2018) A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 209:201–219

    Article  CAS  Google Scholar 

  6. Mary JE, Krithika T, Kavitha R (2020) Biodegradation of textile dye by ligninolytic bacteria isolated from western Ghats. Int J Res Rev 7:22–29. https://www.ijrrjournal.com/IJRR_Vol.7_Issue.4_April2020/Abstract_IJRR004.html

  7. Bhatia SC, Devraj S (2017) Pollution control in textile industry. WPI publishing

    Google Scholar 

  8. Wang CX, Chen SL (2005) Aromachology and its application in the textile field. Fibres Text East Eur 13(6):41–44

    CAS  Google Scholar 

  9. Aquino JM, Rocha-Filho RC, Ruotolo LA, Bocchi N, Biaggio SR (2014) Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chem Eng J 251:138–145

    Article  CAS  Google Scholar 

  10. Khatri J, Nidheesh PV, Singh TA, Kumar MS (2018) Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chem Eng J 348:67–73

    Article  CAS  Google Scholar 

  11. Sandhya S (2010) Biodegradation of azo dyes under anaerobic condition: role of azoreductase. Biodegradation Azo Dyes 39–57

    Google Scholar 

  12. Alaqarbeh M (2021) Adsorption phenomena: definition, mechanisms, and adsorption types: short review. RHAZES Green Appl Chem 13:43–51. https://doi.org/10.48419/IMIST.PRSM/rhazes-v13.28283

  13. Kobiraj R, Gupta N, Kushwaha AK, Chattopadhyaya MC (2012) Determination of equilibrium, kinetic and thermodynamic parameters for the adsorption of Brilliant Green dye from aqueous solutions onto eggshell powder

    Google Scholar 

  14. Vijayakumar G, Tamilarasan R, Dharmendirakumar M (2012) Adsorption, kinetic, equilibrium and thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. J Mater Environ Sci 3(1):157–170

    CAS  Google Scholar 

  15. Rubín E, Rodríguez P, Herrero R, Sastre de Vicente ME (2010) Adsorption of methylene blue on chemically modified algal biomass: equilibrium, dynamic, and surface data. J Chem Eng Data 55(12):5707–5714

    Google Scholar 

  16. Shen K, Gondal MA (2017) Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground. J Saudi Chem Soc 21:S120-S127

    Google Scholar 

  17. Zheng Y, Yang Y, Zhang Y, Zou W, Luo Y, Dong L, Gao B (2019) Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation. Biochar 1:89–96

    Google Scholar 

  18. Dutta S, Gupta B, Srivastava SK, Gupta AK (2021) Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Mater Adv 2(14):4497–4531

    Google Scholar 

  19. Pirbazari AE, Saberikhah E, Badrouh M, Emami MS (2014) Alkali treated Foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution. Water Resour Ind 6: 64–80

    Google Scholar 

  20. Cojocaru C, Samoila P, Pascariu P (2019) Chitosan-based magnetic adsorbent for removal of water-soluble anionic dye: Artificial neural network modeling and molecular docking insights. Int J Biol Macromol 123:587–599

    Google Scholar 

  21. Siddiqui SI, Manzoor O, Mohsin M, Chaudhry SA (2019) Nigella sativa seed based nanocomposite-MnO2/BC: An antibacterial material for photocatalytic degradation, and adsorptive removal of Methylene blue from water. Environ Res 171:328–340

    Google Scholar 

  22. Rápó E, Tonk S (2021) Factors affecting synthetic dye adsorption; desorption studies: a review of results from the last five years (2017–2021). Molecules 26(17):5419. https://doi.org/10.3390/molecules26175419

    Article  CAS  Google Scholar 

  23. Wu J, Zhao Y, Qi H, Zhao X, Yang T, Du Y, Wei Z et al (2017) Identifying the key factors that affect the formation of humic substance during different materials composting. Bioresour Technol 244:1193–1196

    Google Scholar 

  24. Mittal A, Mittal J, Malviya A, Jaspal D, Gupta V (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interface Sci 343:463–473. https://doi.org/10.1016/j.jcis.2009.11.060

