Skip to main content

Synthesis and Characterization of Nanohybrid Materials for Anionic Dye Removal

  • Chapter
  • First Online:
Nanohybrid Materials for Treatment of Textiles Dyes

Abstract

Polluted water resources, particularly those polluted with industrial effluent dyes, are carcinogenic and severely threaten sustainable and long-standing worldwide development. Heterogeneous photocatalysis and adsorption processes can efficiently remove these types of pollutants. The process employs hybrid nanomaterials based on inorganic, organic, polymeric, and ceramic molecules. This chapter presents a bibliographical review that focuses on some synthesis methods of hybrid nanomaterials, mentioning some characterization techniques that should be used to study optical, mechanical, and structural properties. Finally, the applications of specific nanomaterials in removing anionic contaminants are shown. It concludes with a reflection focused on sustainability in using this type of hybrid nanomaterials to treat anionic dyes from the textile industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abega AV, Ngomo HM, Nongwe I et al (2019) Easy and convenient synthesis of CNT/TiO2 nanohybrid by in-surface oxidation of Ti3+ ions and application in the photocatalytic degradation of organic contaminants in water. Synth Met 251:1–14. https://doi.org/10.1016/j.synthmet.2019.03.012

    Article  CAS  Google Scholar 

  2. Aboelfetoh EF, Elhelaly AA, Gemeay AH (2018) Synergistic effect of Cu(II) in the one-pot synthesis of reduced graphene oxide (rGO/CuxO) nanohybrids as adsorbents for cationic and anionic dyes. J Environ Chem Eng 6:623–634. https://doi.org/10.1016/j.jece.2017.12.047

    Article  CAS  Google Scholar 

  3. Aghazadeh Asl E, Pooresmaeil M, Namazi H (2023) Chitosan coated MOF/GO nanohybrid as a co-anticancer drug delivery vehicle: synthesis, characterization, and drug delivery application. Mater Chem Phys 293:126933. https://doi.org/10.1016/j.matchemphys.2022.126933

    Article  CAS  Google Scholar 

  4. Ahlawat W, Dilbaghi N, Kumar S (2021) Evaluation of graphene oxide and its composite as potential sorbent for removal of cationic and anionic dyes. Mater Today Proc 45:5500–5505. https://doi.org/10.1016/j.matpr.2021.02.215

    Article  CAS  Google Scholar 

  5. Akpomie KG, Conradie J (2020) Biogenic and chemically synthesized Solanum tuberosum peel–silver nanoparticle hybrid for the ultrasonic aided adsorption of bromophenol blue dye. Sci Rep 10:1–18. https://doi.org/10.1038/s41598-020-74254-y

    Article  CAS  Google Scholar 

  6. Albalwi H, Abou El Fadl FI, Ibrahim MM, Abou Taleb MF (2022) Catalytic activity of silver nanocomposite alginate beads for degradation of basic dye: kinetic and isothermal study. Appl Organomet Chem 36(1). https://doi.org/10.1002/aoc.v36.1; https://doi.org/10.1002/aoc.6490

  7. Alzahrani E (2017) Photodegradation of binary azo dyes using core-shell Fe3O4SiO2TiO2 nanospheres. Am J Anal Chem 08:95–115. https://doi.org/10.4236/ajac.2017.81008

    Article  CAS  Google Scholar 

  8. Amin MO, Al-Hetlani E (2021) Development of efficient SALDI substrate based on Au–TiO2 nanohybrids for environmental and forensic detection of dyes and NSAIDs. Talanta 233:122530. https://doi.org/10.1016/j.talanta.2021.122530

    Article  CAS  Google Scholar 

  9. Amin P, Shojaei A, Hamzehlouyan T (2022) ZIF-8/Chitosan hybrid nanoparticles with tunable morphologies as superior adsorbents towards both anionic and cationic dyes for a broad range of acidic and basic environments. Microporous Mesoporous Mater 343:112149. https://doi.org/10.1016/j.micromeso.2022.112149

    Article  CAS  Google Scholar 

  10. Artioli Y (2008) The chemistry of adsorption 60–65

    Google Scholar 

  11. Barrios-Estrada C, de Jesús R-A, Muñoz-Gutiérrez BD et al (2018) Emergent contaminants: endocrine disruptors and their laccase-assisted degradation—a review. Sci Total Environ 612:1516–1531. https://doi.org/10.1016/j.scitotenv.2017.09.013

    Article  CAS  Google Scholar 

  12. Bastami TR, Ahmadpour A (2016) Preparation of magnetic photocatalyst nanohybrid decorated by polyoxometalate for the degradation of a pharmaceutical pollutant under solar light. Environ Sci Pollut Res 23:8849–8860. https://doi.org/10.1007/s11356-015-5985-2

