Skip to main content

Graphene-Supported Nanohybrid Materials for Removal of Textile Dyes

  • Chapter
  • First Online:
Nanohybrid Materials for Treatment of Textiles Dyes

Abstract

Through the activities of textile industries, there is an increasing release of dye-based contaminants into water bodies, which has eventually become one of the main sources of wastewater pollution in the environment, having a negative impact on human and aquatic life. Textile dye contamination in aqueous solution has been treated with a variety of methods and materials, including flocculation, ion exchange, adsorption techniques, membrane filtration and electrochemical methods, the use of low-cost adsorbents, biochar-based activated carbon, and nanocomposite materials. Graphene-supported nanohybrid materials have been utilized as adsorbents for dye removal from wastewater for over a decade. These materials were characterized using a variety of corresponding characterization tools, some of which are discussed in this chapter. Various nanomaterials and techniques have been reviewed, with a focus on textile dye treatment using GO-based nanocomposite. This chapter provides more insight on the use of graphene-supported nanohybrids for the treatment of textile dyes from dye-contaminated wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghaly A, Ananthashankar R, Alhattab M, Ramakrishnan V (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 5:1–19

    Google Scholar 

  2. Idris MO, Noh NA, Ibrahim MNM, Yaqoob AA (2022) Sustainable microbial fuel cell functionalized with a bio-waste: a feasible route to formaldehyde bioremediation along with bioelectricity generation. Chem Eng J 5:140781

    Google Scholar 

  3. Ahmad A, Setapar SHM, Yaqoob AA, Ibrahim MNM (2021) Synthesis and characterization of GO-Ag nanocomposite for removal of malachite dye from aqueous solution. Mater Today Proc 47:1359–1365

    Article  CAS  Google Scholar 

  4. Rashid R, Shafiq I, Akhter P, Iqbal MJ, Hussain M (2021) A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ Sci Pollut Res 28:9050–9066

    Article  CAS  Google Scholar 

  5. Meese AF, Kim DJ, Wu X, Le L, Napier C, Hernandez MT, Laroco N, Linden KG, Cox J, Kurup P (2021) Opportunities and challenges for industrial water treatment and reuse. ACS ES&T Eng 2:465–488

    Article  Google Scholar 

  6. Idris MO, Yaqoob AA, Ibrahim MNM, Ahmad A, Alshammari MB (2023) Introduction of adsorption techniques for heavy metals remediation. Elsevier, Emerging Techniques for Treatment of Toxic Metals from Wastewater, pp 1–18

    Google Scholar 

  7. Dotto GL, McKay G (2020) Current scenario and challenges in adsorption for water treatment. J Environ Chem Eng 8:103988

    Article  CAS  Google Scholar 

  8. Idris MO, Williams EE, Suleiman AI, Okieimen FE (2021) Scalability of palm kernel shell derived activated carbon for the remediation of Pb2+ and 2, 4-dichlorophenol. EAS J Pharm Pharmacol 3:168–175

    Google Scholar 

  9. Tan KB, Vakili M, Horri BA, Poh PE, Abdullah AZ, Salamatinia B (2015) Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep Purif Technol 150:229–242

    Article  CAS  Google Scholar 

  10. Marsh H, Rodríguez-Reinoso F (2006) Production and reference material. Activated Carbon 454

    Google Scholar 

  11. Yaqoob AA, Parveen T, Umar K, Mohamad Ibrahim MN (2020) Role of nanomaterials in the treatment of wastewater: a review. Water 12:495

    Google Scholar 

  12. Kanwal A, Yaqoob AA, Siddique A, Bhawani SA, Ibrahim MNM, Umar K (2021) Hybrid nanocomposites based on graphene and its derivatives: from preparation to applications, Graphene and nanoparticles hybrid nanocomposites. Springer, pp 261–281

    Book  Google Scholar 

  13. Xu F, Xie S, Cao R, Ren C, Wang L (2017) Prepare poly-dopamine coated graphene@ silver nanohybrid for improved surface enhanced Raman scattering detection of dyes. Sens Actuators, B Chem 243:609–616