  25. Jain R, Mathur M, Sikarwar S, Mittal A (2007) Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J Environ Manag 85(4):956–964

    Google Scholar 

  26. Abbaszadeh S, Alwi SRW, Webb C, Ghasemi N, Muhamad II (2016) Treatment of lead-contaminated water using activated carbon adsorbent from locally available papaya peel biowaste. J Cleaner Prod 118:210–222

    Article  CAS  Google Scholar 

  27. Binoj JS, Raj RE, Sreenivasan VS, Thusnavis GR (2016) Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian Areca fruit husk fibers (Areca Catechu L.) as potential alternate for hazardous synthetic fibers. J Bionic Eng 13(1):156–165

    Google Scholar 

  28. Careddu N, Marras G, Siotto G (2014) Recovery of sawdust resulting from marble processing plants for future uses in high value-added products. J Cleaner Prod 84:533–539

    Article  CAS  Google Scholar 

  29. Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS (2005) Removal of dyes from colored textile wastewater by orange peel adsorbent: equilibrium and kinetic studies. J Colloid Interface Sci 288(2):371–376

    Article  CAS  Google Scholar 

  30. Jandas PJ, Mohanty S, Nayak SK (2013) Surface treated banana fiber reinforced poly (lactic acid) nanocomposites for disposable applications. J Cleaner Prod 52:392–401

    Article  CAS  Google Scholar 

  31. Raymundo AS, Zanarotto R, Belisário M, Pereira MDG, Ribeiro JN, Ribeiro AVFN (2010) Evaluation of sugar-cane bagasse as bioadsorbent in the textile wastewater treatment contaminated with carcinogenic congo red dye. Braz Arch Biol Technol 53:931–938

    Article  CAS  Google Scholar 

  32. Cholake ST, Rajarao R, Henderson P, Rajagopal RR, Sahajwalla V (2017) Composite panels obtained from automotive waste plastics and agricultural macadamia shell waste. J Cleaner Prod 151:163–171

    Article  Google Scholar 

  33. Lu L, Li J, Ng DH, Yang P, Song P, Zuo M (2017) Synthesis of novel hierarchically porous Fe3O4@MgAl–LDH magnetic microspheres and its superb adsorption properties of dye from water. J Ind Eng Chem 46:315–323. https://doi.org/10.1016/j.jiec.2016.10.045

  34. Binoj JS, Raj RE, Daniel BSS (2017) Comprehensive characterization of industrially discarded fruit fiber, Tamarindus indica L. as a potential eco-friendly bio-reinforcement for polymer composite. J Cleaner Prod 142:1321–1331

    Article  CAS  Google Scholar 

  35. Reddy MC (2006) Removal of direct dye from aqueous solutions with an adsorbent made from tamarind fruit shell, an agricultural solid waste

    Google Scholar 

  36. Chowdhury S, Mishra R, Saha P, Kushwaha P (2011) Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265(1–3):159–168

    Article  CAS  Google Scholar 

  37. Memon SA, Khan MK (2018) Ash blended cement composites: Eco-friendly and sustainable option for utilization of corncob ash. J Cleaner Prod 175:442–455

    Google Scholar 

  38. Salih SJ, Kareem ASA, Anwer SS (2022) Adsorption of anionic dyes from textile wastewater utilizing raw corncob. Heliyon 8(8):e10092

    Article  CAS  Google Scholar 

  39. Nikkhah A, Khojastehpour M, Emadi B, Taheri-Rad A, Khorramdel S (2015) Environmental impacts of peanut production system using life cycle assessment methodology. J Cleaner Prod 92:84–90

    Article  CAS  Google Scholar 

  40. Etorki AM, Massoudi FM (2011) The use of peanut hull for the adsorption of colour from aqueous dye solutions and dye textile effluent. Orient J Chem 27(3):875

    CAS  Google Scholar 

  41. Dunnigan L, Ashman PJ, Zhang X, Kwong CW (2018) Production of biochar from rice husk: particulate emissions from the combustion of raw pyrolysis volatiles. J Cleaner Prod 172:1639–1645