    Article  CAS  Google Scholar 

  13. Bijekar S, Padariya HD, Yadav VK et al (2022) The state of the art and emerging trends in the wastewater treatment in developing nations. Water (Switzerland) 14:1–19. https://doi.org/10.3390/w14162537

    Article  CAS  Google Scholar 

  14. Bilal M, Rizwan K, Rahdar A et al (2022) Graphene-based porous nanohybrid architectures for adsorptive and photocatalytic abatement of volatile organic compounds. Environ Pollut 309:119805. https://doi.org/10.1016/j.envpol.2022.119805

    Article  CAS  Google Scholar 

  15. Binaeian E, Babaee Zadvarzi S, Yuan D (2020) Anionic dye uptake via composite using chitosan-polyacrylamide hydrogel as matrix containing TiO2 nanoparticles: comprehensive adsorption studies. Int J Biol Macromol 162:150–162. https://doi.org/10.1016/j.ijbiomac.2020.06.158

    Article  CAS  Google Scholar 

  16. Biswal A, Swain SK (2022) Nanohybrid materials. In: Swain S (ed) Nanohybrid materials for water purification. Springer Nature, Singapore, pp 23–46

    Google Scholar 

  17. Blasques RV, Pereira MAA, Mendes AMRV et al (2020) Synthesis and characterization of a new ceramic nanomaterial SiO2/NPsSm2O3/C-graphite for the development of electrochemical sensors. Mater Chem Phys 243.https://doi.org/10.1016/j.matchemphys.2019.122255

  18. Bondy SC, Campbell A (2018) Water quality and brain function. Int J Environ Res Public Health 15.https://doi.org/10.3390/ijerph15010002

  19. Chen L, Chuang Y, Nguyen TB et al (2020) Novel molybdenum disulfide heterostructure nanohybrids with enhanced visible-light-induced photocatalytic activity towards organic dyes. J Alloys Compd 848:156448. https://doi.org/10.1016/j.jallcom.2020.156448

    Article  CAS  Google Scholar 

  20. Chennimalai M, Vijayalakshmi V, Senthil TS, Sivakumar N (2021) One-step green synthesis of ZnO nanoparticles using Opuntia humifus fruit extract and their antibacterial activities. Mater Today Proc 47:1842–1846. https://doi.org/10.1016/j.matpr.2021.03.409

    Article  CAS  Google Scholar 

  21. Colebunders R, Kaiser C, Basáñez MG et al (2022) Reducing onchocerciasis-associated morbidity in onchocerciasis-endemic foci with high ongoing transmission: a focus on the children. Int J Infect Dis 116:302–305. https://doi.org/10.1016/j.ijid.2022.01.042

    Article  Google Scholar 

  22. Cui Y, Liang L, Zhong Q et al (2017) The association of cancer risks with pentachlorophenol exposure: focusing on community population in the areas along certain section of Yangtze River in China. Environ Pollut 224:729–738. https://doi.org/10.1016/j.envpol.2016.12.011

    Article  CAS  Google Scholar 

  23. Cullity BD (1956) Elements of X-ray diffraction Addison-Wesley metallurgy series. J Chem Inf Model 53:1689–1699

    Google Scholar 

  24. Debbarma K, Debnath B, Sarkar PP (2022) A comprehensive review on the usage of nanomaterials in asphalt mixes. Constr Build Mater 361:129634. https://doi.org/10.1016/j.conbuildmat.2022.129634

    Article  CAS  Google Scholar 

  25. Dhandapani P, Balan B, Dinadayalane T, Angaiah S (2022) In-situ grown of FeCo2O4 @ 2D-Carbyne coated nickel foam—a newer nanohybrid electrode for high performance asymmetric supercapacitors. J Energy Storage 56:105943. https://doi.org/10.1016/j.est.2022.105943

    Article  Google Scholar 

  26. El-Sayed F, Hussien MSA, Alabdulaal TH et al (2022) Study of catalytic activity of G-SrO nanoparticles for degradation of cationic and anionic dye and comparative study photocatalytic and electro & photo-electrocatalytic of anionic dye degradation. J Mater Res Technol 20:959–975. https://doi.org/10.1016/j.jmrt.2022.07.108

    Article  CAS  Google Scholar 

  27. Espinola-Portilla F, Navarro-Mendoza R, Gutiérrez-Granados S et al (2017) A simple process for the deposition of TiO2 onto BDD by electrophoresis and its application to the photoelectrocatalysis of Acid Blue 80 dye. J Electroanal Chem 802:57–63. https://doi.org/10.1016/j.jelechem.2017.08.041