    Article  CAS  Google Scholar 

  14. Sumaila A, Ndamitso M, Iyaka Y, Abdulkareem A, Tijani J, Idris M (2020) Extraction and characterization of chitosan from crab shells: kinetic and thermodynamic studies of arsenic and copper adsorption from electroplating wastewater. Iraqi J Sci 2156–2171

    Google Scholar 

  15. Emmanuel JL, Idris MO, Usman AO, Musa Q, Suleiman AI, Sambo P (2021) Biomass-derived activated carbon: a viable material for remediation of pb2+ and 2, 4-dichlorophenol (2, 4 DCP) through adsorption. J Adv Res Appl Sci Eng Technol 25:37–45

    Google Scholar 

  16. Yaqoob AA, Noor M, Serrà A, Mohamad Ibrahim MN (2020) Advances and challenges in developing efficient graphene oxide-based ZnO photocatalysts for dye photo-oxidation. Nanomaterials 10:932

    Google Scholar 

  17. Vizuete M, Barrejón M, Gómez-Escalonilla MJ, Langa F (2012) Endohedral and exohedral hybrids involving fullerenes and carbon nanotubes. Nanoscale 4:4370–4381

    Article  CAS  Google Scholar 

  18. Fu Y, Zeng G, Lai C, Huang D, Qin L, Yi H, Liu X, Zhang M, Li B, Liu S (2020) Hybrid architectures based on noble metals and carbon-based dots nanomaterials: a review of recent progress in synthesis and applications. Chem Eng J 399:125743

    Article  CAS  Google Scholar 

  19. Zaleska-Medynska A, Marchelek M, Diak M, Grabowska E (2016) Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv Coll Interface Sci 229:80–107

    Article  CAS  Google Scholar 

  20. Das S, Presselt M (2019) Progress and development in structural and optoelectronic tunability of supramolecular nonbonded fullerene assemblies. J Mater Chem C 7:6194–6216

    Article  CAS  Google Scholar 

  21. Shahadat M, Khan MZ, Rupani PF, Embrandiri A, Sultana S, Ahammad SZ, Ali SW, Sreekrishnan T (2017) A critical review on the prospect of polyaniline-grafted biodegradable nanocomposite. Adv Coll Interface Sci 249:2–16

    Article  CAS  Google Scholar 

  22. Osagie C, Othmani A, Ghosh S, Malloum A, Esfahani ZK, Ahmadi S (2021) Dyes adsorption from aqueous media through the nanotechnology: a review. J Market Res 14:2195–2218

    CAS  Google Scholar 

  23. Pacheco S, Medina M, Valencia F, Tapia J (2006) Removal of inorganic mercury from polluted water using structured nanoparticles. J Environ Eng 132:342–349

    Article  CAS  Google Scholar 

  24. Yang K, Xing B (2007) Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ Pollut 145:529–537

    Article  CAS  Google Scholar 

  25. Lu F, Astruc D (2020) Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord Chem Rev 408:213180

    Article  CAS  Google Scholar 

  26. Cong H-P, Ren X-C, Wang P, Yu S-H (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6:2693–2703

    Article  CAS  Google Scholar 

  27. Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem Int J 27:1825–1851

    Article  CAS  Google Scholar 

  28. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    Article  CAS  Google Scholar 

  29. Ivanovskii AL (2012) Graphene-based and graphene-like materials. Russ Chem Rev 81:571

    Article  Google Scholar 

  30. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  31. Ali I, Mbianda X, Burakov A, Galunin E, Burakova I, Mkrtchyan E, Tkachev A, Grachev V (2019) Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ Int 127:160–180

    Article  CAS  Google Scholar 

  32. Sitko R, Zawisza B, Malicka E (2013) Graphene as a new sorbent in analytical chemistry. TrAC, Trends Anal Chem 51:33–43

    Article  CAS  Google Scholar 

  33. Zhang T, Wang W, Zhao Y, Bai H, Wen T, Kang S, Song G, Song S, Komarneni S (2021) Removal of heavy metals and dyes by clay-based adsorbents: from natural clays to 1D and 2D nano-composites. Chem Eng J 420:127574