    Article  CAS  Google Scholar 

  42. Sivalingam S, Sen S (2020) Rice husk ash derived nanocrystalline ZSM-5 for highly efficient removal of a toxic textile dye. J Mater Res Technol 9(6):14853–14864

    Article  CAS  Google Scholar 

  43. Castro NR, Swart J (2017) Building a roundtable for a sustainable hazelnut supply chain. J Cleaner Prod 168:1398–1412

    Article  Google Scholar 

  44. Buyukada M, Uzuner S, Evrendilek F (2018) Utilization of (modified-) ground hazelnut shells for adsorption of azo-metal toxic dyes: empirical and ANFIS modeling and optimization. Chiang Mai J Sci

    Google Scholar 

  45. Nhung NTH, Quynh, BTP, Thao PTT, Bich HN, Giang BL (2018) Pretreated fruit peels as adsorbents for removal of dyes from water. In: IOP conference series: earth and environmental science, vol 159, no. 1. IOP Publishing, p 012015

    Google Scholar 

  46. Arena N, Lee J, Clift R (2016) Life cycle assessment of activated carbon production from coconut shells. J Cleaner Prod 125:68–77

    Article  CAS  Google Scholar 

  47. Etim UJ, Umoren SA, Eduok UM (2016) Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution. J Saudi Chem Soc 20:S67–S76

    Article  CAS  Google Scholar 

  48. Chin BLF, Yusup S, Al Shoaibi A, Kannan P, Srinivasakannan C, Sulaiman SA (2014) Comparative studies on catalytic and non-catalytic co-gasification of rubber seed shell and high density polyethylene mixtures. J Cleaner Prod 70:303–314

    Article  CAS  Google Scholar 

  49. Rajesh M, Jayakrishna K, Sultan MTH, Manikandan M, Mugeshkannan V, Shah AUM, Safri SNA (2020) The hydroscopic effect on dynamic and thermal properties of woven jute, banana, and intra-ply hybrid natural fiber composites. J Mater Res Technol 9(5):10305–10315

    Article  Google Scholar 

  50. Weinwurm F, Turk T, Denner J, Whitmore K, Friedl A (2017) Combined liquid hot water and ethanol organosolv treatment of wheat straw for extraction and reaction modeling. J Cleaner Prod 165:1473–1484

    Article  CAS  Google Scholar 

  51. Guil-Guerrero JL, Guil-Laynez JL, Guil-Laynez Á (2017) Bioprospecting for seed oils from wild plants in the Mediterranean Basin for biodiesel production. J Cleaner Prod 159:180–193

    Article  CAS  Google Scholar 

  52. Smitha T, Santhi T, Prasad AL, Manonmani S (2017) Cucumis sativus used as adsorbent for the removal of dyes from aqueous solution. Arab J Chem 10:S244–S251

    Article  CAS  Google Scholar 

  53. Weber C, Foletto E, Meili L (2013) Removal of tannery dye from aqueous solution using papaya seed as an efficient natural biosorbent. Water Air Soil Pollut 224. https://doi.org/10.1007/s11270-012-1427-7

  54. Burland JB (1990) On the compressibility and shear strength of natural clays. Géotechnique 40(3):329–378

    Article  Google Scholar 

  55. Kazmi SMS, Munir MJ, Wu YF, Hanif A, Patnaikuni I (2018) Thermal performance evaluation of eco-friendly bricks incorporating waste glass sludge. J Cleaner Prod 172:1867–1880

    Article  Google Scholar 

  56. Capela MN, Cesconeto FR, Pinto PC, Tarelho LA, Seabra MP, Labrincha JA (2022) Biomass fly ash self-hardened adsorbent monoliths for methylene blue removal from aqueous solutions. Appl Sci 12(10):5134

    Article  CAS  Google Scholar 

  57. Amin N, Faisal M, Muhammad Khan, Gul S (2016) Synthesis and characterization of geopolymer from bagasse bottom ash, waste of sugar industries and naturally available china clay. J Cleaner Prod 129. https://doi.org/10.1016/j.jclepro.2016.04.024