    Article  CAS  Google Scholar 

  28. Fathy NA, El-Shafey S (2022) Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye. Int J Environ Sci Technol.https://doi.org/10.1007/s13762-022-04061-7

  29. Ferfera-Harrar H, Benhalima T, Sadi A (2022) Development of functional chitosan-based superabsorbent hydrogel nanocomposites for adsorptive removal of basic red 46 textile dye. Springer, Berlin

    Book  Google Scholar 

  30. Haniffa MACM, Munawar K, Chee CY et al (2021) Cellulose supported magnetic nanohybrids: synthesis, physicomagnetic properties and biomedical applications-A review. Carbohydr Polym 267:118136. https://doi.org/10.1016/j.carbpol.2021.118136

    Article  CAS  Google Scholar 

  31. Hassaan MA, Nemr A El (2017) To cite this article: Mohamed A. Hassaan, Ahmed El Nemr. Health and environmental impacts of dyes: mini review. Am J Environ Sci Eng 1:64–67. https://doi.org/10.11648/j.ajese.20170103.11

  32. Hoseini SJ, Fath RH (2016) Formation of nanoneedle Cu(0)/CuS nanohybrid thin film by the disproportionation of a copper(i) complex at an oil-water interface and its application for dye degradation. RSC Adv 6:76964–76971. https://doi.org/10.1039/c6ra14995b

    Article  CAS  Google Scholar 

  33. Hossain MR, Rashid TU, Lata NP et al (2022) Fabrication of novel nanohybrid material for the removal of Azo Dyes from wastewater. J Compos Sci 6.https://doi.org/10.3390/jcs6100304

  34. Hossein Beyki M, Alijani H, Fazli Y (2016) Poly o-phenylenediamine-MgAl@CaFe2O4 nanohybrid for effective removing of lead(II), chromium(III) and anionic azo dye. Process Saf Environ Prot 102:687–699. https://doi.org/10.1016/j.psep.2016.04.027

    Article  CAS  Google Scholar 

  35. Hu J, Liu J, Li J et al (2021) Metal contamination, bioaccumulation, ROS generation, and epigenotoxicity influences on zebrafish exposed to river water polluted by mining activities. J Hazard Mater 405:124150. https://doi.org/10.1016/j.jhazmat.2020.124150

    Article  CAS  Google Scholar 

  36. Intisar A, Ramzan A, Sawaira T et al (2022) Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials—a review. Chemosphere 293:133538. https://doi.org/10.1016/j.chemosphere.2022.133538

    Article  CAS  Google Scholar 

  37. Jafari H, Afshar S, Zabihi O, Naebe M (2016) Enhanced photocatalytic activities of TiO2-SiO2 nanohybrids immobilized on cement-based materials for dye degradation. Res Chem Intermed 42:2963–2978. https://doi.org/10.1007/s11164-015-2190-3

    Article  CAS  Google Scholar 

  38. Jones K, Boxall C, McCabe R et al (2007) Nanocomposites for water treatment. Springer Nature, Singapore

    Google Scholar 

  39. Jung DH, Sharma A, Jung JP (2018) Influence of dual ceramic nanomaterials on the solderability and interfacial reactions between lead-free Sn-Ag-Cu and a Cu conductor. J Alloys Compd 743:300–313. https://doi.org/10.1016/j.jallcom.2018.02.017

    Article  CAS  Google Scholar 

  40. Kalimuthu P, Kim Y, Subbaiah MP et al (2022) Novel magnetic Fe@NSC nanohybrid material for arsenic removal from aqueous media. Chemosphere 308:136450. https://doi.org/10.1016/j.chemosphere.2022.136450

    Article  CAS  Google Scholar 

  41. Karami K, Beram SM, Bayat P et al (2022) A novel nanohybrid based on metal–organic framework MIL101−Cr/PANI/Ag for the adsorption of cationic methylene blue dye from aqueous solution. J Mol Struct 1247:131352. https://doi.org/10.1016/j.molstruc.2021.131352

    Article  CAS  Google Scholar 

  42. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6:4676–4697. https://doi.org/10.1016/j.jece.2018.06.060

    Article  CAS  Google Scholar 

  43. Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW (2017) Application of doped photocatalysts for organic pollutant degradation—a review. J Environ Manage 198:78–94. https://doi.org/10.1016/j.jenvman.2017.04.099

    Article  CAS  Google Scholar 

  44. Khan FSA, Mubarak NM, Tan YH et al (2020) Magnetic nanoparticles incorporation into different substrates for dyes and heavy metals removal—a review. Environ Sci Pollut Res 27:43526–43541. https://doi.org/10.1007/s11356-020-10482-z