    Article  CAS  Google Scholar 

  34. Hidalgo-Manrique P, Lei X, Xu R, Zhou M, Kinloch IA, Young RJ (2019) Copper/graphene composites: a review. J Mater Sci 54:12236–12289

    Article  CAS  Google Scholar 

  35. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749

    Article  Google Scholar 

  36. Huang X-M, Liu L-Z, Zhou S, Zhao J-J (2020) Physical properties and device applications of graphene oxide. Front Phys 15:1–70

    Article  CAS  Google Scholar 

  37. Pielichowska K, Nowak M, Szatkowski P, Macherzyńska B (2016) The influence of chain extender on properties of polyurethane-based phase change materials modified with graphene. Appl Energy 162:1024–1033

    Article  CAS  Google Scholar 

  38. Idris MO, Guerrero-Barajas C, Kim H-C, Yaqoob AA, Ibrahim MNM (2022) Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: a systematic review. Chin J Chem Eng

    Google Scholar 

  39. Yaqoob AA, Ibrahim MNM, Yaakop AS, Umar K, Ahmad A (2021) Modified graphene oxide anode: a bioinspired waste material for bioremediation of Pb2+ with energy generation through microbial fuel cells. Chem Eng J 417:128052

    Article  CAS  Google Scholar 

  40. Yaqoob AA, Mohamad Ibrahim MN, Umar K, Bhawani SA, Khan A, Asiri AM, Khan MR, Azam M, AlAmmari AM (2020) Cellulose derived graphene/polyaniline nanocomposite anode for energy generation and bioremediation of toxic metals via benthic microbial fuel cells. Polymers (Basel) 13

    Google Scholar 

  41. Yaqoob AA, Serrà A, Bhawani SA, Ibrahim MNM, Khan A, Alorfi HS, Asiri AM, Hussein MA, Khan I, Umar K (2022) Utilizing biomass-based graphene oxide–polyaniline–Ag electrodes in microbial fuel cells to boost energy generation and heavy metal removal. Polymers 14:845

    Article  CAS  Google Scholar 

  42. Yaqoob AA, Serrà A, Ibrahim MNM, Yaakop AS (2021) Self-assembled oil palm biomass-derived modified graphene oxide anode: an efficient medium for energy transportation and bioremediating Cd (II) via microbial fuel cells. Arab J Chem 14:103121

    Article  CAS  Google Scholar 

  43. Shen C, Oyadiji SO (2020) The processing and analysis of graphene and the strength enhancement effect of graphene-based filler materials: a review. Mater Today Phys 15:100257

    Article  Google Scholar 

  44. Nanda SS, Kim MJ, Yeom KS, An SSA, Ju H, Yi DK (2016) Raman spectrum of graphene with its versatile future perspectives. TrAC, Trends Anal Chem 80:125–131

    Article  CAS  Google Scholar 

  45. Kai M, Zhang L, Liew K (2019) Graphene and graphene oxide in calcium silicate hydrates: chemical reactions, mechanical behavior and interfacial sliding. Carbon 146:181–193

    Article  CAS  Google Scholar 

  46. Kozbial A, Li Z, Conaway C, McGinley R, Dhingra S, Vahdat V, Zhou F, D’Urso B, Liu H, Li L (2014) Study on the surface energy of graphene by contact angle measurements. Langmuir 30:8598–8606

    Article  CAS  Google Scholar 

  47. Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956

    Article  CAS  Google Scholar 

  48. Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IM, Qari HA, Umar K, Mohamad Ibrahim MN (2020) Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem 8:341

    Google Scholar 

  49. Perreault F, De Faria AF, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44:5861–5896

    Article  CAS  Google Scholar 

  50. Zhang Y, Tang Z-R, Fu X, Xu Y-J (2010) TiO2−graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2−graphene truly different from other TiO2−carbon composite materials? ACS Nano 4:7303–7314