  58. Hynes NRJ, Kumar JS, Kamyab H, Sujana JAJ, Al-Khashman OA, Kuslu Y, Kumar BS et al (2020) Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector—a comprehensive review. J Cleaner Prod 272:122636

    Google Scholar 

  59. Yang R, Li D, Li A, Yang H (2018) Adsorption properties and mechanisms of palygorskite for removal of various ionic dyes from water. Appl Clay Sci 151:20–28

    Article  CAS  Google Scholar 

  60. Kismir Y, Aroguz AZ (2011) Adsorption characteristics of the hazardous dye Brilliant Green on Saklıkent mud. Chem Eng J 172(1):199–206

    Article  CAS  Google Scholar 

  61. Zhao M, Liu P (2008) Adsorption behavior of methylene blue on halloysite nanotubes. Microporous Mesoporous Mater 112(1–3):419–424

    Article  CAS  Google Scholar 

  62. Almasian A, Olya ME, Mahmoodi NM (2015) Synthesis of polyacrylonitrile/polyamidoamine composite nanofibers using electrospinning technique and their dye removal capacity. J Taiwan Inst Chem Eng 49:119–128

    Article  CAS  Google Scholar 

  63. Fiallos FRM, Robalino WSM, Beltrán BEP (2017) Biofiltración sobre Cama de Turba, para el Tratamiento de Aguas Residuales Provenientes del Lavado de Jeans. Revista Publicando 4(10):579–590

    Google Scholar 

  64. Vital RK, Saibaba KVN, Shaik KB, Gopinath R (2016) Dye removal by adsorption: a review. J Bioremediat Biodegrad 7:371. https://doi.org/10.4172/2155-6199.1000371

    Article  CAS  Google Scholar 

  65. Netpradit S, Thiravetyan P, Towprayoon S (2003) Application of ‘waste’ metal hydroxide sludge for adsorption of azo reactive dyes. Water Res 37(4):763–772

    Article  CAS  Google Scholar 

  66. Hossain MR, Rashid TU, Lata NP, Dey SC, Sarker M, Shamsuddin SM (2022) Fabrication of novel nanohybrid material for the removal of azo dyes from wastewater. J Compos Sci 6(10):304. https://doi.org/10.3390/jcs6100304

  67. Farhadi S, Amini MM, Dusek M, Kucerakova M, Mahmoudi F (2017) A new nanohybrid material constructed from Keggin-type polyoxometalate and Cd(II) semicarbazone Schiff base complex with excellent adsorption properties for the removal of cationic dye pollutants. J Mol Struct 1130:592–602

    Google Scholar 

  68. Zhao Y, Qamar SA, Qamar M, Bilal M, Iqbal HMN (2021) Sustainable remediation of hazardous environmental pollutants using biochar-based nanohybrid materials. J Environ Manag 300:113762

    Google Scholar 

  69. Mahmoodi NM, Najafi F (2012) Synthesis, amine functionalization and dye removal ability of titania/silica nano-hybrid. Microporous Mesoporous Mater 156:153–160

    Google Scholar 

  70. Archana S, Jayanna BK, Ananda A, Ananth MS, Ali AM, Muralidhara HB, Kumar KY (2022) Numerical investigations of response surface methodology for organic dye adsorption onto Mg-Al LDH-GO nano hybrid: an optimization, kinetics and isothermal studies. J Indian Chem Soc 99(1):100249

    Google Scholar 

  71. Han J, Jun B-M, Heo J, Lee G, Yoon Y, Park CM (2019) Highly efficient organic dye removal from waters by magnetically recoverable La2O2CO3/ZnFe2O4-reduced graphene oxide nanohybrid. Ceram Int 45(15):19247–19256

    Google Scholar 

  72. Liu J, Yu H, Liang Q, Liu Y, Shen J, Bai Q (2017) Preparation of polyhedral oligomeric silsesquioxane based cross-linked inorganic-organic nanohybrid as adsorbent for selective removal of acidic dyes from aqueous solution. J Colloid Interface Sci 497:402–412