    Article  CAS  Google Scholar 

  45. Khan SB, Hou M, Shuang S, Zhang Z (2017) Morphological influence of TiO2 nanostructures (nanozigzag, nanohelics and nanorod) on photocatalytic degradation of organic dyes. Appl Surf Sci 400:184–193. https://doi.org/10.1016/j.apsusc.2016.12.172

    Article  CAS  Google Scholar 

  46. Krishnan S, Murugesan S, Vasanthakumar V et al (2021) Facile green synthesis of ZnFe2O4/rGO nanohybrids and evaluation of its photocatalytic degradation of organic pollutant, photo antibacterial and cytotoxicity activities. Colloids Surfaces A Physicochem Eng Asp 611:125835. https://doi.org/10.1016/j.colsurfa.2020.125835

    Article  CAS  Google Scholar 

  47. Kusworo TD, Kumoro AC, Utomo DP et al (2021) Performance of the crosslinked PVA coated PES-TiO2 nano hybrid membrane for the treatment of pretreated natural rubber wastewater involving sequential adsorption—ozonation processes. J Environ Chem Eng 9:104855. https://doi.org/10.1016/j.jece.2020.104855

    Article  CAS  Google Scholar 

  48. Lara L, Cabral I, Cunha J (2022) Ecological approaches to textile dyeing: a review. Sustain 14.https://doi.org/10.3390/su14148353

  49. Lee Y, Cha M, So Y et al (2022) Functionalized boron nitride ceramic nanofiltration membranes for semiconductor wastewater treatment. Sep Purif Technol 300:121945. https://doi.org/10.1016/j.seppur.2022.121945

    Article  CAS  Google Scholar 

  50. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290. https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  51. Li L, Liu L, Li Z et al (2019) The synthesis of CB[8]/ZnO composites materials with enhanced photocatalytic activities. Heliyon 5:e01714. https://doi.org/10.1016/j.heliyon.2019.e01714

    Article  Google Scholar 

  52. Li Y, Lu H, Wang Y et al (2019) Efficient removal of methyl blue from aqueous solution by using poly(4-vinylpyridine)–graphene oxide–Fe3O4 magnetic nanocomposites. J Mater Sci 54:7603–7616. https://doi.org/10.1007/s10853-019-03441-8

    Article  CAS  Google Scholar 

  53. Ling C, Yimin D, Qi L et al (2022) Novel High-efficiency adsorbent consisting of magnetic Cellulose-based ionic liquid for removal of anionic dyes. J Mol Liq 353.https://doi.org/10.1016/j.molliq.2022.118723

  54. Liu BL, Ma YX, Wang JW et al (2022) Fabrication of nickel cobalt bimetallic sulfide doped graphite carbon nanohybrids as electrode materials for supercapacitors. Diam Relat Mater 124:108955. https://doi.org/10.1016/j.diamond.2022.108955

    Article  CAS  Google Scholar 

  55. Ma J, Shu X, Zheng S et al (2022) Effects of polyurethane–silica nanohybrids as additives on the mechanical performance enhancement of ordinary Portland cement paste. Constr Build Mater 338.https://doi.org/10.1016/j.conbuildmat.2022.127666

  56. Martínez-Huitle CA, Scialdone O, Rodrigo MA (2018) Electrochemical water and wastewater treatment. Elsevier Inc.

    Google Scholar 

  57. Martínez-Vargas BL, Cruz-Ramírez M, Díaz-Real JA et al (2019) Synthesis and characterization of n-ZnO/p-MnO nanocomposites for the photocatalytic degradation of anthracene. J Photochem Photobiol A Chem 369:85–96. https://doi.org/10.1016/j.jphotochem.2018.10.010

    Article  CAS  Google Scholar 

  58. Martínez-Vargas BL, Durón-Torres SM, Bahena D et al (2019) One-pot synthesis of ZnO–Ag and ZnO–Co nanohybrid materials for photocatalytic applications. J Phys Chem Solids 135:109120. https://doi.org/10.1016/j.jpcs.2019.109120

    Article  CAS  Google Scholar 

  59. Mathiarasu RR, Manikandan A, Panneerselvam K et al (2021) Photocatalytic degradation of reactive anionic dyes RB5, RR198 and RY145 via rare earth element (REE) lanthanum substituted CaTiO3 perovskite catalysts. J Mater Res Technol 15:5936–5947. https://doi.org/10.1016/j.jmrt.2021.11.047

    Article  CAS  Google Scholar 

  60. Mehrabi N, Aich N (2022) Using deep Eutectic solvents for the in-situ synthesis of graphene-metal nanohybrids and nanocomposite membranes for dye desalination. SSRN Electron J 11:109101. https://doi.org/10.2139/ssrn.4111004