    Article  CAS  Google Scholar 

  51. Bradder P, Ling SK, Wang S, Liu S (2011) Dye adsorption on layered graphite oxide. J Chem Eng Data 56:138–141

    Article  CAS  Google Scholar 

  52. Liu F, Chung S, Oh G, Seo TS (2012) Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl Mater Interfaces 4:922–927

    Article  CAS  Google Scholar 

  53. Ramesha G, Kumara AV, Muralidhara H, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277

    Article  CAS  Google Scholar 

  54. Sun L, Yu H, Fugetsu B (2012) Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution. J Hazard Mater 203:101–110

    Article  Google Scholar 

  55. Gupta K, Khatri OP (2017) Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: plausible adsorption pathways. J Colloid Interface Sci 501:11–21

    Article  CAS  Google Scholar 

  56. Sui Z, Meng Q, Zhang X, Ma R, Cao B (2012) Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem 22:8767–8771

    Article  CAS  Google Scholar 

  57. Kharismadewi D, Haldorai Y, Nguyen VH, Tuma D, Shim J-J (2016) Synthesis of graphene oxide-poly (2-hydroxyethyl methacrylate) composite by dispersion polymerization in supercritical CO2: adsorption behavior for the removal of organic dye. Compos Interfaces 23:719–739

    Article  CAS  Google Scholar 

  58. Nguyen-Phan T-D, Pham VH, Kim EJ, Oh E-S, Hur SH, Chung JS, Lee B, Shin EW (2012) Reduced graphene oxide–titanate hybrids: morphologic evolution by alkali-solvothermal treatment and applications in water purification. Appl Surf Sci 258:4551–4557

    Article  CAS  Google Scholar 

  59. Vo TS, Vo TTBC (2022) Graphene oxide-covered melamine foam utilizing as a hybrid foam toward organic dye removal and recyclability. Prog Nat Sci Mater Int

    Google Scholar 

  60. Guo X, Qu L, Tian M, Zhu S, Zhang X, Tang X, Sun K (2016) Chitosan/graphene oxide composite as an effective adsorbent for reactive red dye removal. Water Environ Res 88:579–588

    Article  CAS  Google Scholar 

  61. Cheng J-S, Du J, Zhu W (2012) Facile synthesis of three-dimensional chitosan–graphene mesostructures for reactive black 5 removal. Carbohyd Polym 88:61–67

    Article  CAS  Google Scholar 

  62. Carmalin Sophia A, Arfin T, Lima EC (2019) Recent developments in adsorption of dyes using graphene based nanomaterials, A new generation material graphene: applications in water technology 439–471

    Google Scholar 

  63. Geng Z, Lin Y, Yu X, Shen Q, Ma L, Li Z, Pan N, Wang X (2012) Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles as an easily regenerative adsorbent. J Mater Chem 22:3527–3535

    Article  CAS  Google Scholar 

  64. Kumar M, Dosanjh HS, Singh J, Monir K, Singh H (2020) Review on magnetic nanoferrites and their composites as alternatives in waste water treatment: synthesis, modifications and applications. Environ Sci Water Res Technol 6:491–514

    Article  CAS  Google Scholar 

  65. Sahraei R, Hemmati K, Ghaemy M (2016) Adsorptive removal of toxic metals and cationic dyes by magnetic adsorbent based on functionalized graphene oxide from water. RSC Adv 6:72487–72499

    Article  CAS  Google Scholar 

  66. Sheng G, Zhu S, Wang S, Wang Z (2016) Removal of dyes by a novel fly ash–chitosan–graphene oxide composite adsorbent. RSC Adv 6:17987–17994

    Article  CAS  Google Scholar 

  67. Kyzas GZ, Deliyanni EA, Bikiaris DN, Mitropoulos AC (2018) Graphene composites as dye adsorbents. Chem Eng Res Des 129:75–88

    Article  CAS  Google Scholar 

  68. Travlou NA, Kyzas GZ, Lazaridis NK, Deliyanni EA (2013) Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir 29:1657–1668

    Article  CAS  Google Scholar 

  69. Xiong Z, Zhang LL, Ma J, Zhao X (2010) Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation. Chem Commun 46:6099–6101

    Article  CAS  Google Scholar 

  70. Fan F, Wang X, Ma Y, Fu K, Yang Y (2015) Enhanced photocatalytic degradation of dye wastewater using ZnO/reduced graphene oxide hybrids. Fullerenes Nanotubes Carbon Nanostruct 23:917–921