    Google Scholar 

  73. González MA, Pavlovic I, Rojas-Delgado R, Barriga C (2014) Removal of Cu2+, Pb2+ and Cd2+ by layered double hydroxide–humate hybrid. Sorbate and sorbent comparative studies. Chem Eng J 254:605–611. https://doi.org/10.1016/j.cej.2014.05.132

    Article  CAS  Google Scholar 

  74. Sarojini G, Venkateshbabu S, Rajasimman M (2022) Adsorptive potential of iron oxide based nanocomposite for the sequestration of Congo red from aqueous solution. Chemosphere 287:132371

    Article  CAS  Google Scholar 

  75. Pal S, Ghorai S, Das C, Samrat S, Ghosh A, Panda AB (2012) Carboxymethyl tamarind-gpoly(acrylamide)/silica: a high performance hybrid nanocomposite for adsorption of methylene blue dye. Ind Eng Chem Res 51:15546–15556. https://doi.org/10.1021/ie301134a

  76. Ibrahim S, Fatimah I, Ang H-M, Wang S (2010) Adsorption of anionic dyes in aqueous solution using chemically modified barley straw. Water Sci Technol 62:1177–1185. https://doi.org/10.2166/wst.2010.388

  77. Guo X, Yin P, Yang H (2018) Superb adsorption of organic dyes from aqueous solution on hierarchically porous composites constructed by ZnAl-LDH/Al(OH)3 nanosheets. Microporous Mesoporous Mater 259:123–133. https://doi.org/10.1016/j.micromeso.2017.10.003

    Article  CAS  Google Scholar 

  78. Ahmed IM, Gasser MS (2012) Adsorption study of anionic reactive dye from aqueous solution to Mg–Fe–CO3 layered double hydroxide (LDH). Appl Surf Sci 259:650–656. https://doi.org/10.1016/j.apsusc.2012.07.092

  79. Bharali D, Deka RC (2017) Adsorptive removal of Congo red from aqueous solution bysonochemically synthesized NiAl layered double hydroxide. J Environ Chem Eng 5:2056–2067. https://doi.org/10.1016/j.jece.2017.04.012

  80. Lizundia E, Puglia D, Nguyen TD, Armentano I (2020) Cellulose nanocrystal based multifunctional nanohybrids. Prog Mater Sci 112:100668. https://doi.org/10.1016/j.pmatsci.2020.100668

  81. Nazir MA, Khan NA, Cheng C, Shah SSA, Najam T, Arshad M, ur Rehman A et al (2020) Surface induced growth of ZIF-67 at Co-layered double hydroxide: removal of methylene blue and methyl orange from water. Appl Clay Sci 190:105564. https://doi.org/10.1016/j.clay.2020.105564

  82. Mahouche-Chergui S, Boussaboun Z, Oun A, Kazembeyki M, Christian G, Carbonnier B, Ouellet-Plamondon CM (2021) Sustainable preparation of graphene-like hybrid nanomaterials and their application for organic dyes removal. Chem Eng Sci 236:116482

    Article  CAS  Google Scholar 

  83. Mohammadi Galangash M, Mohaghegh Montazeri M, Ghavidast A, Shirzad‐Siboni M (2018) Synthesis of carboxyl‐functionalized magnetic nanoparticles for adsorption of malachite green from water: kinetics and thermodynamics studies. J Chin Chem Soc 65(8):940-950. https://doi.org/10.1002/jccs.201700361

  84. Mohammadi Galangash M, Mohaghegh Montazeri M, Ghavidast A, Shirzad Siboni M (2018) Synthesis of carboxyl-functionalized magnetic nanoparticles for adsorption of malachite green from water: kinetics and thermodynamics studies. J Chin Chem Soc 65:940–950. https://doi.org/10.1002/jccs.201700361

  85. Narayani H, Jose M, Sriram K, Shukla S (2018) Hydrothermal synthesized magnetically separable mesostructured H2Ti3O7/γ-Fe2O3 nanocomposite for organic dye removal via adsorption and its regeneration/reuse through synergistic non-radiation driven H2O2 activation. Environ Sci Pollut Res 25:20304–20319. https://doi.org/10.1007/s11356-017-8381-2