    Article  Google Scholar 

  61. Meireles G, Daam MA, Sanches ALM et al (2018) Red disperse dyes (DR 60, DR 73 and DR 78) at environmentally realistic concentrations impact biochemical profile of early life stages of zebrafish (Danio rerio). Chem Biol Interact 292:94–100. https://doi.org/10.1016/j.cbi.2018.07.007

    Article  CAS  Google Scholar 

  62. Mendoza-Cano O, Sánchez-Piña RA, Barrón-Quintana J et al (2017) Riesgos potenciales de salud por consumo de agua con arsénico en Colima, México. Salud Publica Mex 59:34. https://doi.org/10.21149/8413

  63. Mirzaei K, Mohammadi A, Jafarpour E et al (2022) Improved adsorption performance of ZIF-8 towards methylene blue dye by hybridization with nanodiamond. J Water Process Eng 50.https://doi.org/10.1016/j.jwpe.2022.103254

  64. Mishra PK, Izrayeel AMD, Mahur BK et al (2022) A comprehensive review on textile waste valorization techniques and their applications. Environ Sci Pollut Res 29:65962–65977. https://doi.org/10.1007/s11356-022-22222-6

    Article  Google Scholar 

  65. Modi A, Bellare J (2019) Efficient removal of dyes from water by high flux and superior antifouling polyethersulfone hollow fiber membranes modified with ZnO/cGO nanohybrid. J Water Process Eng 29:100783. https://doi.org/10.1016/j.jwpe.2019.100783

    Article  Google Scholar 

  66. Mohammed MKA (2020) Carbon nanotubes loaded ZnO/Ag ternary nanohybrid with improved visible light photocatalytic activity and stability. Optik (Stuttg) 217:164867. https://doi.org/10.1016/j.ijleo.2020.164867

    Article  CAS  Google Scholar 

  67. Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2017) Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl Catal B Environ 202:217–261. https://doi.org/10.1016/j.apcatb.2016.08.037

    Article  CAS  Google Scholar 

  68. Mudhoo A, Paliya S, Goswami P et al (2020) Fabrication, functionalization and performance of doped photocatalysts for dye degradation and mineralization: a review. Springer International Publishing

    Google Scholar 

  69. Mujahid MH, Upadhyay TK, Khan F et al (2022) Metallic and metal oxide-derived nanohybrid as a tool for biomedical applications. Biomed Pharmacother 155:113791. https://doi.org/10.1016/j.biopha.2022.113791

    Article  CAS  Google Scholar 

  70. Munir S, Baig MM, Zulfiqar S et al (2022) Synthesis of 2D material based Bi2O3/MXene nanohybrids and their applications for the removal of industrial effluents. Ceram Int 48:21676–21689. https://doi.org/10.1016/j.ceramint.2022.04.148

    Article  CAS  Google Scholar 

  71. Murphy AB (2007) Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol Energy Mater Sol Cells 91:1326–1337. https://doi.org/10.1016/j.solmat.2007.05.005

    Article  CAS  Google Scholar 

  72. Mustafa A, Alsafari IA, Somaily HH et al (2023) Fabrication, characterization of NiO–Co3O4/rGO based nanohybrid and application in the development of non-enzymatic glucose sensor. Phys B Condens Matter 648:414404. https://doi.org/10.1016/j.physb.2022.414404

    Article  CAS  Google Scholar 

  73. Namvari M, Namazi H (2014) Clicking graphene oxide and Fe3O4 nanoparticles together: an efficient adsorbent to remove dyes from aqueous solutions. Int J Environ Sci Technol 11:1527–1536. https://doi.org/10.1007/s13762-014-0595-y

    Article  CAS  Google Scholar 

  74. Nidheesh PV (2017) Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review. Environ Sci Pollut Res 24:27047–27069. https://doi.org/10.1007/s11356-017-0481-5

    Article  CAS  Google Scholar 

  75. Nidheesh PV, Zhou M, Oturan MA (2018) An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere.https://doi.org/10.1016/j.chemosphere.2017.12.195

  76. Ouni S, Bel Haj Mohamed N, Bouzidi M et al (2021) High impact of thiol capped ZnS nanocrystals on the degradation of single and binary aqueous solutions of industrial azo dyes under sunlight. J Environ Chem Eng 9:105915. https://doi.org/10.1016/j.jece.2021.105915

    Article  CAS  Google Scholar 

  77. Oyewo OA, Elemike EE, Onwudiwe DC, Onyango MS (2020) Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. Int J Biol Macromol 164:2477–2496. https://doi.org/10.1016/j.ijbiomac.2020.08.074

    Article  CAS  Google Scholar 

  78. Pang Y, Yu J, Tang L et al (2018) Magnetic nanohybrid materials for water-pollutant removal. Elsevier Inc.

    Google Scholar 

  79. Patole S, Islam M, Aiyer RC, Mahamuni S (2006) Optical studies of ZnO/Ag nanojunctions. J Mater Sci 41:5602–5607. https://doi.org/10.1007/s10853-006-0296-0