    Article  CAS  Google Scholar 

  71. Kavitha T, Gopalan AI, Lee K-P, Park S-Y (2012) Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon 50:2994–3000

    Article  CAS  Google Scholar 

  72. Shanmugam M, Alsalme A, Alghamdi A, Jayavel R (2015) Enhanced photocatalytic performance of the graphene-V2O5 nanocomposite in the degradation of methylene blue dye under direct sunlight. ACS Appl Mater Interfaces 7:14905–14911

    Article  CAS  Google Scholar 

  73. Rakkesh RA, Durgalakshmi D, Balakumar S (2015) Nanostructuring of a GNS-V 2 O 5–TiO2 core–shell photocatalyst for water remediation applications under sun-light irradiation. RSC Adv 5:18633–18641

    Article  Google Scholar 

  74. Xie G, Xi P, Liu H, Chen F, Huang L, Shi Y, Hou F, Zeng Z, Shao C, Wang J (2012) A facile chemical method to produce superparamagnetic graphene oxide–Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution. J Mater Chem 22:1033–1039

    Article  CAS  Google Scholar 

  75. Li B, Cao H, Yin G (2011) Mg (OH) 2@ reduced graphene oxide composite for removal of dyes from water. J Mater Chem 21:13765–13768

    Article  CAS  Google Scholar 

  76. Li C, Zhu H, She X, Wang T, She F, Kong L (2016) Selective removal of anionic dyes using poly (N, N-dimethyl amino ethylmethacrylate) functionalized graphene oxide. RSC Adv 6:67242–67251

    Article  CAS  Google Scholar 

  77. Noreen S, Tahira M, Ghamkhar M, Hafiz I, Bhatti HN, Nadeem R, Murtaza MA, Yaseen M, Sheikh AA, Naseem Z (2021) Treatment of textile wastewater containing acid dye using novel polymeric graphene oxide nanocomposites (GO/PAN, GO/PPy, GO/PSty). J Market Res 14:25–35

    CAS  Google Scholar 

  78. Nawaz H, Umar M, Ullah A, Razzaq H, Zia KM, Liu X (2021) Polyvinylidene fluoride nanocomposite super hydrophilic membrane integrated with polyaniline-graphene oxide nano fillers for treatment of textile effluents. J Hazard Mater 403:123587

    Article  CAS  Google Scholar 

  79. Isari AA, Payan A, Fattahi M, Jorfi S, Kakavandi B (2018) Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): characterization and feasibility, mechanism and pathway studies. Appl Surf Sci 462:549–564

    Article  CAS  Google Scholar 

  80. Fallah S, Mamaghani HR, Yegani R, Hajinajaf N, Pourabbas B (2020) Use of graphene substrates for wastewater treatment of textile industries. Adv Compos Hybrid Mater 3:187–193

    Article  CAS  Google Scholar 

  81. Foroutan R, Mohammadi R, MousaKhanloo F, Sahebi S, Ramavandi B, Kumar PS, Vardhan KH (2020) Performance of montmorillonite/graphene oxide/CoFe2O4 as a magnetic and recyclable nanocomposite for cleaning methyl violet dye-laden wastewater. Adv Powder Technol 31:3993–4004

    Article  CAS  Google Scholar 

  82. Firouzjaei MD, Afkhami FA, Esfahani MR, Turner CH, Nejati S (2020) Experimental and molecular dynamics study on dye removal from water by a graphene oxide-copper-metal organic framework nanocomposite. J Water Process Eng 34:101180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Nasir Mohamad Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Idris, M.O., Daud, N.N.M., Ibrahim, M.N.M., Sumaila, A. (2023). Graphene-Supported Nanohybrid Materials for Removal of Textile Dyes. In: Ahmad, A., Jawaid, M., Mohamad Ibrahim, M.N., Yaqoob, A.A., Alshammari, M.B. (eds) Nanohybrid Materials for Treatment of Textiles Dyes. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-3901-5_5

Download citation

Publish with us

Policies and ethics