    Article  CAS  Google Scholar 

  86. Liu A, Zhou W, Shen K, Liu J, Zhang X (2015) One-pot hydrothermal synthesis of hematite-reduced graphene oxide composites for efficient removal of malachite green from aqueous solution. RSC Adv 5:17336–17342

    Google Scholar 

  87. Gagliano E, Sgroi M, Falciglia PP, Vagliasindi FGA, Roccaro P (2020) Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res 171:115381

    Google Scholar 

  88. Zubair M, Jarrah N, Manzar MS, Al-Harthi M, Daud M, Mu’azu ND, Haladu SA (2017) Adsorption of eriochrome black T from aqueous phase on MgAl-, CoAl- and NiFecalcined layered double hydroxides: kinetic, equilibrium and thermodynamic studies. J Mol Liq 230:344–352. https://doi.org/10.1016/j.molliq.2017.01

  89. Tahir H, Sultan M, Jahanzeb Q (2008) Removal of basic dye methylene blue by using bioabsorbents Ulva lactuca and Sargassum. Afr J Biotechnol 7(15)

    Google Scholar 

  90. Meroufel B, Benali O, Benyahia M, Benmoussa Y, Zenasni MA (2013) Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: characteristics, isotherm, kinetic and thermodynamic studies. J Mater Environ Sci 4(3):482–491

    CAS  Google Scholar 

  91. Srivastava R, Rupainwar DC (2011) A comparative evaluation for adsorption of dye on Neem bark and mango bark powder

    Google Scholar 

  92. Oyelude EO, Owusu UR (2011) Adsorption of methylene blue from aqueous solution using acid modified Clotropis procer leaf powder. J Appl Sci Environ Sanit 2011(6):477

    Google Scholar 

  93. Diraki A, Mackey HR, McKay G, Abdala A (2019) Removal of emulsified and dissolved diesel oil from high salinity wastewater by adsorption onto graphene oxide. J Environ Chem Eng 7(3):103106. https://doi.org/10.1016/j.jece.2019.103106

    Article  CAS  Google Scholar 

  94. Karima O, Riazi G, Yousefi R, Movahedi AAM (2010) The enhancement effect of beta-boswellic acid on hippocampal neurites outgrowth and branching (an in vitro study). Neurol Sci 31(3):315–320. https://doi.org/10.1007/s10072-010-0220-x

    Article  Google Scholar 

  95. Morosanu I, Gilca AF, Paduraru C, Fighir D, Peptu CA, Teodosiu C (2017) Valorisation of rapeseed as biosorbent for the removal of textile dyes from aqueous effluents. Cellul Chem Technol 51:175–184

    Google Scholar 

  96. Bhattacharyya J, Santhoshkumar P, Sharma KK (2003) A peptide sequence—YSGVCHTDLHAWHGDWPLPVK [40–60]—in yeast alcohol dehydrogenase prevents the aggregation of denatured substrate proteins. Biochem Biophys Res Commun 307(1):1–7. https://doi.org/10.1016/S0006-291X(03)01116-1

    Article  CAS  Google Scholar 

  97. Chukki J, Abinandan S, Shanthakumar S (2018) Chrysanthemum indicum microparticles on removal of hazardous Congo red dye using response surface methodology. Int J Ind Chem 9(4):305–316. https://doi.org/10.1007/s40090-018-0160-5

    Article  CAS  Google Scholar 

  98. Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1–13. https://doi.org/10.1016/j.desal.2011.07.019

  99. Mittal A, Kurup L, Mittal J (2007) Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers. J Hazard Mater 146(1–2):243–248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Growther Lali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lali, G., Mahalakshmi, V., Seenuvasan, M., Sarojini, G. (2023). Recovery and Removal of Textile Dyes Through Adsorption Process. In: Ahmad, A., Jawaid, M., Mohamad Ibrahim, M.N., Yaqoob, A.A., Alshammari, M.B. (eds) Nanohybrid Materials for Treatment of Textiles Dyes. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-3901-5_9

Download citation

Publish with us

Policies and ethics