    Article  CAS  Google Scholar 

  80. Rafaie HA, Nor RM, Azmina MS et al (2017) Decoration of ZnO microstructures with Ag nanoparticles enhanced the catalytic photodegradation of methylene blue dye. J Environ Chem Eng 5:3963–3972. https://doi.org/10.1016/j.jece.2017.07.070

    Article  CAS  Google Scholar 

  81. Rafiq S, Aadil M, Warsi MF et al (2022) NiO nanoparticles and their nanohybrid with flat rGO sheets: as an ideal electroactive material for hybrid capacitor applications. Ceram Int 48:14596–14605. https://doi.org/10.1016/j.ceramint.2022.01.353

    Article  CAS  Google Scholar 

  82. Raha S, Ahmaruzzaman M (2020) Enhanced performance of a novel superparamagnetic g-C3N4/NiO/ZnO/Fe3O4 nanohybrid photocatalyst for removal of esomeprazole: effects of reaction parameters, co-existing substances and water matrices. Chem Eng J 395:124969. https://doi.org/10.1016/j.cej.2020.124969

    Article  CAS  Google Scholar 

  83. Rajbhar MK, Das P, Satpati B et al (2019) Joining of two different ceramic nanomaterials for bottom-up fabrication of heterojunction devices. Appl Surf Sci 478:651–660. https://doi.org/10.1016/j.apsusc.2019.02.002

    Article  CAS  Google Scholar 

  84. Rajesh R, Iyer SS, Ezhilan J et al (2016) Graphene oxide supported copper oxide nanoneedles: an efficient hybrid material for removal of toxic azo dyes. Spectrochim Acta—Part A Mol Biomol Spectrosc 166:49–55. https://doi.org/10.1016/j.saa.2016.05.002

    Article  CAS  Google Scholar 

  85. Ramírez-Ortega D, Meléndez AM, Acevedo-Peña P et al (2014) Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity. Electrochim Acta 140:541–549. https://doi.org/10.1016/j.electacta.2014.06.060

    Article  CAS  Google Scholar 

  86. Rawat D, Mishra V, Sharma RS (2016) Detoxification of azo dyes in the context of environmental processes. Chemosphere 155:591–605. https://doi.org/10.1016/j.chemosphere.2016.04.068

    Article  CAS  Google Scholar 

  87. Rawat D, Sharma RS, Karmakar S et al (2018) Ecotoxic potential of a presumably non-toxic azo dye. Ecotoxicol Environ Saf 148:528–537. https://doi.org/10.1016/j.ecoenv.2017.10.049

    Article  CAS  Google Scholar 

  88. Rodrigues CSD, Madeira LM, Boaventura RAR (2014) Synthetic textile dyeing wastewater treatment by integration of advanced oxidation and biological processes - Performance analysis with costs reduction. J Environ Chem Eng 2:1027–1039. https://doi.org/10.1016/j.jece.2014.03.019

    Article  CAS  Google Scholar 

  89. Rokni SE, Haji Seyed Mohammad Shirazi R, Miralinaghi M, Moniri E (2020) Efficient adsorption of anionic dyes onto magnetic graphene oxide coated with polyethylenimine: kinetic, isotherm, and thermodynamic studies. Res Chem Intermed 46:2247–2274.https://doi.org/10.1007/s11164-020-04090-2

  90. Rong Y, Huang Y, Jin P et al (2020) Highly efficient removal of cationic, anionic and neutral dyes by hierarchically porous structured three-dimensional magnetic sulfur/nitrogen co-doped reduced graphene oxide nanohybrid. J Water Process Eng 37.https://doi.org/10.1016/j.jwpe.2020.101345

  91. Rostamzadeh D, Sadeghi S (2022) Ni doped zinc oxide nanoparticles supported bentonite clay for photocatalytic degradation of anionic and cationic synthetic dyes in water treatment. J Photochem Photobiol A Chem 431:113947. https://doi.org/10.1016/j.jphotochem.2022.113947

    Article  CAS  Google Scholar 

  92. Roy Maulik S, Debnath C, Pandit P (2022) Sustainable dyeing and printing of knitted fabric with natural dyes. In: Maity S, Rana S, Pandit P, Singha K (eds) Advanced knitting technology. Woodhead Publishing, pp 537–565

    Chapter  Google Scholar 

  93. Saini PK, Kumar N, Chandra R et al (2019) Facile synthesis of novel SWCNT/HgS nanohybrid: an effective photocatalyst for degradation of methylene blue. Mater Lett 250:5–8. https://doi.org/10.1016/j.matlet.2019.04.090

    Article  CAS  Google Scholar 

  94. Šajn N (2019) Environmental impact of the textile and clothing industry. What consumers need to know. Eur Parliam Res Serv

    Google Scholar 

  95. Sangtam AR, Richa K, Saikia P et al (2022) Synthesis and characterization of Co(II)–Co(III) LDH and Ac@Co(II)–Co(III) LDH nanohybrid and study of its application as bactericidal agents. Results Chem 4:100671. https://doi.org/10.1016/j.rechem.2022.100671

    Article  CAS  Google Scholar 

  96. Schneider J, Bahnemann D (2016) Photocatalysis fundamentals and perspectives

    Google Scholar 

  97. Shakeel A, Rizwan K, Farooq U et al (2022) Advanced polymeric/inorganic nanohybrids: an integrated platform for gas sensing applications. Chemosphere 294:133772. https://doi.org/10.1016/j.chemosphere.2022.133772

    Article  CAS  Google Scholar 

  98. Shanker U, Rani M, Jassal V (2017) Degradation of hazardous organic dyes in water by nanomaterials. Environ Chem Lett 15:623–642. https://doi.org/10.1007/s10311-017-0650-2

    Article  CAS  Google Scholar 

  99. Sharma M, Poddar M, Gupta Y et al (2020) Solar light assisted degradation of dyes and adsorption of heavy metal ions from water by CuO–ZnO tetrapodal hybrid nanocomposite. Mater Today Chem 17:100336. https://doi.org/10.1016/j.mtchem.2020.100336

    Article  CAS  Google Scholar 

  100. Sharma M, Sondhi H, Krishna R et al (2020) Assessment of GO/ZnO nanocomposite for solar-assisted photocatalytic degradation of industrial dye and textile effluent. Environ Sci Pollut Res 27:32076–32087. https://doi.org/10.1007/s11356-020-08849-3

    Article  CAS  Google Scholar 

  101. Siddiqui SI, Chaudhry SA (2019) Nanohybrid composite Fe2O3-ZrO2/BC for inhibiting the growth of bacteria and adsorptive removal of arsenic and dyes from water. J Clean Prod 223:849–868. https://doi.org/10.1016/j.jclepro.2019.03.161

    Article  CAS  Google Scholar 

  102. Singh J, Kumar S, Rishikesh, et al (2020) Fabrication of ZnO–TiO2 nanohybrids for rapid sunlight driven photodegradation of textile dyes and antibiotic residue molecules. Opt Mater (Amst) 107:110138. https://doi.org/10.1016/j.optmat.2020.110138

    Article  CAS  Google Scholar 

  103. Singh J, Sahu K, Satpati B et al (2019) Facile synthesis, structural and optical properties of Au-TiO2 plasmonic nanohybrids for photocatalytic applications. J Phys Chem Solids 135:109100. https://doi.org/10.1016/j.jpcs.2019.109100

    Article  CAS  Google Scholar 

  104. Singh V, Bansal P (2020) Fabrication and characterization of needle shaped CuO nanoparticles and their application as photocatalyst for degradation of organic pollutants. Mater Lett 261:126929. https://doi.org/10.1016/j.matlet.2019.126929

    Article  CAS  Google Scholar 

  105. Sultana T, Dey SC, Molla MAI et al (2021) Facile synthesis of TiO2/Chitosan nanohybrid for adsorption-assisted rapid photodegradation of an azo dye in water. React Kinet Mech Catal 133:1121–1139. https://doi.org/10.1007/s11144-021-02009-5

    Article  CAS  Google Scholar 

  106. Thangavel S, Pazhamalai P, Krishnamoorthy K et al (2022) Ferroelectric-semiconductor BaTiO3–Ag2O nanohybrid as an efficient piezo-photocatalytic material. Chemosphere 292.https://doi.org/10.1016/j.chemosphere.2021.133398

  107. Thomas B, Alexander LK (2018) Enhanced synergetic effect of Cr(VI) ion removal and anionic dye degradation with superparamagnetic cobalt ferrite meso–macroporous nanospheres. Appl Nanosci 8:125–135. https://doi.org/10.1007/s13204-018-0655-6

    Article  CAS  Google Scholar 

  108. Uddin T, Hoque E, Bhoumick MC (2020) Facile one-pot synthesis of heterostructure SnO2/ZnO photocatalyst for enhanced photocatalytic degradation of organic dye. RSC Adv 10:23554–23565. https://doi.org/10.1039/d0ra03233f

    Article  CAS  Google Scholar 

  109. Wan H, Ge H, Zhang L, Duan T (2019) CS@MnO2 core-shell nanospheres with enhanced visible light photocatalytic degradation. Mater Lett 237:290–293. https://doi.org/10.1016/j.matlet.2018.11.088

    Article  CAS  Google Scholar 

  110. Wang J, Wang S (2016) Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J Environ Manage 182:620–640. https://doi.org/10.1016/j.jenvman.2016.07.049

    Article  CAS  Google Scholar 

  111. Wang N, Zheng T, Zhang G, Wang P (2016) A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng 4:762–787. https://doi.org/10.1016/j.jece.2015.12.016

    Article  CAS  Google Scholar 

  112. World Bank (2019) Working together for a water-secure world, 1–20

    Google Scholar 

  113. Wu W, Zhao Z, Li M et al (2022) Electrified nanohybrid filter for enhanced phosphorus removal from water. Chemosphere 303:135226. https://doi.org/10.1016/j.chemosphere.2022.135226

    Article  CAS  Google Scholar 

  114. Yasasve M, Manjusha M, Manojj D et al (2022) Unravelling the emerging carcinogenic contaminants from industrial waste water for prospective remediation by electrocoagulation—a review. Chemosphere 307:136017. https://doi.org/10.1016/j.chemosphere.2022.136017

    Article  CAS  Google Scholar 

  115. Ye S, Chen Y, Yao X, Zhang J (2020) Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: a review. Chemosphere 273:128503. https://doi.org/10.1016/j.chemosphere.2020.128503

    Article  CAS  Google Scholar 

  116. Zhao Y, Qamar SA, Qamar M et al (2021) Sustainable remediation of hazardous environmental pollutants using biochar-based nanohybrid materials. J Environ Manage 300:113762. https://doi.org/10.1016/j.jenvman.2021.113762

    Article  CAS  Google Scholar 

  117. Zheng S, Qiao W, Ma J et al (2022) Synthesis of a novel poly-TA-Si nanohybrid with dynamic covalent S-S bonds and its effect on the mechanical strength of cement paste. Constr Build Mater 356:129293. https://doi.org/10.1016/j.conbuildmat.2022.129293

    Article  CAS  Google Scholar 

  118. Zia J, Aazam ES, Riaz U (2020) Synthesis of nanohybrids of polycarbazole with α-MnO2 derived from Brassica oleracea: a comparison of photocatalytic degradation of an antibiotic drug under microwave and UV irradiation. Environ Sci Pollut Res 27:24173–24189. https://doi.org/10.1007/s11356-020-08149-w

    Article  CAS  Google Scholar 

  119. Zia J, Aazam ES, Riaz U (2020b) Highly efficient visible light driven photocatalytic activity of MnO2 and polythiophene/MnO2 nanohybrids against mixed organic pollutants. J Mol Struct 1207.https://doi.org/10.1016/j.molstruc.2020.127790

  120. Zia J, Farhat SM, Aazam ES, Riaz U (2021) Highly efficient degradation of metronidazole drug using CaFe2O4/PNA nanohybrids as metal-organic catalysts under microwave irradiation. Environ Sci Pollut Res 28:4125–4135. https://doi.org/10.1007/s11356-020-10694-3

    Article  CAS  Google Scholar 

  121. Zinatloo-Ajabshir S, Baladi M, Salavati-Niasari M (2021) Sono-synthesis of MnWO4 ceramic nanomaterials as highly efficient photocatalysts for the decomposition of toxic pollutants. Ceram Int 47:30178–30187. https://doi.org/10.1016/j.ceramint.2021.07.197

    Article  CAS  Google Scholar 

  122. Zinatloo-Ajabshir S, Salavati-Niasari M (2017) Photo-catalytic degradation of erythrosine and eriochrome black T dyes using Nd2Zr2O7 nanostructures prepared by a modified Pechini approach. Sep Purif Technol 179:77–85. https://doi.org/10.1016/j.seppur.2017.01.037

    Article  CAS  Google Scholar 

  123. Zourou A, Ntziouni A, Adamopoulos N et al (2022) Graphene oxide-CuFe2O4 nanohybrid material as an adsorbent of Congo red dye. Carbon Trends 7:100147. https://doi.org/10.1016/j.cartre.2022.100147

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca L. Martínez-Vargas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Picos-Benítez, A.R., Ramírez-Alaniz, M.M., Escamilla-García, P.E., Martínez-Vargas, B.L. (2023). Synthesis and Characterization of Nanohybrid Materials for Anionic Dye Removal. In: Ahmad, A., Jawaid, M., Mohamad Ibrahim, M.N., Yaqoob, A.A., Alshammari, M.B. (eds) Nanohybrid Materials for Treatment of Textiles Dyes. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-3901-5_6

Download citation

Publish with us

Policies and ethics